ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  metcnp GIF version

Theorem metcnp 12720
Description: Two ways to say a mapping from metric 𝐶 to metric 𝐷 is continuous at point 𝑃. (Contributed by NM, 11-May-2007.) (Revised by Mario Carneiro, 28-Aug-2015.)
Hypotheses
Ref Expression
metcn.2 𝐽 = (MetOpen‘𝐶)
metcn.4 𝐾 = (MetOpen‘𝐷)
Assertion
Ref Expression
metcnp ((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑌) ∧ 𝑃𝑋) → (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃) ↔ (𝐹:𝑋𝑌 ∧ ∀𝑦 ∈ ℝ+𝑧 ∈ ℝ+𝑤𝑋 ((𝑃𝐶𝑤) < 𝑧 → ((𝐹𝑃)𝐷(𝐹𝑤)) < 𝑦))))
Distinct variable groups:   𝑦,𝑤,𝑧,𝐹   𝑤,𝐽,𝑦,𝑧   𝑤,𝐾,𝑦,𝑧   𝑤,𝑋,𝑦,𝑧   𝑤,𝑌,𝑦,𝑧   𝑤,𝐶,𝑦,𝑧   𝑤,𝐷,𝑦,𝑧   𝑤,𝑃,𝑦,𝑧

Proof of Theorem metcnp
StepHypRef Expression
1 metcn.2 . . 3 𝐽 = (MetOpen‘𝐶)
2 metcn.4 . . 3 𝐾 = (MetOpen‘𝐷)
31, 2metcnp3 12719 . 2 ((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑌) ∧ 𝑃𝑋) → (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃) ↔ (𝐹:𝑋𝑌 ∧ ∀𝑦 ∈ ℝ+𝑧 ∈ ℝ+ (𝐹 “ (𝑃(ball‘𝐶)𝑧)) ⊆ ((𝐹𝑃)(ball‘𝐷)𝑦))))
4 ffun 5283 . . . . . . . . 9 (𝐹:𝑋𝑌 → Fun 𝐹)
54ad2antlr 481 . . . . . . . 8 ((((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑌) ∧ 𝑃𝑋) ∧ 𝐹:𝑋𝑌) ∧ (𝑦 ∈ ℝ+𝑧 ∈ ℝ+)) → Fun 𝐹)
6 simpll1 1021 . . . . . . . . . 10 ((((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑌) ∧ 𝑃𝑋) ∧ 𝐹:𝑋𝑌) ∧ (𝑦 ∈ ℝ+𝑧 ∈ ℝ+)) → 𝐶 ∈ (∞Met‘𝑋))
7 simpll3 1023 . . . . . . . . . 10 ((((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑌) ∧ 𝑃𝑋) ∧ 𝐹:𝑋𝑌) ∧ (𝑦 ∈ ℝ+𝑧 ∈ ℝ+)) → 𝑃𝑋)
8 rpxr 9478 . . . . . . . . . . 11 (𝑧 ∈ ℝ+𝑧 ∈ ℝ*)
98ad2antll 483 . . . . . . . . . 10 ((((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑌) ∧ 𝑃𝑋) ∧ 𝐹:𝑋𝑌) ∧ (𝑦 ∈ ℝ+𝑧 ∈ ℝ+)) → 𝑧 ∈ ℝ*)
10 blssm 12629 . . . . . . . . . 10 ((𝐶 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋𝑧 ∈ ℝ*) → (𝑃(ball‘𝐶)𝑧) ⊆ 𝑋)
116, 7, 9, 10syl3anc 1217 . . . . . . . . 9 ((((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑌) ∧ 𝑃𝑋) ∧ 𝐹:𝑋𝑌) ∧ (𝑦 ∈ ℝ+𝑧 ∈ ℝ+)) → (𝑃(ball‘𝐶)𝑧) ⊆ 𝑋)
12 fdm 5286 . . . . . . . . . 10 (𝐹:𝑋𝑌 → dom 𝐹 = 𝑋)
1312ad2antlr 481 . . . . . . . . 9 ((((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑌) ∧ 𝑃𝑋) ∧ 𝐹:𝑋𝑌) ∧ (𝑦 ∈ ℝ+𝑧 ∈ ℝ+)) → dom 𝐹 = 𝑋)
