Step | Hyp | Ref
| Expression |
1 | | prmuz2 12085 |
. . 3
⊢ (𝑃 ∈ ℙ → 𝑃 ∈
(ℤ≥‘2)) |
2 | | euclemma 12100 |
. . . . . 6
⊢ ((𝑃 ∈ ℙ ∧ 𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ) → (𝑃 ∥ (𝑥 · 𝑦) ↔ (𝑃 ∥ 𝑥 ∨ 𝑃 ∥ 𝑦))) |
3 | 2 | 3expb 1199 |
. . . . 5
⊢ ((𝑃 ∈ ℙ ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) → (𝑃 ∥ (𝑥 · 𝑦) ↔ (𝑃 ∥ 𝑥 ∨ 𝑃 ∥ 𝑦))) |
4 | 3 | biimpd 143 |
. . . 4
⊢ ((𝑃 ∈ ℙ ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) → (𝑃 ∥ (𝑥 · 𝑦) → (𝑃 ∥ 𝑥 ∨ 𝑃 ∥ 𝑦))) |
5 | 4 | ralrimivva 2552 |
. . 3
⊢ (𝑃 ∈ ℙ →
∀𝑥 ∈ ℤ
∀𝑦 ∈ ℤ
(𝑃 ∥ (𝑥 · 𝑦) → (𝑃 ∥ 𝑥 ∨ 𝑃 ∥ 𝑦))) |
6 | 1, 5 | jca 304 |
. 2
⊢ (𝑃 ∈ ℙ → (𝑃 ∈
(ℤ≥‘2) ∧ ∀𝑥 ∈ ℤ ∀𝑦 ∈ ℤ (𝑃 ∥ (𝑥 · 𝑦) → (𝑃 ∥ 𝑥 ∨ 𝑃 ∥ 𝑦)))) |
7 | | simpl 108 |
. . 3
⊢ ((𝑃 ∈
(ℤ≥‘2) ∧ ∀𝑥 ∈ ℤ ∀𝑦 ∈ ℤ (𝑃 ∥ (𝑥 · 𝑦) → (𝑃 ∥ 𝑥 ∨ 𝑃 ∥ 𝑦))) → 𝑃 ∈
(ℤ≥‘2)) |
8 | | eluz2nn 9525 |
. . . . . . . . . . . . 13
⊢ (𝑃 ∈
(ℤ≥‘2) → 𝑃 ∈ ℕ) |
9 | 8 | adantr 274 |
. . . . . . . . . . . 12
⊢ ((𝑃 ∈
(ℤ≥‘2) ∧ (𝑧 ∈ ℕ ∧ 𝑧 ∥ 𝑃)) → 𝑃 ∈ ℕ) |
10 | 9 | nnzd 9333 |
. . . . . . . . . . 11
⊢ ((𝑃 ∈
(ℤ≥‘2) ∧ (𝑧 ∈ ℕ ∧ 𝑧 ∥ 𝑃)) → 𝑃 ∈ ℤ) |
11 | | iddvds 11766 |
. . . . . . . . . . 11
⊢ (𝑃 ∈ ℤ → 𝑃 ∥ 𝑃) |
12 | 10, 11 | syl 14 |
. . . . . . . . . 10
⊢ ((𝑃 ∈
(ℤ≥‘2) ∧ (𝑧 ∈ ℕ ∧ 𝑧 ∥ 𝑃)) → 𝑃 ∥ 𝑃) |
13 | | nncn 8886 |
. . . . . . . . . . . 12
⊢ (𝑃 ∈ ℕ → 𝑃 ∈
ℂ) |
14 | 9, 13 | syl 14 |
. . . . . . . . . . 11
⊢ ((𝑃 ∈
(ℤ≥‘2) ∧ (𝑧 ∈ ℕ ∧ 𝑧 ∥ 𝑃)) → 𝑃 ∈ ℂ) |
15 | | nncn 8886 |
. . . . . . . . . . . 12
⊢ (𝑧 ∈ ℕ → 𝑧 ∈
ℂ) |
16 | 15 | ad2antrl 487 |
