Proof of Theorem metss2lem
Step | Hyp | Ref
| Expression |
1 | | metss2.2 |
. . . . . . 7
⊢ (𝜑 → 𝐷 ∈ (Met‘𝑋)) |
2 | 1 | ad2antrr 480 |
. . . . . 6
⊢ (((𝜑 ∧ (𝑥 ∈ 𝑋 ∧ 𝑆 ∈ ℝ+)) ∧ 𝑦 ∈ 𝑋) → 𝐷 ∈ (Met‘𝑋)) |
3 | | simplrl 525 |
. . . . . 6
⊢ (((𝜑 ∧ (𝑥 ∈ 𝑋 ∧ 𝑆 ∈ ℝ+)) ∧ 𝑦 ∈ 𝑋) → 𝑥 ∈ 𝑋) |
4 | | simpr 109 |
. . . . . 6
⊢ (((𝜑 ∧ (𝑥 ∈ 𝑋 ∧ 𝑆 ∈ ℝ+)) ∧ 𝑦 ∈ 𝑋) → 𝑦 ∈ 𝑋) |
5 | | metcl 12993 |
. . . . . 6
⊢ ((𝐷 ∈ (Met‘𝑋) ∧ 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋) → (𝑥𝐷𝑦) ∈ ℝ) |
6 | 2, 3, 4, 5 | syl3anc 1228 |
. . . . 5
⊢ (((𝜑 ∧ (𝑥 ∈ 𝑋 ∧ 𝑆 ∈ ℝ+)) ∧ 𝑦 ∈ 𝑋) → (𝑥𝐷𝑦) ∈ ℝ) |
7 | | simplrr 526 |
. . . . . 6
⊢ (((𝜑 ∧ (𝑥 ∈ 𝑋 ∧ 𝑆 ∈ ℝ+)) ∧ 𝑦 ∈ 𝑋) → 𝑆 ∈
ℝ+) |
8 | 7 | rpred 9632 |
. . . . 5
⊢ (((𝜑 ∧ (𝑥 ∈ 𝑋 ∧ 𝑆 ∈ ℝ+)) ∧ 𝑦 ∈ 𝑋) → 𝑆 ∈ ℝ) |
9 | | metss2.3 |
. . . . . 6
⊢ (𝜑 → 𝑅 ∈
ℝ+) |
10 | 9 | ad2antrr 480 |
. . . . 5
⊢ (((𝜑 ∧ (𝑥 ∈ 𝑋 ∧ 𝑆 ∈ ℝ+)) ∧ 𝑦 ∈ 𝑋) → 𝑅 ∈
ℝ+) |
11 | 6, 8, 10 | ltmuldiv2d 9681 |
. . . 4
⊢ (((𝜑 ∧ (𝑥 ∈ 𝑋 ∧ 𝑆 ∈ ℝ+)) ∧ 𝑦 ∈ 𝑋) → ((𝑅 · (𝑥𝐷𝑦)) < 𝑆 ↔ (𝑥𝐷𝑦) < (𝑆 / 𝑅))) |
12 | | metss2.4 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋)) → (𝑥𝐶𝑦) ≤ (𝑅 · (𝑥𝐷𝑦))) |
13 | 12 | anassrs 398 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑥 ∈ 𝑋) ∧ 𝑦 ∈ 𝑋) → (𝑥𝐶𝑦) ≤ (𝑅 · (𝑥𝐷𝑦))) |
14 | 13 | adantlrr 475 |
. . . . 5
⊢ (((𝜑 ∧ (𝑥 ∈ 𝑋 ∧ 𝑆 ∈ ℝ+)) ∧ 𝑦 ∈ 𝑋) → (𝑥𝐶𝑦) ≤ (𝑅 · (𝑥𝐷𝑦))) |