1411, 13sseqtrrd 3141 . . . . . . . 8 ((((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑌) ∧ 𝑃𝑋) ∧ 𝐹:𝑋𝑌) ∧ (𝑦 ∈ ℝ+𝑧 ∈ ℝ+)) → (𝑃(ball‘𝐶)𝑧) ⊆ dom 𝐹)
15 funimass4 5480 . . . . . . . 8 ((Fun 𝐹 ∧ (𝑃(ball‘𝐶)𝑧) ⊆ dom 𝐹) → ((𝐹 “ (𝑃(ball‘𝐶)𝑧)) ⊆ ((𝐹𝑃)(ball‘𝐷)𝑦) ↔ ∀𝑤 ∈ (𝑃(ball‘𝐶)𝑧)(𝐹𝑤) ∈ ((𝐹𝑃)(ball‘𝐷)𝑦)))
165, 14, 15syl2anc 409 . . . . . . 7 ((((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑌) ∧ 𝑃𝑋) ∧ 𝐹:𝑋𝑌) ∧ (𝑦 ∈ ℝ+𝑧 ∈ ℝ+)) → ((𝐹 “ (𝑃(ball‘𝐶)𝑧)) ⊆ ((𝐹𝑃)(ball‘𝐷)𝑦) ↔ ∀𝑤 ∈ (𝑃(ball‘𝐶)𝑧)(𝐹𝑤) ∈ ((𝐹𝑃)(ball‘𝐷)𝑦)))
17 elbl 12599 . . . . . . . . . . 11 ((𝐶 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋𝑧 ∈ ℝ*) → (𝑤 ∈ (𝑃(ball‘𝐶)𝑧) ↔ (𝑤𝑋 ∧ (𝑃𝐶𝑤) < 𝑧)))
186, 7, 9, 17syl3anc 1217 . . . . . . . . . 10 ((((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑌) ∧ 𝑃𝑋) ∧ 𝐹:𝑋𝑌) ∧ (𝑦 ∈ ℝ+𝑧 ∈ ℝ+)) → (𝑤 ∈ (𝑃(ball‘𝐶)𝑧) ↔ (𝑤𝑋 ∧ (𝑃𝐶𝑤) < 𝑧)))
1918imbi1d 230 . . . . . . . . 9 ((((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑌) ∧ 𝑃𝑋) ∧ 𝐹:𝑋𝑌) ∧ (𝑦 ∈ ℝ+𝑧 ∈ ℝ+)) → ((𝑤 ∈ (𝑃(ball‘𝐶)𝑧) → (𝐹𝑤) ∈ ((𝐹𝑃)(ball‘𝐷)𝑦)) ↔ ((𝑤𝑋 ∧ (𝑃𝐶𝑤) < 𝑧) → (𝐹𝑤) ∈ ((𝐹𝑃)(ball‘𝐷)𝑦))))
20 impexp 261 . . . . . . . . . 10 (((𝑤𝑋 ∧ (𝑃𝐶𝑤) < 𝑧) → (𝐹𝑤) ∈ ((𝐹𝑃)(ball‘𝐷)𝑦)) ↔ (𝑤𝑋 → ((𝑃𝐶𝑤) < 𝑧 → (𝐹𝑤) ∈ ((𝐹𝑃)(ball‘𝐷)𝑦))))
21 simpl2 986 . . . . . . . . . . . . . 14 (((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑌) ∧ 𝑃𝑋) ∧ 𝐹:𝑋𝑌) → 𝐷 ∈ (∞Met‘𝑌))
2221ad2antrr 480 . . . . . . . . . . . . 13 (((((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑌) ∧ 𝑃𝑋) ∧ 𝐹:𝑋𝑌) ∧ (𝑦 ∈ ℝ+𝑧 ∈ ℝ+)) ∧ 𝑤𝑋) → 𝐷 ∈ (∞Met‘𝑌))
23 simplrl 525 . . . . . . . . . . . . . 14 (((((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑌) ∧ 𝑃𝑋) ∧ 𝐹:𝑋𝑌) ∧ (𝑦 ∈ ℝ+𝑧 ∈ ℝ+)) ∧ 𝑤𝑋) → 𝑦 ∈ ℝ+)
2423rpxrd 9514 . . . . . . . . . . . . 13 (((((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑌) ∧ 𝑃𝑋) ∧ 𝐹:𝑋𝑌) ∧ (𝑦 ∈ ℝ+𝑧 ∈ ℝ+)) ∧ 𝑤𝑋) → 𝑦 ∈ ℝ*)
25 simpllr 524 . . . . . . . . . . . . . 14 (((((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑌) ∧ 𝑃𝑋) ∧ 𝐹:𝑋𝑌) ∧ (𝑦 ∈ ℝ+𝑧 ∈ ℝ+)) ∧ 𝑤𝑋) → 𝐹:𝑋𝑌)
