ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  metss2lem GIF version

Theorem metss2lem 15013
Description: Lemma for metss2 15014. (Contributed by Mario Carneiro, 14-Sep-2015.)
Hypotheses
Ref Expression
metequiv.3 𝐽 = (MetOpen‘𝐶)
metequiv.4 𝐾 = (MetOpen‘𝐷)
metss2.1 (𝜑𝐶 ∈ (Met‘𝑋))
metss2.2 (𝜑𝐷 ∈ (Met‘𝑋))
metss2.3 (𝜑𝑅 ∈ ℝ+)
metss2.4 ((𝜑 ∧ (𝑥𝑋𝑦𝑋)) → (𝑥𝐶𝑦) ≤ (𝑅 · (𝑥𝐷𝑦)))
Assertion
Ref Expression
metss2lem ((𝜑 ∧ (𝑥𝑋𝑆 ∈ ℝ+)) → (𝑥(ball‘𝐷)(𝑆 / 𝑅)) ⊆ (𝑥(ball‘𝐶)𝑆))
Distinct variable groups:   𝑥,𝑦,𝐶   𝑥,𝐽,𝑦   𝑥,𝐾,𝑦   𝑦,𝑅   𝑦,𝑆   𝑥,𝐷,𝑦   𝜑,𝑥,𝑦   𝑥,𝑋,𝑦
Allowed substitution hints:   𝑅(𝑥)   𝑆(𝑥)

Proof of Theorem metss2lem
StepHypRef Expression
1 metss2.2 . . . . . . 7 (𝜑𝐷 ∈ (Met‘𝑋))
21ad2antrr 488 . . . . . 6 (((𝜑 ∧ (𝑥𝑋𝑆 ∈ ℝ+)) ∧ 𝑦𝑋) → 𝐷 ∈ (Met‘𝑋))
3 simplrl 535 . . . . . 6 (((𝜑 ∧ (𝑥𝑋𝑆 ∈ ℝ+)) ∧ 𝑦𝑋) → 𝑥𝑋)
4 simpr 110 . . . . . 6 (((𝜑 ∧ (𝑥𝑋𝑆 ∈ ℝ+)) ∧ 𝑦𝑋) → 𝑦𝑋)
5 metcl 14869 . . . . . 6 ((𝐷 ∈ (Met‘𝑋) ∧ 𝑥𝑋𝑦𝑋) → (𝑥𝐷𝑦) ∈ ℝ)
62, 3, 4, 5syl3anc 1250 . . . . 5 (((𝜑 ∧ (𝑥𝑋𝑆 ∈ ℝ+)) ∧ 𝑦𝑋) → (𝑥𝐷𝑦) ∈ ℝ)
7 simplrr 536 . . . . . 6 (((𝜑 ∧ (𝑥𝑋𝑆 ∈ ℝ+)) ∧ 𝑦𝑋) → 𝑆 ∈ ℝ+)
87rpred 9825 . . . . 5 (((𝜑 ∧ (𝑥𝑋𝑆 ∈ ℝ+)) ∧ 𝑦𝑋) → 𝑆 ∈ ℝ)
9 metss2.3 . . . . . 6 (𝜑𝑅 ∈ ℝ+)
109ad2antrr 488 . . . . 5 (((𝜑 ∧ (𝑥𝑋𝑆 ∈ ℝ+)) ∧ 𝑦𝑋) → 𝑅 ∈ ℝ+)
116, 8, 10ltmuldiv2d 9874 . . . 4 (((𝜑 ∧ (𝑥𝑋𝑆 ∈ ℝ+)) ∧ 𝑦𝑋) → ((𝑅 · (𝑥𝐷𝑦)) < 𝑆 ↔ (𝑥𝐷𝑦) < (𝑆 / 𝑅)))
12 metss2.4 . . . . . . 7 ((𝜑 ∧ (𝑥𝑋𝑦𝑋)) → (𝑥𝐶𝑦) ≤ (𝑅 · (𝑥𝐷𝑦)))
1312anassrs 400 . . . . . 6 (((𝜑𝑥𝑋) ∧ 𝑦𝑋) → (𝑥𝐶𝑦) ≤ (𝑅 · (𝑥𝐷𝑦)))
1413adantlrr 483 . . . . 5 (((𝜑 ∧ (𝑥𝑋𝑆 ∈ ℝ+)) ∧ 𝑦𝑋) → (𝑥𝐶𝑦) ≤ (𝑅 · (𝑥𝐷𝑦)))
15 metss2.1 . . . . . . . 8 (𝜑𝐶 ∈ (Met‘𝑋))
1615ad2antrr 488 . . . . . . 7 (((𝜑 ∧ (𝑥𝑋𝑆 ∈ ℝ+)) ∧ 𝑦𝑋) → 𝐶 ∈ (Met‘𝑋))
17 metcl 14869 . . . . . . 7 ((𝐶 ∈ (Met‘𝑋) ∧ 𝑥𝑋𝑦𝑋) → (𝑥𝐶𝑦) ∈ ℝ)
1816, 3, 4, 17syl3anc 1250 . . . . . 6 (((𝜑 ∧ (𝑥𝑋𝑆 ∈ ℝ+)) ∧ 𝑦𝑋) → (𝑥𝐶𝑦) ∈ ℝ)
1910rpred 9825 . . . . . . 7 (((𝜑 ∧ (𝑥𝑋𝑆 ∈ ℝ+)) ∧ 𝑦𝑋) → 𝑅 ∈ ℝ)