. . . . . . . . . . 11
⊢ ((𝑃 ∈
(ℤ≥‘2) ∧ (𝑧 ∈ ℕ ∧ 𝑧 ∥ 𝑃)) → 𝑧 ∈ ℂ) |
17 | | nnap0 8907 |
. . . . . . . . . . . 12
⊢ (𝑧 ∈ ℕ → 𝑧 # 0) |
18 | 17 | ad2antrl 487 |
. . . . . . . . . . 11
⊢ ((𝑃 ∈
(ℤ≥‘2) ∧ (𝑧 ∈ ℕ ∧ 𝑧 ∥ 𝑃)) → 𝑧 # 0) |
19 | 14, 16, 18 | divcanap1d 8708 |
. . . . . . . . . 10
⊢ ((𝑃 ∈
(ℤ≥‘2) ∧ (𝑧 ∈ ℕ ∧ 𝑧 ∥ 𝑃)) → ((𝑃 / 𝑧) · 𝑧) = 𝑃) |
20 | 12, 19 | breqtrrd 4017 |
. . . . . . . . 9
⊢ ((𝑃 ∈
(ℤ≥‘2) ∧ (𝑧 ∈ ℕ ∧ 𝑧 ∥ 𝑃)) → 𝑃 ∥ ((𝑃 / 𝑧) · 𝑧)) |
21 | 20 | adantr 274 |
. . . . . . . 8
⊢ (((𝑃 ∈
(ℤ≥‘2) ∧ (𝑧 ∈ ℕ ∧ 𝑧 ∥ 𝑃)) ∧ ∀𝑥 ∈ ℤ ∀𝑦 ∈ ℤ (𝑃 ∥ (𝑥 · 𝑦) → (𝑃 ∥ 𝑥 ∨ 𝑃 ∥ 𝑦))) → 𝑃 ∥ ((𝑃 / 𝑧) · 𝑧)) |
22 | | simprr 527 |
. . . . . . . . . . . 12
⊢ ((𝑃 ∈
(ℤ≥‘2) ∧ (𝑧 ∈ ℕ ∧ 𝑧 ∥ 𝑃)) → 𝑧 ∥ 𝑃) |
23 | | simprl 526 |
. . . . . . . . . . . . 13
⊢ ((𝑃 ∈
(ℤ≥‘2) ∧ (𝑧 ∈ ℕ ∧ 𝑧 ∥ 𝑃)) → 𝑧 ∈ ℕ) |
24 | | nndivdvds 11758 |
. . . . . . . . . . . . 13
⊢ ((𝑃 ∈ ℕ ∧ 𝑧 ∈ ℕ) → (𝑧 ∥ 𝑃 ↔ (𝑃 / 𝑧) ∈ ℕ)) |
25 | 9, 23, 24 | syl2anc 409 |
. . . . . . . . . . . 12
⊢ ((𝑃 ∈
(ℤ≥‘2) ∧ (𝑧 ∈ ℕ ∧ 𝑧 ∥ 𝑃)) → (𝑧 ∥ 𝑃 ↔ (𝑃 / 𝑧) ∈ ℕ)) |
26 | 22, 25 | mpbid 146 |
. . . . . . . . . . 11
⊢ ((𝑃 ∈
(ℤ≥‘2) ∧ (𝑧 ∈ ℕ ∧ 𝑧 ∥ 𝑃)) → (𝑃 / 𝑧) ∈ ℕ) |
27 | 26 | nnzd 9333 |
. . . . . . . . . 10
⊢ ((𝑃 ∈
(ℤ≥‘2) ∧ (𝑧 ∈ ℕ ∧ 𝑧 ∥ 𝑃)) → (𝑃 / 𝑧) ∈ ℤ) |
28 | | nnz 9231 |
. . . . . . . . . . 11
⊢ (𝑧 ∈ ℕ → 𝑧 ∈
ℤ) |
29 | 28 | ad2antrl 487 |
. . . . . . . . . 10
⊢ ((𝑃 ∈
(ℤ≥‘2) ∧ (𝑧 ∈ ℕ ∧ 𝑧 ∥ 𝑃)) → 𝑧 ∈ ℤ) |
30 | 27, 29 | jca 304 |
. . . . . . . . 9
⊢ ((𝑃 ∈
(ℤ≥‘2) ∧ (𝑧 ∈ ℕ ∧ 𝑧 ∥ 𝑃)) → ((𝑃 / 𝑧) ∈ ℤ ∧ 𝑧 ∈ ℤ)) |
