ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  metcnp GIF version

Theorem metcnp 12691
Description: Two ways to say a mapping from metric 𝐶 to metric 𝐷 is continuous at point 𝑃. (Contributed by NM, 11-May-2007.) (Revised by Mario Carneiro, 28-Aug-2015.)
Hypotheses
Ref Expression
metcn.2 𝐽 = (MetOpen‘𝐶)
metcn.4 𝐾 = (MetOpen‘𝐷)
Assertion
Ref Expression
metcnp ((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑌) ∧ 𝑃𝑋) → (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃) ↔ (𝐹:𝑋𝑌 ∧ ∀𝑦 ∈ ℝ+𝑧 ∈ ℝ+𝑤𝑋 ((𝑃𝐶𝑤) < 𝑧 → ((𝐹𝑃)𝐷(𝐹𝑤)) < 𝑦))))
Distinct variable groups:   𝑦,𝑤,𝑧,𝐹   𝑤,𝐽,𝑦,𝑧   𝑤,𝐾,𝑦,𝑧   𝑤,𝑋,𝑦,𝑧   𝑤,𝑌,𝑦,𝑧   𝑤,𝐶,𝑦,𝑧   𝑤,𝐷,𝑦,𝑧   𝑤,𝑃,𝑦,𝑧

Proof of Theorem metcnp
StepHypRef Expression
1 metcn.2 . . 3 𝐽 = (MetOpen‘𝐶)
2 metcn.4 . . 3 𝐾 = (MetOpen‘𝐷)
31, 2metcnp3 12690 . 2 ((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑌) ∧ 𝑃𝑋) → (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃) ↔ (𝐹:𝑋𝑌 ∧ ∀𝑦 ∈ ℝ+𝑧 ∈ ℝ+ (𝐹 “ (𝑃(ball‘𝐶)𝑧)) ⊆ ((𝐹𝑃)(ball‘𝐷)𝑦))))
4 ffun 5275 . . . . . . . . 9 (𝐹:𝑋𝑌 → Fun 𝐹)
54ad2antlr 480 . . . . . . . 8 ((((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑌) ∧ 𝑃𝑋) ∧ 𝐹:𝑋𝑌) ∧ (𝑦 ∈ ℝ+𝑧 ∈ ℝ+)) → Fun 𝐹)
6 simpll1 1020 . . . . . . . . . 10 ((((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑌) ∧ 𝑃𝑋) ∧ 𝐹:𝑋𝑌) ∧ (𝑦 ∈ ℝ+𝑧 ∈ ℝ+)) → 𝐶 ∈ (∞Met‘𝑋))
7 simpll3 1022 . . . . . . . . . 10 ((((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑌) ∧ 𝑃𝑋) ∧ 𝐹:𝑋𝑌) ∧ (𝑦 ∈ ℝ+𝑧 ∈ ℝ+)) → 𝑃𝑋)
8 rpxr 9456 . . . . . . . . . . 11 (𝑧 ∈ ℝ+𝑧 ∈ ℝ*)
98ad2antll 482 . . . . . . . . . 10 ((((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑌) ∧ 𝑃𝑋) ∧ 𝐹:𝑋𝑌) ∧ (𝑦 ∈ ℝ+𝑧 ∈ ℝ+)) → 𝑧 ∈ ℝ*)
10 blssm 12600 . . . . . . . . . 10 ((𝐶 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋𝑧 ∈ ℝ*) → (𝑃(ball‘𝐶)𝑧) ⊆ 𝑋)
116, 7, 9, 10syl3anc 1216 . . . . . . . . 9 ((((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑌) ∧ 𝑃𝑋) ∧ 𝐹:𝑋𝑌) ∧ (𝑦 ∈ ℝ+𝑧 ∈ ℝ+)) → (𝑃(ball‘𝐶)𝑧) ⊆ 𝑋)