2019, 6remulcld 8110 . . . . . 6 (((𝜑 ∧ (𝑥𝑋𝑆 ∈ ℝ+)) ∧ 𝑦𝑋) → (𝑅 · (𝑥𝐷𝑦)) ∈ ℝ)
21 lelttr 8168 . . . . . 6 (((𝑥𝐶𝑦) ∈ ℝ ∧ (𝑅 · (𝑥𝐷𝑦)) ∈ ℝ ∧ 𝑆 ∈ ℝ) → (((𝑥𝐶𝑦) ≤ (𝑅 · (𝑥𝐷𝑦)) ∧ (𝑅 · (𝑥𝐷𝑦)) < 𝑆) → (𝑥𝐶𝑦) < 𝑆))
2218, 20, 8, 21syl3anc 1250 . . . . 5 (((𝜑 ∧ (𝑥𝑋𝑆 ∈ ℝ+)) ∧ 𝑦𝑋) → (((𝑥𝐶𝑦) ≤ (𝑅 · (𝑥𝐷𝑦)) ∧ (𝑅 · (𝑥𝐷𝑦)) < 𝑆) → (𝑥𝐶𝑦) < 𝑆))
2314, 22mpand 429 . . . 4 (((𝜑 ∧ (𝑥𝑋𝑆 ∈ ℝ+)) ∧ 𝑦𝑋) → ((𝑅 · (𝑥𝐷𝑦)) < 𝑆 → (𝑥𝐶𝑦) < 𝑆))
2411, 23sylbird 170 . . 3 (((𝜑 ∧ (𝑥𝑋𝑆 ∈ ℝ+)) ∧ 𝑦𝑋) → ((𝑥𝐷𝑦) < (𝑆 / 𝑅) → (𝑥𝐶𝑦) < 𝑆))
2524ss2rabdv 3275 . 2 ((𝜑 ∧ (𝑥𝑋𝑆 ∈ ℝ+)) → {𝑦𝑋 ∣ (𝑥𝐷𝑦) < (𝑆 / 𝑅)} ⊆ {𝑦𝑋 ∣ (𝑥𝐶𝑦) < 𝑆})
26 metxmet 14871 . . . . 5 (𝐷 ∈ (Met‘𝑋) → 𝐷 ∈ (∞Met‘𝑋))
271, 26syl 14 . . . 4 (𝜑𝐷 ∈ (∞Met‘𝑋))
2827adantr 276 . . 3 ((𝜑 ∧ (𝑥𝑋𝑆 ∈ ℝ+)) → 𝐷 ∈ (∞Met‘𝑋))
29 simprl 529 . . 3 ((𝜑 ∧ (𝑥𝑋𝑆 ∈ ℝ+)) → 𝑥𝑋)
30 simpr 110 . . . . 5 ((𝑥𝑋𝑆 ∈ ℝ+) → 𝑆 ∈ ℝ+)
31 rpdivcl 9808 . . . . 5 ((𝑆 ∈ ℝ+𝑅 ∈ ℝ+) → (𝑆 / 𝑅) ∈ ℝ+)
3230, 9, 31syl2anr 290 . . . 4 ((𝜑 ∧ (𝑥𝑋𝑆 ∈ ℝ+)) → (𝑆 / 𝑅) ∈ ℝ+)
3332rpxrd 9826 . . 3 ((𝜑 ∧ (𝑥𝑋𝑆 ∈ ℝ+)) → (𝑆 / 𝑅) ∈ ℝ*)
34 blval 14905 . . 3 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑥𝑋 ∧ (𝑆 / 𝑅) ∈ ℝ*) → (𝑥(ball‘𝐷)(𝑆 / 𝑅)) = {𝑦𝑋 ∣ (𝑥𝐷𝑦) < (𝑆 / 𝑅)})
3528, 29, 33, 34syl3anc 1250 . 2 ((𝜑 ∧ (𝑥𝑋𝑆 ∈ ℝ+)) → (𝑥(ball‘𝐷)(𝑆 / 𝑅)) = {𝑦𝑋 ∣ (𝑥𝐷𝑦) < (𝑆 / 𝑅)})
36 metxmet 14871 . . . . 5 (𝐶 ∈ (Met‘𝑋) → 𝐶 ∈ (∞Met‘𝑋))
3715, 36syl 14 . . . 4 (𝜑𝐶 ∈ (∞Met‘𝑋))
3837adantr 276 . . 3 ((𝜑 ∧ (𝑥𝑋𝑆 ∈ ℝ+)) → 𝐶 ∈ (∞Met‘𝑋))
39 rpxr 9790 . . . 4 (𝑆 ∈ ℝ+𝑆 ∈ ℝ*)
4039ad2antll 491 . . 3 ((𝜑 ∧ (𝑥𝑋𝑆 ∈ ℝ+)) → 𝑆 ∈ ℝ*)
41 blval 14905 . . 3 ((𝐶 ∈ (∞Met‘𝑋) ∧ 𝑥𝑋𝑆 ∈ ℝ*) → (𝑥(ball‘𝐶)𝑆) = {𝑦𝑋 ∣ (𝑥𝐶𝑦) < 𝑆})
4238, 29, 40, 41syl3anc 1250 . 2 ((𝜑 ∧ (𝑥𝑋𝑆 ∈ ℝ+)) → (𝑥(ball‘𝐶)𝑆) = {𝑦𝑋 ∣ (𝑥𝐶𝑦) < 𝑆})