31 | | oveq1 5860 |
. . . . . . . . . . . 12
⊢ (𝑥 = (𝑃 / 𝑧) → (𝑥 · 𝑦) = ((𝑃 / 𝑧) · 𝑦)) |
32 | 31 | breq2d 4001 |
. . . . . . . . . . 11
⊢ (𝑥 = (𝑃 / 𝑧) → (𝑃 ∥ (𝑥 · 𝑦) ↔ 𝑃 ∥ ((𝑃 / 𝑧) · 𝑦))) |
33 | | breq2 3993 |
. . . . . . . . . . . 12
⊢ (𝑥 = (𝑃 / 𝑧) → (𝑃 ∥ 𝑥 ↔ 𝑃 ∥ (𝑃 / 𝑧))) |
34 | 33 | orbi1d 786 |
. . . . . . . . . . 11
⊢ (𝑥 = (𝑃 / 𝑧) → ((𝑃 ∥ 𝑥 ∨ 𝑃 ∥ 𝑦) ↔ (𝑃 ∥ (𝑃 / 𝑧) ∨ 𝑃 ∥ 𝑦))) |
35 | 32, 34 | imbi12d 233 |
. . . . . . . . . 10
⊢ (𝑥 = (𝑃 / 𝑧) → ((𝑃 ∥ (𝑥 · 𝑦) → (𝑃 ∥ 𝑥 ∨ 𝑃 ∥ 𝑦)) ↔ (𝑃 ∥ ((𝑃 / 𝑧) · 𝑦) → (𝑃 ∥ (𝑃 / 𝑧) ∨ 𝑃 ∥ 𝑦)))) |
36 | | oveq2 5861 |
. . . . . . . . . . . 12
⊢ (𝑦 = 𝑧 → ((𝑃 / 𝑧) · 𝑦) = ((𝑃 / 𝑧) · 𝑧)) |
37 | 36 | breq2d 4001 |
. . . . . . . . . . 11
⊢ (𝑦 = 𝑧 → (𝑃 ∥ ((𝑃 / 𝑧) · 𝑦) ↔ 𝑃 ∥ ((𝑃 / 𝑧) · 𝑧))) |
38 | | breq2 3993 |
. . . . . . . . . . . 12
⊢ (𝑦 = 𝑧 → (𝑃 ∥ 𝑦 ↔ 𝑃 ∥ 𝑧)) |
39 | 38 | orbi2d 785 |
. . . . . . . . . . 11
⊢ (𝑦 = 𝑧 → ((𝑃 ∥ (𝑃 / 𝑧) ∨ 𝑃 ∥ 𝑦) ↔ (𝑃 ∥ (𝑃 / 𝑧) ∨ 𝑃 ∥ 𝑧))) |
40 | 37, 39 | imbi12d 233 |
. . . . . . . . . 10
⊢ (𝑦 = 𝑧 → ((𝑃 ∥ ((𝑃 / 𝑧) · 𝑦) → (𝑃 ∥ (𝑃 / 𝑧) ∨ 𝑃 ∥ 𝑦)) ↔ (𝑃 ∥ ((𝑃 / 𝑧) · 𝑧) → (𝑃 ∥ (𝑃 / 𝑧) ∨ 𝑃 ∥ 𝑧)))) |
41 | 35, 40 | rspc2va 2848 |
. . . . . . . . 9
⊢ ((((𝑃 / 𝑧) ∈ ℤ ∧ 𝑧 ∈ ℤ) ∧ ∀𝑥 ∈ ℤ ∀𝑦 ∈ ℤ (𝑃 ∥ (𝑥 · 𝑦) → (𝑃 ∥ 𝑥 ∨ 𝑃 ∥ 𝑦))) → (𝑃 ∥ ((𝑃 / 𝑧) · 𝑧) → (𝑃 ∥ (𝑃 / 𝑧) ∨ 𝑃 ∥ 𝑧))) |
42 | 30, 41 | sylan 281 |
. . . . . . . 8
⊢ (((𝑃 ∈
(ℤ≥‘2) ∧ (𝑧 ∈ ℕ ∧ 𝑧 ∥ 𝑃)) ∧ ∀𝑥 ∈ ℤ ∀𝑦 ∈ ℤ (𝑃 ∥ (𝑥 · 𝑦) → (𝑃 ∥ 𝑥 ∨ 𝑃 ∥ 𝑦))) → (𝑃 ∥ ((𝑃 / 𝑧) · 𝑧) → (𝑃 ∥ (𝑃 / 𝑧) ∨ 𝑃 ∥ 𝑧))) |