267adantr 274 . . . . . . . . . . . . . 14 (((((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑌) ∧ 𝑃𝑋) ∧ 𝐹:𝑋𝑌) ∧ (𝑦 ∈ ℝ+𝑧 ∈ ℝ+)) ∧ 𝑤𝑋) → 𝑃𝑋)
2725, 26ffvelrnd 5564 . . . . . . . . . . . . 13 (((((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑌) ∧ 𝑃𝑋) ∧ 𝐹:𝑋𝑌) ∧ (𝑦 ∈ ℝ+𝑧 ∈ ℝ+)) ∧ 𝑤𝑋) → (𝐹𝑃) ∈ 𝑌)
28 simplr 520 . . . . . . . . . . . . . 14 ((((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑌) ∧ 𝑃𝑋) ∧ 𝐹:𝑋𝑌) ∧ (𝑦 ∈ ℝ+𝑧 ∈ ℝ+)) → 𝐹:𝑋𝑌)
2928ffvelrnda 5563 . . . . . . . . . . . . 13 (((((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑌) ∧ 𝑃𝑋) ∧ 𝐹:𝑋𝑌) ∧ (𝑦 ∈ ℝ+𝑧 ∈ ℝ+)) ∧ 𝑤𝑋) → (𝐹𝑤) ∈ 𝑌)
30 elbl2 12601 . . . . . . . . . . . . 13 (((𝐷 ∈ (∞Met‘𝑌) ∧ 𝑦 ∈ ℝ*) ∧ ((𝐹𝑃) ∈ 𝑌 ∧ (𝐹𝑤) ∈ 𝑌)) → ((𝐹𝑤) ∈ ((𝐹𝑃)(ball‘𝐷)𝑦) ↔ ((𝐹𝑃)𝐷(𝐹𝑤)) < 𝑦))
3122, 24, 27, 29, 30syl22anc 1218 . . . . . . . . . . . 12 (((((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑌) ∧ 𝑃𝑋) ∧ 𝐹:𝑋𝑌) ∧ (𝑦 ∈ ℝ+𝑧 ∈ ℝ+)) ∧ 𝑤𝑋) → ((𝐹𝑤) ∈ ((𝐹𝑃)(ball‘𝐷)𝑦) ↔ ((𝐹𝑃)𝐷(𝐹𝑤)) < 𝑦))
3231imbi2d 229 . . . . . . . . . . 11 (((((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑌) ∧ 𝑃𝑋) ∧ 𝐹:𝑋𝑌) ∧ (𝑦 ∈ ℝ+𝑧 ∈ ℝ+)) ∧ 𝑤𝑋) → (((𝑃𝐶𝑤) < 𝑧 → (𝐹𝑤) ∈ ((𝐹𝑃)(ball‘𝐷)𝑦)) ↔ ((𝑃𝐶𝑤) < 𝑧 → ((𝐹𝑃)𝐷(𝐹𝑤)) < 𝑦)))
3332pm5.74da 440 . . . . . . . . . 10 ((((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑌) ∧ 𝑃𝑋) ∧ 𝐹:𝑋𝑌) ∧ (𝑦 ∈ ℝ+𝑧 ∈ ℝ+)) → ((𝑤𝑋 → ((𝑃𝐶𝑤) < 𝑧 → (𝐹𝑤) ∈ ((𝐹𝑃)(ball‘𝐷)𝑦))) ↔ (𝑤𝑋 → ((𝑃𝐶𝑤) < 𝑧 → ((𝐹𝑃)𝐷(𝐹𝑤)) < 𝑦))))
3420, 33syl5bb 191 . . . . . . . . 9 ((((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑌) ∧ 𝑃𝑋) ∧ 𝐹:𝑋𝑌) ∧ (𝑦 ∈ ℝ+𝑧 ∈ ℝ+)) → (((𝑤𝑋 ∧ (𝑃𝐶𝑤) < 𝑧) → (𝐹𝑤) ∈ ((𝐹𝑃)(ball‘𝐷)𝑦)) ↔ (𝑤𝑋 → ((𝑃𝐶𝑤) < 𝑧 → ((𝐹𝑃)𝐷(𝐹𝑤)) < 𝑦))))
3519, 34bitrd 187 . . . . . . . 8 ((((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑌) ∧ 𝑃𝑋) ∧ 𝐹:𝑋𝑌) ∧ (𝑦 ∈ ℝ+𝑧 ∈ ℝ+)) → ((𝑤 ∈ (𝑃(ball‘𝐶)𝑧) → (𝐹𝑤) ∈ ((𝐹𝑃)(ball‘𝐷)𝑦)) ↔ (𝑤𝑋 → ((𝑃𝐶𝑤) < 𝑧 → ((𝐹𝑃)𝐷(𝐹𝑤)) < 𝑦))))
3635ralbidv2 2440 . . . . . . 7 ((((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑌) ∧ 𝑃𝑋) ∧ 𝐹:𝑋𝑌) ∧ (𝑦 ∈ ℝ+𝑧 ∈ ℝ+)) → (∀𝑤 ∈ (𝑃(ball‘𝐶)𝑧)(𝐹𝑤) ∈ ((𝐹𝑃)(ball‘𝐷)𝑦) ↔ ∀𝑤𝑋 ((𝑃𝐶𝑤) < 𝑧 → ((𝐹𝑃)𝐷(𝐹𝑤)) < 𝑦)))