4325, 35, 423sstr4d 3239 1 ((𝜑 ∧ (𝑥𝑋𝑆 ∈ ℝ+)) → (𝑥(ball‘𝐷)(𝑆 / 𝑅)) ⊆ (𝑥(ball‘𝐶)𝑆))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104   = wceq 1373  wcel 2177  {crab 2489  wss 3167   class class class wbr 4047  cfv 5276  (class class class)co 5951  cr 7931   · cmul 7937  *cxr 8113   < clt 8114  cle 8115   / cdiv 8752  +crp 9782  ∞Metcxmet 14342  Metcmet 14343  ballcbl 14344  MetOpencmopn 14347
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2179  ax-14 2180  ax-ext 2188  ax-sep 4166  ax-pow 4222  ax-pr 4257  ax-un 4484  ax-setind 4589  ax-cnex 8023  ax-resscn 8024  ax-1cn 8025  ax-1re 8026  ax-icn 8027  ax-addcl 8028  ax-addrcl 8029  ax-mulcl 8030  ax-mulrcl 8031  ax-addcom 8032  ax-mulcom 8033  ax-addass 8034  ax-mulass 8035  ax-distr 8036  ax-i2m1 8037  ax-0lt1 8038  ax-1rid 8039  ax-0id 8040  ax-rnegex 8041  ax-precex 8042  ax-cnre 8043  ax-pre-ltirr 8044  ax-pre-ltwlin 8045  ax-pre-lttrn 8046  ax-pre-apti 8047  ax-pre-ltadd 8048  ax-pre-mulgt0 8049  ax-pre-mulext 8050
This theorem depends on definitions:  df-bi 117  df-dc 837  df-3or 982  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ne 2378  df-nel 2473  df-ral 2490  df-rex 2491  df-reu 2492  df-rmo 2493  df-rab 2494  df-v 2775  df-sbc 3000  df-csb 3095  df-dif 3169  df-un 3171  df-in 3173  df-ss 3180  df-if 3573  df-pw 3619  df-sn 3640  df-pr 3641  df-op 3643  df-uni 3853  df-iun 3931  df-br 4048  df-opab 4110  df-mpt 4111  df-id 4344  df-po 4347  df-iso 4348  df-xp 4685  df-rel 4686  df-cnv 4687  df-co 4688  df-dm 4689  df-rn 4690  df-res 4691  df-ima 4692  df-iota 5237  df-fun 5278  df-fn 5279  df-f 5280  df-fv 5284  df-riota 5906  df-ov 5954  df-oprab 5955  df-mpo 5956  df-1st 6233  df-2nd 6234  df-map 6744  df-pnf 8116  df-mnf 8117  df-xr 8118  df-ltxr 8119  df-le 8120  df-sub 8252  df-neg 8253  df-reap 8655  df-ap 8662  df-div 8753  df-rp 9783  df-xadd 9902  df-psmet 14349  df-xmet 14350  df-met 14351  df-bl 14352
This theorem is referenced by:  metss2  15014
  Copyright terms: Public domain W3C validator