ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nnledivrp GIF version

Theorem nnledivrp 9832
Description: Division of a positive integer by a positive number is less than or equal to the integer iff the number is greater than or equal to 1. (Contributed by AV, 19-Jun-2021.)
Assertion
Ref Expression
nnledivrp ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℝ+) → (1 ≤ 𝐵 ↔ (𝐴 / 𝐵) ≤ 𝐴))

Proof of Theorem nnledivrp
StepHypRef Expression
1 1re 8018 . . . 4 1 ∈ ℝ
2 0lt1 8146 . . . 4 0 < 1
31, 2pm3.2i 272 . . 3 (1 ∈ ℝ ∧ 0 < 1)
4 rpregt0 9733 . . . 4 (𝐵 ∈ ℝ+ → (𝐵 ∈ ℝ ∧ 0 < 𝐵))
54adantl 277 . . 3 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℝ+) → (𝐵 ∈ ℝ ∧ 0 < 𝐵))
6 nnre 8989 . . . . 5 (𝐴 ∈ ℕ → 𝐴 ∈ ℝ)
7 nngt0 9007 . . . . 5 (𝐴 ∈ ℕ → 0 < 𝐴)
86, 7jca 306 . . . 4 (𝐴 ∈ ℕ → (𝐴 ∈ ℝ ∧ 0 < 𝐴))
98adantr 276 . . 3 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℝ+) → (𝐴 ∈ ℝ ∧ 0 < 𝐴))
10 lediv2 8910 . . 3 (((1 ∈ ℝ ∧ 0 < 1) ∧ (𝐵 ∈ ℝ ∧ 0 < 𝐵) ∧ (𝐴 ∈ ℝ ∧ 0 < 𝐴)) → (1 ≤ 𝐵 ↔ (𝐴 / 𝐵) ≤ (𝐴 / 1)))
113, 5, 9, 10mp3an2i 1353 . 2 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℝ+) → (1 ≤ 𝐵 ↔ (𝐴 / 𝐵) ≤ (𝐴 / 1)))
12 nncn 8990 . . . . 5 (𝐴 ∈ ℕ → 𝐴 ∈ ℂ)
1312div1d 8799 . . . 4 (𝐴 ∈ ℕ → (𝐴 / 1) = 𝐴)
1413adantr 276 . . 3 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℝ+) → (𝐴 / 1) = 𝐴)
1514breq2d 4041 . 2 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℝ+) → ((𝐴 / 𝐵) ≤ (𝐴 / 1) ↔ (𝐴 / 𝐵) ≤ 𝐴))
1611, 15bitrd 188 1 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℝ+) → (1 ≤ 𝐵 ↔ (𝐴 / 𝐵) ≤ 𝐴))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105   = wceq 1364  wcel 2164   class class class wbr 4029  (class class class)co 5918  cr 7871  0cc0 7872  1c1 7873   < clt 8054  cle 8055   / cdiv 8691  cn 8982  +crp 9719
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-sep 4147  ax-pow 4203  ax-pr 4238  ax-un 4464  ax-setind 4569  ax-cnex 7963  ax-resscn 7964  ax-1cn 7965  ax-1re 7966  ax-icn 7967  ax-addcl 7968  ax-addrcl 7969  ax-mulcl 7970  ax-mulrcl 7971  ax-addcom 7972  ax-mulcom 7973  ax-addass 7974  ax-mulass 7975  ax-distr 7976  ax-i2m1 7977  ax-0lt1 7978  ax-1rid 7979  ax-0id 7980  ax-rnegex 7981  ax-precex 7982  ax-cnre 7983  ax-pre-ltirr 7984  ax-pre-ltwlin 7985  ax-pre-lttrn 7986  ax-pre-apti 7987  ax-pre-ltadd 7988  ax-pre-mulgt0 7989  ax-pre-mulext 7990
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-nel 2460  df-ral 2477  df-rex 2478  df-reu 2479  df-rmo 2480  df-rab 2481  df-v 2762  df-sbc 2986  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-pw 3603  df-sn 3624  df-pr 3625  df-op 3627  df-uni 3836  df-int 3871  df-br 4030  df-opab 4091  df-id 4324  df-po 4327  df-iso 4328  df-xp 4665  df-rel 4666  df-cnv 4667  df-co 4668  df-dm 4669  df-iota 5215  df-fun 5256  df-fv 5262  df-riota 5873  df-ov 5921  df-oprab 5922  df-mpo 5923  df-pnf 8056  df-mnf 8057  df-xr 8058  df-ltxr 8059  df-le 8060  df-sub 8192  df-neg 8193  df-reap 8594  df-ap 8601  df-div 8692  df-inn 8983  df-rp 9720
This theorem is referenced by:  nn0ledivnn  9833
  Copyright terms: Public domain W3C validator