| Step | Hyp | Ref
 | Expression | 
| 1 |   | prmuz2 12299 | 
. . 3
⊢ (𝑃 ∈ ℙ → 𝑃 ∈
(ℤ≥‘2)) | 
| 2 |   | euclemma 12314 | 
. . . . . 6
⊢ ((𝑃 ∈ ℙ ∧ 𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ) → (𝑃 ∥ (𝑥 · 𝑦) ↔ (𝑃 ∥ 𝑥 ∨ 𝑃 ∥ 𝑦))) | 
| 3 | 2 | 3expb 1206 | 
. . . . 5
⊢ ((𝑃 ∈ ℙ ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) → (𝑃 ∥ (𝑥 · 𝑦) ↔ (𝑃 ∥ 𝑥 ∨ 𝑃 ∥ 𝑦))) | 
| 4 | 3 | biimpd 144 | 
. . . 4
⊢ ((𝑃 ∈ ℙ ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) → (𝑃 ∥ (𝑥 · 𝑦) → (𝑃 ∥ 𝑥 ∨ 𝑃 ∥ 𝑦))) | 
| 5 | 4 | ralrimivva 2579 | 
. . 3
⊢ (𝑃 ∈ ℙ →
∀𝑥 ∈ ℤ
∀𝑦 ∈ ℤ
(𝑃 ∥ (𝑥 · 𝑦) → (𝑃 ∥ 𝑥 ∨ 𝑃 ∥ 𝑦))) | 
| 6 | 1, 5 | jca 306 | 
. 2
⊢ (𝑃 ∈ ℙ → (𝑃 ∈
(ℤ≥‘2) ∧ ∀𝑥 ∈ ℤ ∀𝑦 ∈ ℤ (𝑃 ∥ (𝑥 · 𝑦) → (𝑃 ∥ 𝑥 ∨ 𝑃 ∥ 𝑦)))) | 
| 7 |   | simpl 109 | 
. . 3
⊢ ((𝑃 ∈
(ℤ≥‘2) ∧ ∀𝑥 ∈ ℤ ∀𝑦 ∈ ℤ (𝑃 ∥ (𝑥 · 𝑦) → (𝑃 ∥ 𝑥 ∨ 𝑃 ∥ 𝑦))) → 𝑃 ∈
(ℤ≥‘2)) | 
| 8 |   | eluz2nn 9640 | 
. . . . . . . . . . . . 13
⊢ (𝑃 ∈
(ℤ≥‘2) → 𝑃 ∈ ℕ) | 
| 9 | 8 | adantr 276 | 
. . . . . . . . . . . 12
⊢ ((𝑃 ∈
(ℤ≥‘2) ∧ (𝑧 ∈ ℕ ∧ 𝑧 ∥ 𝑃)) → 𝑃 ∈ ℕ) | 
| 10 | 9 | nnzd 9447 | 
. . . . . . . . . . 11
⊢ ((𝑃 ∈
(ℤ≥‘2) ∧ (𝑧 ∈ ℕ ∧ 𝑧 ∥ 𝑃)) → 𝑃 ∈ ℤ) | 
| 11 |   | iddvds 11969 | 
. . . . . . . . . . 11
⊢ (𝑃 ∈ ℤ → 𝑃 ∥ 𝑃) | 
| 12 | 10, 11 | syl 14 | 
. . . . . . . . . 10
⊢ ((𝑃 ∈
(ℤ≥‘2) ∧ (𝑧 ∈ ℕ ∧ 𝑧 ∥ 𝑃)) → 𝑃 ∥ 𝑃) | 
| 13 |   | nncn 8998 | 