3716, 36bitrd 187 . . . . . 6 ((((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑌) ∧ 𝑃𝑋) ∧ 𝐹:𝑋𝑌) ∧ (𝑦 ∈ ℝ+𝑧 ∈ ℝ+)) → ((𝐹 “ (𝑃(ball‘𝐶)𝑧)) ⊆ ((𝐹𝑃)(ball‘𝐷)𝑦) ↔ ∀𝑤𝑋 ((𝑃𝐶𝑤) < 𝑧 → ((𝐹𝑃)𝐷(𝐹𝑤)) < 𝑦)))
3837anassrs 398 . . . . 5 (((((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑌) ∧ 𝑃𝑋) ∧ 𝐹:𝑋𝑌) ∧ 𝑦 ∈ ℝ+) ∧ 𝑧 ∈ ℝ+) → ((𝐹 “ (𝑃(ball‘𝐶)𝑧)) ⊆ ((𝐹𝑃)(ball‘𝐷)𝑦) ↔ ∀𝑤𝑋 ((𝑃𝐶𝑤) < 𝑧 → ((𝐹𝑃)𝐷(𝐹𝑤)) < 𝑦)))
3938rexbidva 2435 . . . 4 ((((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑌) ∧ 𝑃𝑋) ∧ 𝐹:𝑋𝑌) ∧ 𝑦 ∈ ℝ+) → (∃𝑧 ∈ ℝ+ (𝐹 “ (𝑃(ball‘𝐶)𝑧)) ⊆ ((𝐹𝑃)(ball‘𝐷)𝑦) ↔ ∃𝑧 ∈ ℝ+𝑤𝑋 ((𝑃𝐶𝑤) < 𝑧 → ((𝐹𝑃)𝐷(𝐹𝑤)) < 𝑦)))
4039ralbidva 2434 . . 3 (((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑌) ∧ 𝑃𝑋) ∧ 𝐹:𝑋𝑌) → (∀𝑦 ∈ ℝ+𝑧 ∈ ℝ+ (𝐹 “ (𝑃(ball‘𝐶)𝑧)) ⊆ ((𝐹𝑃)(ball‘𝐷)𝑦) ↔ ∀𝑦 ∈ ℝ+𝑧 ∈ ℝ+𝑤𝑋 ((𝑃𝐶𝑤) < 𝑧 → ((𝐹𝑃)𝐷(𝐹𝑤)) < 𝑦)))
4140pm5.32da 448 . 2 ((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑌) ∧ 𝑃𝑋) → ((𝐹:𝑋𝑌 ∧ ∀𝑦 ∈ ℝ+𝑧 ∈ ℝ+ (𝐹 “ (𝑃(ball‘𝐶)𝑧)) ⊆ ((𝐹𝑃)(ball‘𝐷)𝑦)) ↔ (𝐹:𝑋𝑌 ∧ ∀𝑦 ∈ ℝ+𝑧 ∈ ℝ+𝑤𝑋 ((𝑃𝐶𝑤) < 𝑧 → ((𝐹𝑃)𝐷(𝐹𝑤)) < 𝑦))))
423, 41bitrd 187 1 ((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑌) ∧ 𝑃𝑋) → (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃) ↔ (𝐹:𝑋𝑌 ∧ ∀𝑦 ∈ ℝ+𝑧 ∈ ℝ+𝑤𝑋 ((𝑃𝐶𝑤) < 𝑧 → ((𝐹𝑃)𝐷(𝐹𝑤)) < 𝑦))))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wb 104  w3a 963   = wceq 1332  wcel 1481  wral 2417  wrex 2418  wss 3076   class class class wbr 3937  dom cdm 4547  cima 4550  Fun wfun 5125  wf 5127  cfv 5131  (class class class)co 5782  *cxr 7823   < clt 7824  +crp 9470  ∞Metcxmet 12188  ballcbl 12190  MetOpencmopn 12193   CnP ccnp 12394
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1424  ax-7 1425  ax-gen 1426  ax-ie1 1470  ax-ie2 1471  ax-8 1483  ax-10 1484  ax-11 1485  ax-i12 1486  ax-bndl 1487  ax-4 1488  ax-13 1492  ax-14 1493  ax-17 1507  ax-i9 1511  ax-ial 1515  ax-i5r 1516  ax-ext 2122  ax-coll 4051  ax-sep 4054  ax-nul 4062  ax-pow 4106  ax-pr 4139  ax-un 4363  ax-setind 4460  ax-iinf 4510  ax-cnex 7735  ax-resscn 7736  ax-1cn 7737  ax-1re 7738  ax-icn 7739  ax-addcl 7740  ax-addrcl 7741  ax-mulcl 7742  ax-mulrcl 