15 | | metss2.1 |
. . . . . . . 8
⊢ (𝜑 → 𝐶 ∈ (Met‘𝑋)) |
16 | 15 | ad2antrr 480 |
. . . . . . 7
⊢ (((𝜑 ∧ (𝑥 ∈ 𝑋 ∧ 𝑆 ∈ ℝ+)) ∧ 𝑦 ∈ 𝑋) → 𝐶 ∈ (Met‘𝑋)) |
17 | | metcl 12993 |
. . . . . . 7
⊢ ((𝐶 ∈ (Met‘𝑋) ∧ 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋) → (𝑥𝐶𝑦) ∈ ℝ) |
18 | 16, 3, 4, 17 | syl3anc 1228 |
. . . . . 6
⊢ (((𝜑 ∧ (𝑥 ∈ 𝑋 ∧ 𝑆 ∈ ℝ+)) ∧ 𝑦 ∈ 𝑋) → (𝑥𝐶𝑦) ∈ ℝ) |
19 | 10 | rpred 9632 |
. . . . . . 7
⊢ (((𝜑 ∧ (𝑥 ∈ 𝑋 ∧ 𝑆 ∈ ℝ+)) ∧ 𝑦 ∈ 𝑋) → 𝑅 ∈ ℝ) |
20 | 19, 6 | remulcld 7929 |
. . . . . 6
⊢ (((𝜑 ∧ (𝑥 ∈ 𝑋 ∧ 𝑆 ∈ ℝ+)) ∧ 𝑦 ∈ 𝑋) → (𝑅 · (𝑥𝐷𝑦)) ∈ ℝ) |
21 | | lelttr 7987 |
. . . . . 6
⊢ (((𝑥𝐶𝑦) ∈ ℝ ∧ (𝑅 · (𝑥𝐷𝑦)) ∈ ℝ ∧ 𝑆 ∈ ℝ) → (((𝑥𝐶𝑦) ≤ (𝑅 · (𝑥𝐷𝑦)) ∧ (𝑅 · (𝑥𝐷𝑦)) < 𝑆) → (𝑥𝐶𝑦) < 𝑆)) |
22 | 18, 20, 8, 21 | syl3anc 1228 |
. . . . 5
⊢ (((𝜑 ∧ (𝑥 ∈ 𝑋 ∧ 𝑆 ∈ ℝ+)) ∧ 𝑦 ∈ 𝑋) → (((𝑥𝐶𝑦) ≤ (𝑅 · (𝑥𝐷𝑦)) ∧ (𝑅 · (𝑥𝐷𝑦)) < 𝑆) → (𝑥𝐶𝑦) < 𝑆)) |
23 | 14, 22 | mpand 426 |
. . . 4
⊢ (((𝜑 ∧ (𝑥 ∈ 𝑋 ∧ 𝑆 ∈ ℝ+)) ∧ 𝑦 ∈ 𝑋) → ((𝑅 · (𝑥𝐷𝑦)) < 𝑆 → (𝑥𝐶𝑦) < 𝑆)) |
24 | 11, 23 | sylbird 169 |
. . 3
⊢ (((𝜑 ∧ (𝑥 ∈ 𝑋 ∧ 𝑆 ∈ ℝ+)) ∧ 𝑦 ∈ 𝑋) → ((𝑥𝐷𝑦) < (𝑆 / 𝑅) → (𝑥𝐶𝑦) < 𝑆)) |
25 | 24 | ss2rabdv 3223 |
. 2
⊢ ((𝜑 ∧ (𝑥 ∈ 𝑋 ∧ 𝑆 ∈ ℝ+)) → {𝑦 ∈ 𝑋 ∣ (𝑥𝐷𝑦) < (𝑆 / 𝑅)} ⊆ {𝑦 ∈ 𝑋 ∣ (𝑥𝐶𝑦) < 𝑆}) |
26 | | metxmet 12995 |
. . . . 5
⊢ (𝐷 ∈ (Met‘𝑋) → 𝐷 ∈ (∞Met‘𝑋)) |
27 | 1, 26 | syl 14 |
. . . 4
⊢ (𝜑 → 𝐷 ∈ (∞Met‘𝑋)) |
28 | 27 | adantr 274 |
. . 3
