ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  rpge0 GIF version

Theorem rpge0 9760
Description: A positive real is greater than or equal to zero. (Contributed by NM, 22-Feb-2008.)
Assertion
Ref Expression
rpge0 (𝐴 ∈ ℝ+ → 0 ≤ 𝐴)

Proof of Theorem rpge0
StepHypRef Expression
1 rpre 9754 . 2 (𝐴 ∈ ℝ+𝐴 ∈ ℝ)
2 rpgt0 9759 . 2 (𝐴 ∈ ℝ+ → 0 < 𝐴)
3 0re 8045 . . 3 0 ∈ ℝ
4 ltle 8133 . . 3 ((0 ∈ ℝ ∧ 𝐴 ∈ ℝ) → (0 < 𝐴 → 0 ≤ 𝐴))
53, 4mpan 424 . 2 (𝐴 ∈ ℝ → (0 < 𝐴 → 0 ≤ 𝐴))
61, 2, 5sylc 62 1 (𝐴 ∈ ℝ+ → 0 ≤ 𝐴)
Colors of variables: wff set class
Syntax hints:  wi 4  wcel 2167   class class class wbr 4034  cr 7897  0cc0 7898   < clt 8080  cle 8081  +crp 9747
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-sep 4152  ax-pow 4208  ax-pr 4243  ax-un 4469  ax-setind 4574  ax-cnex 7989  ax-resscn 7990  ax-1re 7992  ax-addrcl 7995  ax-rnegex 8007  ax-pre-ltirr 8010  ax-pre-lttrn 8012
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-nel 2463  df-ral 2480  df-rex 2481  df-rab 2484  df-v 2765  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-pw 3608  df-sn 3629  df-pr 3630  df-op 3632  df-uni 3841  df-br 4035  df-opab 4096  df-xp 4670  df-cnv 4672  df-pnf 8082  df-mnf 8083  df-xr 8084  df-ltxr 8085  df-le 8086  df-rp 9748
This theorem is referenced by:  rprege0  9762  rpge0d  9794  rpsqrtcl  11225  ef01bndlem  11940  bdmet  14846  rpcxpsqrt  15266  rpcxpsqrtth  15274
  Copyright terms: Public domain W3C validator