Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > rpregt0 | Unicode version |
Description: A positive real is a positive real number. (Contributed by NM, 11-Nov-2008.) (Revised by Mario Carneiro, 31-Jan-2014.) |
Ref | Expression |
---|---|
rpregt0 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elrp 9544 | . 2 | |
2 | 1 | biimpi 119 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 wcel 2128 class class class wbr 3965 cr 7714 cc0 7715 clt 7895 crp 9542 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1427 ax-7 1428 ax-gen 1429 ax-ie1 1473 ax-ie2 1474 ax-8 1484 ax-10 1485 ax-11 1486 ax-i12 1487 ax-bndl 1489 ax-4 1490 ax-17 1506 ax-i9 1510 ax-ial 1514 ax-i5r 1515 ax-ext 2139 |
This theorem depends on definitions: df-bi 116 df-3an 965 df-tru 1338 df-nf 1441 df-sb 1743 df-clab 2144 df-cleq 2150 df-clel 2153 df-nfc 2288 df-rab 2444 df-v 2714 df-un 3106 df-sn 3566 df-pr 3567 df-op 3569 df-br 3966 df-rp 9543 |
This theorem is referenced by: rpne0 9558 divlt1lt 9613 divle1le 9614 ledivge1le 9615 nnledivrp 9655 expnlbnd 10524 isprm6 12001 |
Copyright terms: Public domain | W3C validator |