43 | 21, 42 | mpd 13 |
. . . . . . 7
⊢ (((𝑃 ∈
(ℤ≥‘2) ∧ (𝑧 ∈ ℕ ∧ 𝑧 ∥ 𝑃)) ∧ ∀𝑥 ∈ ℤ ∀𝑦 ∈ ℤ (𝑃 ∥ (𝑥 · 𝑦) → (𝑃 ∥ 𝑥 ∨ 𝑃 ∥ 𝑦))) → (𝑃 ∥ (𝑃 / 𝑧) ∨ 𝑃 ∥ 𝑧)) |
44 | | dvdsle 11804 |
. . . . . . . . . . . . 13
⊢ ((𝑃 ∈ ℤ ∧ (𝑃 / 𝑧) ∈ ℕ) → (𝑃 ∥ (𝑃 / 𝑧) → 𝑃 ≤ (𝑃 / 𝑧))) |
45 | 10, 26, 44 | syl2anc 409 |
. . . . . . . . . . . 12
⊢ ((𝑃 ∈
(ℤ≥‘2) ∧ (𝑧 ∈ ℕ ∧ 𝑧 ∥ 𝑃)) → (𝑃 ∥ (𝑃 / 𝑧) → 𝑃 ≤ (𝑃 / 𝑧))) |
46 | 14 | div1d 8697 |
. . . . . . . . . . . . 13
⊢ ((𝑃 ∈
(ℤ≥‘2) ∧ (𝑧 ∈ ℕ ∧ 𝑧 ∥ 𝑃)) → (𝑃 / 1) = 𝑃) |
47 | 46 | breq1d 3999 |
. . . . . . . . . . . 12
⊢ ((𝑃 ∈
(ℤ≥‘2) ∧ (𝑧 ∈ ℕ ∧ 𝑧 ∥ 𝑃)) → ((𝑃 / 1) ≤ (𝑃 / 𝑧) ↔ 𝑃 ≤ (𝑃 / 𝑧))) |
48 | 45, 47 | sylibrd 168 |
. . . . . . . . . . 11
⊢ ((𝑃 ∈
(ℤ≥‘2) ∧ (𝑧 ∈ ℕ ∧ 𝑧 ∥ 𝑃)) → (𝑃 ∥ (𝑃 / 𝑧) → (𝑃 / 1) ≤ (𝑃 / 𝑧))) |
49 | | nnrp 9620 |
. . . . . . . . . . . . . 14
⊢ (𝑧 ∈ ℕ → 𝑧 ∈
ℝ+) |
50 | 49 | rpregt0d 9660 |
. . . . . . . . . . . . 13
⊢ (𝑧 ∈ ℕ → (𝑧 ∈ ℝ ∧ 0 <
𝑧)) |
51 | 50 | ad2antrl 487 |
. . . . . . . . . . . 12
⊢ ((𝑃 ∈
(ℤ≥‘2) ∧ (𝑧 ∈ ℕ ∧ 𝑧 ∥ 𝑃)) → (𝑧 ∈ ℝ ∧ 0 < 𝑧)) |
52 | | 1rp 9614 |
. . . . . . . . . . . . 13
⊢ 1 ∈
ℝ+ |
53 | | rpregt0 9624 |
. . . . . . . . . . . . 13
⊢ (1 ∈
ℝ+ → (1 ∈ ℝ ∧ 0 < 1)) |
54 | 52, 53 | mp1i 10 |
. . . . . . . . . . . 12
⊢ ((𝑃 ∈
(ℤ≥‘2) ∧ (𝑧 ∈ ℕ ∧ 𝑧 ∥ 𝑃)) → (1 ∈ ℝ ∧ 0 <
1)) |
55 | | nnrp 9620 |
. . . . . . . . . . . . . 14
⊢ (𝑃 ∈ ℕ → 𝑃 ∈
ℝ+) |
56 | 9, 55 | syl 14 |
. . . . . . . . . . . . 13
⊢ ((𝑃 ∈
(ℤ≥‘2) ∧ (𝑧 ∈ ℕ ∧ 𝑧 ∥ 𝑃)) → 𝑃 ∈
ℝ+) |
57 | 56 | rpregt0d 9660 |