. . . . . . . . . . . 12
⊢ (𝑃 ∈ ℕ → 𝑃 ∈
ℂ) | 
| 14 | 9, 13 | syl 14 | 
. . . . . . . . . . 11
⊢ ((𝑃 ∈
(ℤ≥‘2) ∧ (𝑧 ∈ ℕ ∧ 𝑧 ∥ 𝑃)) → 𝑃 ∈ ℂ) | 
| 15 |   | nncn 8998 | 
. . . . . . . . . . . 12
⊢ (𝑧 ∈ ℕ → 𝑧 ∈
ℂ) | 
| 16 | 15 | ad2antrl 490 | 
. . . . . . . . . . 11
⊢ ((𝑃 ∈
(ℤ≥‘2) ∧ (𝑧 ∈ ℕ ∧ 𝑧 ∥ 𝑃)) → 𝑧 ∈ ℂ) | 
| 17 |   | nnap0 9019 | 
. . . . . . . . . . . 12
⊢ (𝑧 ∈ ℕ → 𝑧 # 0) | 
| 18 | 17 | ad2antrl 490 | 
. . . . . . . . . . 11
⊢ ((𝑃 ∈
(ℤ≥‘2) ∧ (𝑧 ∈ ℕ ∧ 𝑧 ∥ 𝑃)) → 𝑧 # 0) | 
| 19 | 14, 16, 18 | divcanap1d 8818 | 
. . . . . . . . . 10
⊢ ((𝑃 ∈
(ℤ≥‘2) ∧ (𝑧 ∈ ℕ ∧ 𝑧 ∥ 𝑃)) → ((𝑃 / 𝑧) · 𝑧) = 𝑃) | 
| 20 | 12, 19 | breqtrrd 4061 | 
. . . . . . . . 9
⊢ ((𝑃 ∈
(ℤ≥‘2) ∧ (𝑧 ∈ ℕ ∧ 𝑧 ∥ 𝑃)) → 𝑃 ∥ ((𝑃 / 𝑧) · 𝑧)) | 
| 21 | 20 | adantr 276 | 
. . . . . . . 8
⊢ (((𝑃 ∈
(ℤ≥‘2) ∧ (𝑧 ∈ ℕ ∧ 𝑧 ∥ 𝑃)) ∧ ∀𝑥 ∈ ℤ ∀𝑦 ∈ ℤ (𝑃 ∥ (𝑥 · 𝑦) → (𝑃 ∥ 𝑥 ∨ 𝑃 ∥ 𝑦))) → 𝑃 ∥ ((𝑃 / 𝑧) · 𝑧)) | 
| 22 |   | simprr 531 | 
. . . . . . . . . . . 12
⊢ ((𝑃 ∈
(ℤ≥‘2) ∧ (𝑧 ∈ ℕ ∧ 𝑧 ∥ 𝑃)) → 𝑧 ∥ 𝑃) | 
| 23 |   | simprl 529 | 
. . . . . . . . . . . . 13
⊢ ((𝑃 ∈
(ℤ≥‘2) ∧ (𝑧 ∈ ℕ ∧ 𝑧 ∥ 𝑃)) → 𝑧 ∈ ℕ) | 
| 24 |   | nndivdvds 11961 | 
. . . . . . . . . . . . 13
⊢ ((𝑃 ∈ ℕ ∧ 𝑧 ∈ ℕ) → (𝑧 ∥ 𝑃 ↔ (𝑃 / 𝑧) ∈ ℕ)) | 
| 25 | 9, 23, 24 | syl2anc 411 | 
. . . . . . . . . . . 12
⊢ ((𝑃 ∈
(ℤ≥‘2) ∧ (𝑧 ∈ ℕ ∧ 𝑧 ∥ 𝑃)) → (𝑧 ∥ 𝑃 ↔ (𝑃 / 𝑧) ∈ ℕ)) | 
