ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  rpregt0 Unicode version

Theorem rpregt0 9669
Description: A positive real is a positive real number. (Contributed by NM, 11-Nov-2008.) (Revised by Mario Carneiro, 31-Jan-2014.)
Assertion
Ref Expression
rpregt0  |-  ( A  e.  RR+  ->  ( A  e.  RR  /\  0  <  A ) )

Proof of Theorem rpregt0
StepHypRef Expression
1 elrp 9657 . 2  |-  ( A  e.  RR+  <->  ( A  e.  RR  /\  0  < 
A ) )
21biimpi 120 1  |-  ( A  e.  RR+  ->  ( A  e.  RR  /\  0  <  A ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    e. wcel 2148   class class class wbr 4005   RRcr 7812   0cc0 7813    < clt 7994   RR+crp 9655
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-ext 2159
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-nf 1461  df-sb 1763  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-rab 2464  df-v 2741  df-un 3135  df-sn 3600  df-pr 3601  df-op 3603  df-br 4006  df-rp 9656
This theorem is referenced by:  rpne0  9671  divlt1lt  9726  divle1le  9727  ledivge1le  9728  nnledivrp  9768  expnlbnd  10647  isprm6  12149
  Copyright terms: Public domain W3C validator