. . . . . . . . . . . 12
⊢ ((𝑃 ∈
(ℤ≥‘2) ∧ (𝑧 ∈ ℕ ∧ 𝑧 ∥ 𝑃)) → (𝑃 ∈ ℝ ∧ 0 < 𝑃)) |
58 | | lediv2 8807 |
. . . . . . . . . . . 12
⊢ (((𝑧 ∈ ℝ ∧ 0 <
𝑧) ∧ (1 ∈ ℝ
∧ 0 < 1) ∧ (𝑃
∈ ℝ ∧ 0 < 𝑃)) → (𝑧 ≤ 1 ↔ (𝑃 / 1) ≤ (𝑃 / 𝑧))) |
59 | 51, 54, 57, 58 | syl3anc 1233 |
. . . . . . . . . . 11
⊢ ((𝑃 ∈
(ℤ≥‘2) ∧ (𝑧 ∈ ℕ ∧ 𝑧 ∥ 𝑃)) → (𝑧 ≤ 1 ↔ (𝑃 / 1) ≤ (𝑃 / 𝑧))) |
60 | 48, 59 | sylibrd 168 |
. . . . . . . . . 10
⊢ ((𝑃 ∈
(ℤ≥‘2) ∧ (𝑧 ∈ ℕ ∧ 𝑧 ∥ 𝑃)) → (𝑃 ∥ (𝑃 / 𝑧) → 𝑧 ≤ 1)) |
61 | | nnle1eq1 8902 |
. . . . . . . . . . 11
⊢ (𝑧 ∈ ℕ → (𝑧 ≤ 1 ↔ 𝑧 = 1)) |
62 | 61 | ad2antrl 487 |
. . . . . . . . . 10
⊢ ((𝑃 ∈
(ℤ≥‘2) ∧ (𝑧 ∈ ℕ ∧ 𝑧 ∥ 𝑃)) → (𝑧 ≤ 1 ↔ 𝑧 = 1)) |
63 | 60, 62 | sylibd 148 |
. . . . . . . . 9
⊢ ((𝑃 ∈
(ℤ≥‘2) ∧ (𝑧 ∈ ℕ ∧ 𝑧 ∥ 𝑃)) → (𝑃 ∥ (𝑃 / 𝑧) → 𝑧 = 1)) |
64 | | nnnn0 9142 |
. . . . . . . . . . . . 13
⊢ (𝑧 ∈ ℕ → 𝑧 ∈
ℕ0) |
65 | 64 | ad2antrl 487 |
. . . . . . . . . . . 12
⊢ ((𝑃 ∈
(ℤ≥‘2) ∧ (𝑧 ∈ ℕ ∧ 𝑧 ∥ 𝑃)) → 𝑧 ∈ ℕ0) |
66 | 65 | adantr 274 |
. . . . . . . . . . 11
⊢ (((𝑃 ∈
(ℤ≥‘2) ∧ (𝑧 ∈ ℕ ∧ 𝑧 ∥ 𝑃)) ∧ 𝑃 ∥ 𝑧) → 𝑧 ∈ ℕ0) |
67 | | nnnn0 9142 |
. . . . . . . . . . . . 13
⊢ (𝑃 ∈ ℕ → 𝑃 ∈
ℕ0) |
68 | 9, 67 | syl 14 |
. . . . . . . . . . . 12
⊢ ((𝑃 ∈
(ℤ≥‘2) ∧ (𝑧 ∈ ℕ ∧ 𝑧 ∥ 𝑃)) → 𝑃 ∈
ℕ0) |
69 | 68 | adantr 274 |
. . . . . . . . . . 11
⊢ (((𝑃 ∈
(ℤ≥‘2) ∧ (𝑧 ∈ ℕ ∧ 𝑧 ∥ 𝑃)) ∧ 𝑃 ∥ 𝑧) → 𝑃 ∈
ℕ0) |
70 | | simplrr 531 |
. . . . . . . . . . 11
⊢ (((𝑃 ∈
(ℤ≥‘2) ∧ (𝑧 ∈ ℕ ∧ 𝑧 ∥ 𝑃)) ∧ 𝑃 ∥ 𝑧) → 𝑧 ∥ 𝑃) |
71 | | simpr 109 |
. . . . . . . . . . 11
⊢ (((𝑃 ∈