| 26 | 22, 25 | mpbid 147 | 
. . . . . . . . . . 11
⊢ ((𝑃 ∈
(ℤ≥‘2) ∧ (𝑧 ∈ ℕ ∧ 𝑧 ∥ 𝑃)) → (𝑃 / 𝑧) ∈ ℕ) | 
| 27 | 26 | nnzd 9447 | 
. . . . . . . . . 10
⊢ ((𝑃 ∈
(ℤ≥‘2) ∧ (𝑧 ∈ ℕ ∧ 𝑧 ∥ 𝑃)) → (𝑃 / 𝑧) ∈ ℤ) | 
| 28 |   | nnz 9345 | 
. . . . . . . . . . 11
⊢ (𝑧 ∈ ℕ → 𝑧 ∈
ℤ) | 
| 29 | 28 | ad2antrl 490 | 
. . . . . . . . . 10
⊢ ((𝑃 ∈
(ℤ≥‘2) ∧ (𝑧 ∈ ℕ ∧ 𝑧 ∥ 𝑃)) → 𝑧 ∈ ℤ) | 
| 30 | 27, 29 | jca 306 | 
. . . . . . . . 9
⊢ ((𝑃 ∈
(ℤ≥‘2) ∧ (𝑧 ∈ ℕ ∧ 𝑧 ∥ 𝑃)) → ((𝑃 / 𝑧) ∈ ℤ ∧ 𝑧 ∈ ℤ)) | 
| 31 |   | oveq1 5929 | 
. . . . . . . . . . . 12
⊢ (𝑥 = (𝑃 / 𝑧) → (𝑥 · 𝑦) = ((𝑃 / 𝑧) · 𝑦)) | 
| 32 | 31 | breq2d 4045 | 
. . . . . . . . . . 11
⊢ (𝑥 = (𝑃 / 𝑧) → (𝑃 ∥ (𝑥 · 𝑦) ↔ 𝑃 ∥ ((𝑃 / 𝑧) · 𝑦))) | 
| 33 |   | breq2 4037 | 
. . . . . . . . . . . 12
⊢ (𝑥 = (𝑃 / 𝑧) → (𝑃 ∥ 𝑥 ↔ 𝑃 ∥ (𝑃 / 𝑧))) | 
| 34 | 33 | orbi1d 792 | 
. . . . . . . . . . 11
⊢ (𝑥 = (𝑃 / 𝑧) → ((𝑃 ∥ 𝑥 ∨ 𝑃 ∥ 𝑦) ↔ (𝑃 ∥ (𝑃 / 𝑧) ∨ 𝑃 ∥ 𝑦))) | 
| 35 | 32, 34 | imbi12d 234 | 
. . . . . . . . . 10
⊢ (𝑥 = (𝑃 / 𝑧) → ((𝑃 ∥ (𝑥 · 𝑦) → (𝑃 ∥ 𝑥 ∨ 𝑃 ∥ 𝑦)) ↔ (𝑃 ∥ ((𝑃 / 𝑧) · 𝑦) → (𝑃 ∥ (𝑃 / 𝑧) ∨ 𝑃 ∥ 𝑦)))) | 
| 36 |   | oveq2 5930 | 
. . . . . . . . . . . 12
⊢ (𝑦 = 𝑧 → ((𝑃 / 𝑧) · 𝑦) = ((𝑃 / 𝑧) · 𝑧)) | 
| 37 | 36 | breq2d 4045 | 
. . . . . . . . . . 11
⊢ (𝑦 = 𝑧 → (𝑃 ∥ ((𝑃 / 𝑧) · 𝑦) ↔ 𝑃 ∥ ((𝑃 / 𝑧) · 𝑧))) | 
| 38 |   | breq2 4037 | 
. . . . . . . . . . . 12
