| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > nnledivrp | GIF version | ||
| Description: Division of a positive integer by a positive number is less than or equal to the integer iff the number is greater than or equal to 1. (Contributed by AV, 19-Jun-2021.) |
| Ref | Expression |
|---|---|
| nnledivrp | ⊢ ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℝ+) → (1 ≤ 𝐵 ↔ (𝐴 / 𝐵) ≤ 𝐴)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 1re 8027 | . . . 4 ⊢ 1 ∈ ℝ | |
| 2 | 0lt1 8155 | . . . 4 ⊢ 0 < 1 | |
| 3 | 1, 2 | pm3.2i 272 | . . 3 ⊢ (1 ∈ ℝ ∧ 0 < 1) |
| 4 | rpregt0 9744 | . . . 4 ⊢ (𝐵 ∈ ℝ+ → (𝐵 ∈ ℝ ∧ 0 < 𝐵)) | |
| 5 | 4 | adantl 277 | . . 3 ⊢ ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℝ+) → (𝐵 ∈ ℝ ∧ 0 < 𝐵)) |
| 6 | nnre 8999 | . . . . 5 ⊢ (𝐴 ∈ ℕ → 𝐴 ∈ ℝ) | |
| 7 | nngt0 9017 | . . . . 5 ⊢ (𝐴 ∈ ℕ → 0 < 𝐴) | |
| 8 | 6, 7 | jca 306 | . . . 4 ⊢ (𝐴 ∈ ℕ → (𝐴 ∈ ℝ ∧ 0 < 𝐴)) |
| 9 | 8 | adantr 276 | . . 3 ⊢ ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℝ+) → (𝐴 ∈ ℝ ∧ 0 < 𝐴)) |
| 10 | lediv2 8920 | . . 3 ⊢ (((1 ∈ ℝ ∧ 0 < 1) ∧ (𝐵 ∈ ℝ ∧ 0 < 𝐵) ∧ (𝐴 ∈ ℝ ∧ 0 < 𝐴)) → (1 ≤ 𝐵 ↔ (𝐴 / 𝐵) ≤ (𝐴 / 1))) | |
| 11 | 3, 5, 9, 10 | mp3an2i 1353 | . 2 ⊢ ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℝ+) → (1 ≤ 𝐵 ↔ (𝐴 / 𝐵) ≤ (𝐴 / 1))) |
| 12 | nncn 9000 | . . . . 5 ⊢ (𝐴 ∈ ℕ → 𝐴 ∈ ℂ) | |
| 13 | 12 | div1d 8809 | . . . 4 ⊢ (𝐴 ∈ ℕ → (𝐴 / 1) = 𝐴) |
| 14 | 13 | adantr 276 | . . 3 ⊢ ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℝ+) → (𝐴 / 1) = 𝐴) |
| 15 | 14 | breq2d 4046 | . 2 ⊢ ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℝ+) → ((𝐴 / 𝐵) ≤ (𝐴 / 1) ↔ (𝐴 / 𝐵) ≤ 𝐴)) |
| 16 | 11, 15 | bitrd 188 | 1 ⊢ ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℝ+) → (1 ≤ 𝐵 ↔ (𝐴 / 𝐵) ≤ 𝐴)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 = wceq 1364 ∈ wcel 2167 class class class wbr 4034 (class class class)co 5923 ℝcr 7880 0cc0 7881 1c1 7882 < clt 8063 ≤ cle 8064 / cdiv 8701 ℕcn 8992 ℝ+crp 9730 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-sep 4152 ax-pow 4208 ax-pr 4243 ax-un 4469 ax-setind 4574 ax-cnex 7972 ax-resscn 7973 ax-1cn 7974 ax-1re 7975 ax-icn 7976 ax-addcl 7977 ax-addrcl 7978 ax-mulcl 7979 ax-mulrcl 7980 ax-addcom 7981 ax-mulcom 7982 ax-addass 7983 ax-mulass 7984 ax-distr 7985 ax-i2m1 7986 ax-0lt1 7987 ax-1rid 7988 ax-0id 7989 ax-rnegex 7990 ax-precex 7991 ax-cnre 7992 ax-pre-ltirr 7993 ax-pre-ltwlin 7994 ax-pre-lttrn 7995 ax-pre-apti 7996 ax-pre-ltadd 7997 ax-pre-mulgt0 7998 ax-pre-mulext 7999 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ne 2368 df-nel 2463 df-ral 2480 df-rex 2481 df-reu 2482 df-rmo 2483 df-rab 2484 df-v 2765 df-sbc 2990 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-pw 3608 df-sn 3629 df-pr 3630 df-op 3632 df-uni 3841 df-int 3876 df-br 4035 df-opab 4096 df-id 4329 df-po 4332 df-iso 4333 df-xp 4670 df-rel 4671 df-cnv 4672 df-co 4673 df-dm 4674 df-iota 5220 df-fun 5261 df-fv 5267 df-riota 5878 df-ov 5926 df-oprab 5927 df-mpo 5928 df-pnf 8065 df-mnf 8066 df-xr 8067 df-ltxr 8068 df-le 8069 df-sub 8201 df-neg 8202 df-reap 8604 df-ap 8611 df-div 8702 df-inn 8993 df-rp 9731 |
| This theorem is referenced by: nn0ledivnn 9844 |
| Copyright terms: Public domain | W3C validator |