⊢ ((𝜑 ∧ (𝑥 ∈ 𝑋 ∧ 𝑆 ∈ ℝ+)) → 𝐷 ∈ (∞Met‘𝑋)) |
29 | | simprl 521 |
. . 3
⊢ ((𝜑 ∧ (𝑥 ∈ 𝑋 ∧ 𝑆 ∈ ℝ+)) → 𝑥 ∈ 𝑋) |
30 | | simpr 109 |
. . . . 5
⊢ ((𝑥 ∈ 𝑋 ∧ 𝑆 ∈ ℝ+) → 𝑆 ∈
ℝ+) |
31 | | rpdivcl 9615 |
. . . . 5
⊢ ((𝑆 ∈ ℝ+
∧ 𝑅 ∈
ℝ+) → (𝑆 / 𝑅) ∈
ℝ+) |
32 | 30, 9, 31 | syl2anr 288 |
. . . 4
⊢ ((𝜑 ∧ (𝑥 ∈ 𝑋 ∧ 𝑆 ∈ ℝ+)) → (𝑆 / 𝑅) ∈
ℝ+) |
33 | 32 | rpxrd 9633 |
. . 3
⊢ ((𝜑 ∧ (𝑥 ∈ 𝑋 ∧ 𝑆 ∈ ℝ+)) → (𝑆 / 𝑅) ∈
ℝ*) |
34 | | blval 13029 |
. . 3
⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑥 ∈ 𝑋 ∧ (𝑆 / 𝑅) ∈ ℝ*) → (𝑥(ball‘𝐷)(𝑆 / 𝑅)) = {𝑦 ∈ 𝑋 ∣ (𝑥𝐷𝑦) < (𝑆 / 𝑅)}) |
35 | 28, 29, 33, 34 | syl3anc 1228 |
. 2
⊢ ((𝜑 ∧ (𝑥 ∈ 𝑋 ∧ 𝑆 ∈ ℝ+)) → (𝑥(ball‘𝐷)(𝑆 / 𝑅)) = {𝑦 ∈ 𝑋 ∣ (𝑥𝐷𝑦) < (𝑆 / 𝑅)}) |
36 | | metxmet 12995 |
. . . . 5
⊢ (𝐶 ∈ (Met‘𝑋) → 𝐶 ∈ (∞Met‘𝑋)) |
37 | 15, 36 | syl 14 |
. . . 4
⊢ (𝜑 → 𝐶 ∈ (∞Met‘𝑋)) |
38 | 37 | adantr 274 |
. . 3
⊢ ((𝜑 ∧ (𝑥 ∈ 𝑋 ∧ 𝑆 ∈ ℝ+)) → 𝐶 ∈ (∞Met‘𝑋)) |
39 | | rpxr 9597 |
. . . 4
⊢ (𝑆 ∈ ℝ+
→ 𝑆 ∈
ℝ*) |
40 | 39 | ad2antll 483 |
. . 3
⊢ ((𝜑 ∧ (𝑥 ∈ 𝑋 ∧ 𝑆 ∈ ℝ+)) → 𝑆 ∈
ℝ*) |
41 | | blval 13029 |
. . 3
⊢ ((𝐶 ∈ (∞Met‘𝑋) ∧ 𝑥 ∈ 𝑋 ∧ 𝑆 ∈ ℝ*) → (𝑥(ball‘𝐶)𝑆) = {𝑦 ∈ 𝑋 ∣ (𝑥𝐶𝑦) < 𝑆}) |
42 | 38, 29, 40, 41 | syl3anc 1228 |
. 2
⊢ ((𝜑 ∧ (𝑥 ∈ 𝑋 ∧ 𝑆 ∈ ℝ+)) → (𝑥(ball‘𝐶)𝑆) = {𝑦 ∈ 𝑋 ∣ (𝑥𝐶𝑦) < 𝑆}) |
43 | 25, 35, 42 | 3sstr4d 3187 |
1
⊢ ((𝜑 ∧ (𝑥 ∈ 𝑋 ∧ 𝑆 ∈ ℝ+)) → (𝑥(ball‘𝐷)(𝑆 / 𝑅)) ⊆ (𝑥(ball‘𝐶)𝑆)) |