⊢ (𝑦 = 𝑧 → (𝑃 ∥ 𝑦 ↔ 𝑃 ∥ 𝑧)) | 
| 39 | 38 | orbi2d 791 | 
. . . . . . . . . . 11
⊢ (𝑦 = 𝑧 → ((𝑃 ∥ (𝑃 / 𝑧) ∨ 𝑃 ∥ 𝑦) ↔ (𝑃 ∥ (𝑃 / 𝑧) ∨ 𝑃 ∥ 𝑧))) | 
| 40 | 37, 39 | imbi12d 234 | 
. . . . . . . . . 10
⊢ (𝑦 = 𝑧 → ((𝑃 ∥ ((𝑃 / 𝑧) · 𝑦) → (𝑃 ∥ (𝑃 / 𝑧) ∨ 𝑃 ∥ 𝑦)) ↔ (𝑃 ∥ ((𝑃 / 𝑧) · 𝑧) → (𝑃 ∥ (𝑃 / 𝑧) ∨ 𝑃 ∥ 𝑧)))) | 
| 41 | 35, 40 | rspc2va 2882 | 
. . . . . . . . 9
⊢ ((((𝑃 / 𝑧) ∈ ℤ ∧ 𝑧 ∈ ℤ) ∧ ∀𝑥 ∈ ℤ ∀𝑦 ∈ ℤ (𝑃 ∥ (𝑥 · 𝑦) → (𝑃 ∥ 𝑥 ∨ 𝑃 ∥ 𝑦))) → (𝑃 ∥ ((𝑃 / 𝑧) · 𝑧) → (𝑃 ∥ (𝑃 / 𝑧) ∨ 𝑃 ∥ 𝑧))) | 
| 42 | 30, 41 | sylan 283 | 
. . . . . . . 8
⊢ (((𝑃 ∈
(ℤ≥‘2) ∧ (𝑧 ∈ ℕ ∧ 𝑧 ∥ 𝑃)) ∧ ∀𝑥 ∈ ℤ ∀𝑦 ∈ ℤ (𝑃 ∥ (𝑥 · 𝑦) → (𝑃 ∥ 𝑥 ∨ 𝑃 ∥ 𝑦))) → (𝑃 ∥ ((𝑃 / 𝑧) · 𝑧) → (𝑃 ∥ (𝑃 / 𝑧) ∨ 𝑃 ∥ 𝑧))) | 
| 43 | 21, 42 | mpd 13 | 
. . . . . . 7
⊢ (((𝑃 ∈
(ℤ≥‘2) ∧ (𝑧 ∈ ℕ ∧ 𝑧 ∥ 𝑃)) ∧ ∀𝑥 ∈ ℤ ∀𝑦 ∈ ℤ (𝑃 ∥ (𝑥 · 𝑦) → (𝑃 ∥ 𝑥 ∨ 𝑃 ∥ 𝑦))) → (𝑃 ∥ (𝑃 / 𝑧) ∨ 𝑃 ∥ 𝑧)) | 
| 44 |   | dvdsle 12009 | 
. . . . . . . . . . . . 13
⊢ ((𝑃 ∈ ℤ ∧ (𝑃 / 𝑧) ∈ ℕ) → (𝑃 ∥ (𝑃 / 𝑧) → 𝑃 ≤ (𝑃 / 𝑧))) | 
| 45 | 10, 26, 44 | syl2anc 411 | 
. . . . . . . . . . . 12
⊢ ((𝑃 ∈
(ℤ≥‘2) ∧ (𝑧 ∈ ℕ ∧ 𝑧 ∥ 𝑃)) → (𝑃 ∥ (𝑃 / 𝑧) → 𝑃 ≤ (𝑃 / 𝑧))) | 
| 46 | 14 | div1d 8807 | 
. . . . . . . . . . . . 13
⊢ ((𝑃 ∈
(ℤ≥‘2) ∧ (𝑧 ∈ ℕ ∧ 𝑧 ∥ 𝑃)) → (𝑃 / 1) = 𝑃) | 
| 47 | 46 | breq1d 4043 | 
. . . . . . . . . . . 12
⊢ ((𝑃 ∈
(ℤ≥‘2) ∧ (𝑧 ∈ ℕ ∧ 𝑧 ∥ 𝑃)) → ((𝑃 / 1) ≤ (𝑃 / 𝑧) ↔ 𝑃 ≤ (𝑃 / 𝑧))) | 
