ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  rpregt0 Unicode version

Theorem rpregt0 9859
Description: A positive real is a positive real number. (Contributed by NM, 11-Nov-2008.) (Revised by Mario Carneiro, 31-Jan-2014.)
Assertion
Ref Expression
rpregt0  |-  ( A  e.  RR+  ->  ( A  e.  RR  /\  0  <  A ) )

Proof of Theorem rpregt0
StepHypRef Expression
1 elrp 9847 . 2  |-  ( A  e.  RR+  <->  ( A  e.  RR  /\  0  < 
A ) )
21biimpi 120 1  |-  ( A  e.  RR+  ->  ( A  e.  RR  /\  0  <  A ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    e. wcel 2200   class class class wbr 4082   RRcr 7994   0cc0 7995    < clt 8177   RR+crp 9845
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-ext 2211
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-nf 1507  df-sb 1809  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-rab 2517  df-v 2801  df-un 3201  df-sn 3672  df-pr 3673  df-op 3675  df-br 4083  df-rp 9846
This theorem is referenced by:  rpne0  9861  divlt1lt  9916  divle1le  9917  ledivge1le  9918  nnledivrp  9958  expnlbnd  10881  isprm6  12664
  Copyright terms: Public domain W3C validator