7743  ax-addcom 7744  ax-mulcom 7745  ax-addass 7746  ax-mulass 7747  ax-distr 7748  ax-i2m1 7749  ax-0lt1 7750  ax-1rid 7751  ax-0id 7752  ax-rnegex 7753  ax-precex 7754  ax-cnre 7755  ax-pre-ltirr 7756  ax-pre-ltwlin 7757  ax-pre-lttrn 7758  ax-pre-apti 7759  ax-pre-ltadd 7760  ax-pre-mulgt0 7761  ax-pre-mulext 7762  ax-arch 7763  ax-caucvg 7764
This theorem depends on definitions:  df-bi 116  df-stab 817  df-dc 821  df-3or 964  df-3an 965  df-tru 1335  df-fal 1338  df-nf 1438  df-sb 1737  df-eu 2003  df-mo 2004  df-clab 2127  df-cleq 2133  df-clel 2136  df-nfc 2271  df-ne 2310  df-nel 2405  df-ral 2422  df-rex 2423  df-reu 2424  df-rmo 2425  df-rab 2426  df-v 2691  df-sbc 2914  df-csb 3008  df-dif 3078  df-un 3080  df-in 3082  df-ss 3089  df-nul 3369  df-if 3480  df-pw 3517  df-sn 3538  df-pr 3539  df-op 3541  df-uni 3745  df-int 3780  df-iun 3823  df-br 3938  df-opab 3998  df-mpt 3999  df-tr 4035  df-id 4223  df-po 4226  df-iso 4227  df-iord 4296  df-on 4298  df-ilim 4299  df-suc 4301  df-iom 4513  df-xp 4553  df-rel 4554  df-cnv 4555  df-co 4556  df-dm 4557  df-rn 4558  df-res 4559  df-ima 4560  df-iota 5096  df-fun 5133  df-fn 5134  df-f 5135  df-f1 5136  df-fo 5137  df-f1o 5138  df-fv 5139  df-isom 5140  df-riota 5738  df-ov 5785  df-oprab 5786  df-mpo 5787  df-1st 6046  df-2nd 6047  df-recs 6210  df-frec 6296  df-map 6552  df-sup 6879  df-inf 6880  df-pnf 7826  df-mnf 7827  df-xr 7828  df-ltxr 7829  df-le 7830  df-sub 7959  df-neg 7960  df-reap 8361  df-ap 8368  df-div 8457  df-inn 8745  df-2 8803  df-3 8804  df-4 8805  df-n0 9002  df-z 9079  df-uz 9351  df-q 9439  df-rp 9471  df-xneg 9589  df-xadd 9590  df-seqfrec 10250  df-exp 10324  df-cj 10646  df-re 10647  df-im 10648  df-rsqrt 10802  df-abs 10803  df-topgen 12180  df-psmet 12195  df-xmet 12196  df-bl 12198  df-mopn 12199  df-top 12204  df-topon 12217  df-bases 12249  df-cnp 12397
This theorem is referenced by:  metcnp2  12721  metcn  12722  metcnpi  12723  txmetcnp  12726  metcnpd  12728
  Copyright terms: Public domain W3C validator