| 48 | 45, 47 | sylibrd 169 | 
. . . . . . . . . . 11
⊢ ((𝑃 ∈
(ℤ≥‘2) ∧ (𝑧 ∈ ℕ ∧ 𝑧 ∥ 𝑃)) → (𝑃 ∥ (𝑃 / 𝑧) → (𝑃 / 1) ≤ (𝑃 / 𝑧))) | 
| 49 |   | nnrp 9738 | 
. . . . . . . . . . . . . 14
⊢ (𝑧 ∈ ℕ → 𝑧 ∈
ℝ+) | 
| 50 | 49 | rpregt0d 9778 | 
. . . . . . . . . . . . 13
⊢ (𝑧 ∈ ℕ → (𝑧 ∈ ℝ ∧ 0 <
𝑧)) | 
| 51 | 50 | ad2antrl 490 | 
. . . . . . . . . . . 12
⊢ ((𝑃 ∈
(ℤ≥‘2) ∧ (𝑧 ∈ ℕ ∧ 𝑧 ∥ 𝑃)) → (𝑧 ∈ ℝ ∧ 0 < 𝑧)) | 
| 52 |   | 1rp 9732 | 
. . . . . . . . . . . . 13
⊢ 1 ∈
ℝ+ | 
| 53 |   | rpregt0 9742 | 
. . . . . . . . . . . . 13
⊢ (1 ∈
ℝ+ → (1 ∈ ℝ ∧ 0 < 1)) | 
| 54 | 52, 53 | mp1i 10 | 
. . . . . . . . . . . 12
⊢ ((𝑃 ∈
(ℤ≥‘2) ∧ (𝑧 ∈ ℕ ∧ 𝑧 ∥ 𝑃)) → (1 ∈ ℝ ∧ 0 <
1)) | 
| 55 |   | nnrp 9738 | 
. . . . . . . . . . . . . 14
⊢ (𝑃 ∈ ℕ → 𝑃 ∈
ℝ+) | 
| 56 | 9, 55 | syl 14 | 
. . . . . . . . . . . . 13
⊢ ((𝑃 ∈
(ℤ≥‘2) ∧ (𝑧 ∈ ℕ ∧ 𝑧 ∥ 𝑃)) → 𝑃 ∈
ℝ+) | 
| 57 | 56 | rpregt0d 9778 | 
. . . . . . . . . . . 12
⊢ ((𝑃 ∈
(ℤ≥‘2) ∧ (𝑧 ∈ ℕ ∧ 𝑧 ∥ 𝑃)) → (𝑃 ∈ ℝ ∧ 0 < 𝑃)) | 
| 58 |   | lediv2 8918 | 
. . . . . . . . . . . 12
⊢ (((𝑧 ∈ ℝ ∧ 0 <
𝑧) ∧ (1 ∈ ℝ
∧ 0 < 1) ∧ (𝑃
∈ ℝ ∧ 0 < 𝑃)) → (𝑧 ≤ 1 ↔ (𝑃 / 1) ≤ (𝑃 / 𝑧))) | 
| 59 | 51, 54, 57, 58 | syl3anc 1249 | 
. . . . . . . . . . 11
⊢ ((𝑃 ∈
(ℤ≥‘2) ∧ (𝑧 ∈ ℕ ∧ 𝑧 ∥ 𝑃)) → (𝑧 ≤ 1 ↔ (𝑃 / 1) ≤ (𝑃 / 𝑧))) | 
| 60 | 48, 59 | sylibrd 169 | 
. . . . . . . . . 10
⊢ ((𝑃 ∈