(ℤ≥‘2) ∧ (𝑧 ∈ ℕ ∧ 𝑧 ∥ 𝑃)) ∧ 𝑃 ∥ 𝑧) → 𝑃 ∥ 𝑧) |
72 | | dvdseq 11808 |
. . . . . . . . . . 11
⊢ (((𝑧 ∈ ℕ0
∧ 𝑃 ∈
ℕ0) ∧ (𝑧 ∥ 𝑃 ∧ 𝑃 ∥ 𝑧)) → 𝑧 = 𝑃) |
73 | 66, 69, 70, 71, 72 | syl22anc 1234 |
. . . . . . . . . 10
⊢ (((𝑃 ∈
(ℤ≥‘2) ∧ (𝑧 ∈ ℕ ∧ 𝑧 ∥ 𝑃)) ∧ 𝑃 ∥ 𝑧) → 𝑧 = 𝑃) |
74 | 73 | ex 114 |
. . . . . . . . 9
⊢ ((𝑃 ∈
(ℤ≥‘2) ∧ (𝑧 ∈ ℕ ∧ 𝑧 ∥ 𝑃)) → (𝑃 ∥ 𝑧 → 𝑧 = 𝑃)) |
75 | 63, 74 | orim12d 781 |
. . . . . . . 8
⊢ ((𝑃 ∈
(ℤ≥‘2) ∧ (𝑧 ∈ ℕ ∧ 𝑧 ∥ 𝑃)) → ((𝑃 ∥ (𝑃 / 𝑧) ∨ 𝑃 ∥ 𝑧) → (𝑧 = 1 ∨ 𝑧 = 𝑃))) |
76 | 75 | imp 123 |
. . . . . . 7
⊢ (((𝑃 ∈
(ℤ≥‘2) ∧ (𝑧 ∈ ℕ ∧ 𝑧 ∥ 𝑃)) ∧ (𝑃 ∥ (𝑃 / 𝑧) ∨ 𝑃 ∥ 𝑧)) → (𝑧 = 1 ∨ 𝑧 = 𝑃)) |
77 | 43, 76 | syldan 280 |
. . . . . 6
⊢ (((𝑃 ∈
(ℤ≥‘2) ∧ (𝑧 ∈ ℕ ∧ 𝑧 ∥ 𝑃)) ∧ ∀𝑥 ∈ ℤ ∀𝑦 ∈ ℤ (𝑃 ∥ (𝑥 · 𝑦) → (𝑃 ∥ 𝑥 ∨ 𝑃 ∥ 𝑦))) → (𝑧 = 1 ∨ 𝑧 = 𝑃)) |
78 | 77 | an32s 563 |
. . . . 5
⊢ (((𝑃 ∈
(ℤ≥‘2) ∧ ∀𝑥 ∈ ℤ ∀𝑦 ∈ ℤ (𝑃 ∥ (𝑥 · 𝑦) → (𝑃 ∥ 𝑥 ∨ 𝑃 ∥ 𝑦))) ∧ (𝑧 ∈ ℕ ∧ 𝑧 ∥ 𝑃)) → (𝑧 = 1 ∨ 𝑧 = 𝑃)) |
79 | 78 | expr 373 |
. . . 4
⊢ (((𝑃 ∈
(ℤ≥‘2) ∧ ∀𝑥 ∈ ℤ ∀𝑦 ∈ ℤ (𝑃 ∥ (𝑥 · 𝑦) → (𝑃 ∥ 𝑥 ∨ 𝑃 ∥ 𝑦))) ∧ 𝑧 ∈ ℕ) → (𝑧 ∥ 𝑃 → (𝑧 = 1 ∨ 𝑧 = 𝑃))) |
80 | 79 | ralrimiva 2543 |
. . 3
⊢ ((𝑃 ∈
(ℤ≥‘2) ∧ ∀𝑥 ∈ ℤ ∀𝑦 ∈ ℤ (𝑃 ∥ (𝑥 · 𝑦) → (𝑃 ∥ 𝑥 ∨ 𝑃 ∥ 𝑦))) → ∀𝑧 ∈ ℕ (𝑧 ∥ 𝑃 → (𝑧 = 1 ∨ 𝑧 = 𝑃))) |
81 | | isprm2 12071 |
. . 3
⊢ (𝑃 ∈ ℙ ↔ (𝑃 ∈
(ℤ≥‘2) ∧ ∀𝑧 ∈ ℕ (𝑧 ∥ 𝑃 → (𝑧 = 1 ∨ 𝑧 = 𝑃)))) |
82 | 7, 80, 81 | sylanbrc 415 |
. 2
⊢ ((𝑃 ∈
(ℤ≥‘2) ∧ ∀𝑥 ∈ ℤ ∀𝑦 ∈ ℤ (𝑃 ∥ (𝑥 · 𝑦) → (𝑃 ∥ 𝑥 ∨ 𝑃 ∥ 𝑦))) → 𝑃 ∈ ℙ) |
83 | 6, 82 | impbii 125 |
1
⊢ (𝑃 ∈ ℙ ↔ (𝑃 ∈
(ℤ≥‘2) ∧ ∀𝑥 ∈ ℤ ∀𝑦 ∈ ℤ (𝑃 ∥ (𝑥 · 𝑦) → (𝑃 ∥ 𝑥 ∨ 𝑃 ∥ 𝑦)))) |