(ℤ≥‘2) ∧ (𝑧 ∈ ℕ ∧ 𝑧 ∥ 𝑃)) → (𝑃 ∥ (𝑃 / 𝑧) → 𝑧 ≤ 1)) | 
| 61 |   | nnle1eq1 9014 | 
. . . . . . . . . . 11
⊢ (𝑧 ∈ ℕ → (𝑧 ≤ 1 ↔ 𝑧 = 1)) | 
| 62 | 61 | ad2antrl 490 | 
. . . . . . . . . 10
⊢ ((𝑃 ∈
(ℤ≥‘2) ∧ (𝑧 ∈ ℕ ∧ 𝑧 ∥ 𝑃)) → (𝑧 ≤ 1 ↔ 𝑧 = 1)) | 
| 63 | 60, 62 | sylibd 149 | 
. . . . . . . . 9
⊢ ((𝑃 ∈
(ℤ≥‘2) ∧ (𝑧 ∈ ℕ ∧ 𝑧 ∥ 𝑃)) → (𝑃 ∥ (𝑃 / 𝑧) → 𝑧 = 1)) | 
| 64 |   | nnnn0 9256 | 
. . . . . . . . . . . . 13
⊢ (𝑧 ∈ ℕ → 𝑧 ∈
ℕ0) | 
| 65 | 64 | ad2antrl 490 | 
. . . . . . . . . . . 12
⊢ ((𝑃 ∈
(ℤ≥‘2) ∧ (𝑧 ∈ ℕ ∧ 𝑧 ∥ 𝑃)) → 𝑧 ∈ ℕ0) | 
| 66 | 65 | adantr 276 | 
. . . . . . . . . . 11
⊢ (((𝑃 ∈
(ℤ≥‘2) ∧ (𝑧 ∈ ℕ ∧ 𝑧 ∥ 𝑃)) ∧ 𝑃 ∥ 𝑧) → 𝑧 ∈ ℕ0) | 
| 67 |   | nnnn0 9256 | 
. . . . . . . . . . . . 13
⊢ (𝑃 ∈ ℕ → 𝑃 ∈
ℕ0) | 
| 68 | 9, 67 | syl 14 | 
. . . . . . . . . . . 12
⊢ ((𝑃 ∈
(ℤ≥‘2) ∧ (𝑧 ∈ ℕ ∧ 𝑧 ∥ 𝑃)) → 𝑃 ∈
ℕ0) | 
| 69 | 68 | adantr 276 | 
. . . . . . . . . . 11
⊢ (((𝑃 ∈
(ℤ≥‘2) ∧ (𝑧 ∈ ℕ ∧ 𝑧 ∥ 𝑃)) ∧ 𝑃 ∥ 𝑧) → 𝑃 ∈
ℕ0) | 
| 70 |   | simplrr 536 | 
. . . . . . . . . . 11
⊢ (((𝑃 ∈
(ℤ≥‘2) ∧ (𝑧 ∈ ℕ ∧ 𝑧 ∥ 𝑃)) ∧ 𝑃 ∥ 𝑧) → 𝑧 ∥ 𝑃) | 
| 71 |   | simpr 110 | 
. . . . . . . . . . 11
⊢ (((𝑃 ∈
(ℤ≥‘2) ∧ (𝑧 ∈ ℕ ∧ 𝑧 ∥ 𝑃)) ∧ 𝑃 ∥ 𝑧) → 𝑃 ∥ 𝑧) | 
| 72 |   | dvdseq 12013 | 
. . . . . . . . . . 11
⊢ (((𝑧 ∈ ℕ0
∧ 𝑃 ∈
ℕ0) ∧ (𝑧 ∥ 𝑃 ∧ 𝑃 ∥ 𝑧)) → 𝑧 = 𝑃) | 
| 73 | 66, 69, 70, 71, 72 | syl22anc 1250 | 
. . . . . . . . . 10
⊢ (((𝑃 ∈
(ℤ≥‘2) ∧ (𝑧 ∈ ℕ ∧ 𝑧 ∥ 𝑃)) ∧ 𝑃 ∥ 𝑧) → 𝑧 = 𝑃) | 
| 74 | 73 | ex 115 | 
. . . . . . . . 9
⊢ ((𝑃 ∈
(ℤ≥‘2) ∧ (𝑧 ∈ ℕ ∧ 𝑧 ∥ 𝑃)) → (𝑃 ∥ 𝑧 → 𝑧 = 𝑃)) | 
| 75 | 63, 74 | orim12d 787 | 
. . . . . . . 8
⊢ ((𝑃 ∈
(ℤ≥‘2) ∧ (𝑧 ∈ ℕ ∧ 𝑧 ∥ 𝑃)) → ((𝑃 ∥ (𝑃 / 𝑧) ∨ 𝑃 ∥ 𝑧) → (𝑧 = 1 ∨ 𝑧 = 𝑃))) | 
| 76 | 75 | imp 124 | 
. . . . . . 7
⊢ (((𝑃 ∈
(ℤ≥‘2) ∧ (𝑧 ∈ ℕ ∧ 𝑧 ∥ 𝑃)) ∧ (𝑃 ∥ (𝑃 / 𝑧) ∨ 𝑃 ∥ 𝑧)) → (𝑧 = 1 ∨ 𝑧 = 𝑃)) | 
| 77 | 43, 76 | syldan 282 | 
. . . . . 6
⊢ (((𝑃 ∈
(ℤ≥‘2) ∧ (𝑧 ∈ ℕ ∧ 𝑧 ∥ 𝑃)) ∧ ∀𝑥 ∈ ℤ ∀𝑦 ∈ ℤ (𝑃 ∥ (𝑥 · 𝑦) → (𝑃 ∥ 𝑥 ∨ 𝑃 ∥ 𝑦))) → (𝑧 = 1 ∨ 𝑧 = 𝑃)) | 
| 78 | 77 | an32s 568 | 
. . . . 5
⊢ (((𝑃 ∈
(ℤ≥‘2) ∧ ∀𝑥 ∈ ℤ ∀𝑦 ∈ ℤ (𝑃 ∥ (𝑥 · 𝑦) → (𝑃 ∥ 𝑥 ∨ 𝑃 ∥ 𝑦))) ∧ (𝑧 ∈ ℕ ∧ 𝑧 ∥ 𝑃)) → (𝑧 = 1 ∨ 𝑧 = 𝑃)) | 
| 79 | 78 | expr 375 | 
. . . 4
⊢ (((𝑃 ∈
(ℤ≥‘2) ∧ ∀𝑥 ∈ ℤ ∀𝑦 ∈ ℤ (𝑃 ∥ (𝑥 · 𝑦) → (𝑃 ∥ 𝑥 ∨ 𝑃 ∥ 𝑦))) ∧ 𝑧 ∈ ℕ) → (𝑧 ∥ 𝑃 → (𝑧 = 1 ∨ 𝑧 = 𝑃))) | 
| 80 | 79 | ralrimiva 2570 | 
. . 3
⊢ ((𝑃 ∈
(ℤ≥‘2) ∧ ∀𝑥 ∈ ℤ ∀𝑦 ∈ ℤ (𝑃 ∥ (𝑥 · 𝑦) → (𝑃 ∥ 𝑥 ∨ 𝑃 ∥ 𝑦))) → ∀𝑧 ∈ ℕ (𝑧 ∥ 𝑃 → (𝑧 = 1 ∨ 𝑧 = 𝑃))) | 
| 81 |   | isprm2 12285 | 
. . 3
⊢ (𝑃 ∈ ℙ ↔ (𝑃 ∈
(ℤ≥‘2) ∧ ∀𝑧 ∈ ℕ (𝑧 ∥ 𝑃 → (𝑧 = 1 ∨ 𝑧 = 𝑃)))) | 
| 82 | 7, 80, 81 | sylanbrc 417 | 
. 2
⊢ ((𝑃 ∈
(ℤ≥‘2) ∧ ∀𝑥 ∈ ℤ ∀𝑦 ∈ ℤ (𝑃 ∥ (𝑥 · 𝑦) → (𝑃 ∥ 𝑥 ∨ 𝑃 ∥ 𝑦))) → 𝑃 ∈ ℙ) | 
| 83 | 6, 82 | impbii 126 | 
1
⊢ (𝑃 ∈ ℙ ↔ (𝑃 ∈
(ℤ≥‘2) ∧ ∀𝑥 ∈ ℤ ∀𝑦 ∈ ℤ (𝑃 ∥ (𝑥 · 𝑦) → (𝑃 ∥ 𝑥 ∨ 𝑃 ∥ 𝑦)))) |