12 fdm 5278 . . . . . . . . . 10 (𝐹:𝑋𝑌 → dom 𝐹 = 𝑋)
1312ad2antlr 480 . . . . . . . . 9 ((((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑌) ∧ 𝑃𝑋) ∧ 𝐹:𝑋𝑌) ∧ (𝑦 ∈ ℝ+𝑧 ∈ ℝ+)) → dom 𝐹 = 𝑋)
1411, 13sseqtrrd 3136 . . . . . . . 8 ((((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑌) ∧ 𝑃𝑋) ∧ 𝐹:𝑋𝑌) ∧ (𝑦 ∈ ℝ+𝑧 ∈ ℝ+)) → (𝑃(ball‘𝐶)𝑧) ⊆ dom 𝐹)
15 funimass4 5472 . . . . . . . 8 ((Fun 𝐹 ∧ (𝑃(ball‘𝐶)𝑧) ⊆ dom 𝐹) → ((𝐹 “ (𝑃(ball‘𝐶)𝑧)) ⊆ ((𝐹𝑃)(ball‘𝐷)𝑦) ↔ ∀𝑤 ∈ (𝑃(ball‘𝐶)𝑧)(𝐹𝑤) ∈ ((𝐹𝑃)(ball‘𝐷)𝑦)))
165, 14, 15syl2anc 408 . . . . . . 7 ((((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑌) ∧ 𝑃𝑋) ∧ 𝐹:𝑋𝑌) ∧ (𝑦 ∈ ℝ+𝑧 ∈ ℝ+)) → ((𝐹 “ (𝑃(ball‘𝐶)𝑧)) ⊆ ((𝐹𝑃)(ball‘𝐷)𝑦) ↔ ∀𝑤 ∈ (𝑃(ball‘𝐶)𝑧)(𝐹𝑤) ∈ ((𝐹𝑃)(ball‘𝐷)𝑦)))
17 elbl 12570 . . . . . . . . . . 11 ((𝐶 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋𝑧 ∈ ℝ*) → (𝑤 ∈ (𝑃(ball‘𝐶)𝑧) ↔ (𝑤𝑋 ∧ (𝑃𝐶𝑤) < 𝑧)))
186, 7, 9, 17syl3anc 1216 . . . . . . . . . 10 ((((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑌) ∧ 𝑃𝑋) ∧ 𝐹:𝑋𝑌) ∧ (𝑦 ∈ ℝ+𝑧 ∈ ℝ+)) → (𝑤 ∈ (𝑃(ball‘𝐶)𝑧) ↔ (𝑤𝑋 ∧ (𝑃𝐶𝑤) < 𝑧)))
1918imbi1d 230 . . . . . . . . 9 ((((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑌) ∧ 𝑃𝑋) ∧ 𝐹:𝑋𝑌) ∧ (𝑦 ∈ ℝ+𝑧 ∈ ℝ+)) → ((𝑤 ∈ (𝑃(ball‘𝐶)𝑧) → (𝐹𝑤) ∈ ((𝐹𝑃)(ball‘𝐷)𝑦)) ↔ ((𝑤𝑋 ∧ (𝑃𝐶𝑤) < 𝑧) → (𝐹𝑤) ∈ ((𝐹𝑃)(ball‘𝐷)𝑦))))
20 impexp 261 . . . . . . . . . 10 (((𝑤𝑋 ∧ (𝑃𝐶𝑤) < 𝑧) → (𝐹𝑤) ∈ ((𝐹𝑃)(ball‘𝐷)𝑦)) ↔ (𝑤𝑋 → ((𝑃𝐶𝑤) < 𝑧 → (𝐹𝑤) ∈ ((𝐹𝑃)(ball‘𝐷)𝑦))))
21 simpl2 985 . . . . . . . . . . . . . 14 (((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑌) ∧ 𝑃𝑋) ∧ 𝐹:𝑋𝑌) → 𝐷 ∈ (∞Met‘𝑌))
2221ad2antrr 479 . . . . . . . . . . . . 13 (((((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑌) ∧ 𝑃𝑋) ∧ 𝐹:𝑋𝑌) ∧ (𝑦 ∈ ℝ+𝑧 ∈ ℝ+)) ∧ 𝑤𝑋) → 𝐷 ∈ (∞Met‘𝑌))
23 simplrl 524 . . . . . . . . . . . . . 14 (((((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑌) ∧ 𝑃𝑋) ∧ 𝐹:𝑋𝑌) ∧ (𝑦 ∈ ℝ+𝑧 ∈ ℝ+)) ∧ 𝑤𝑋) → 𝑦 ∈ ℝ+)
2423rpxrd 9491 . . . . . . . . . . . . 13 (((((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑌) ∧ 𝑃𝑋) ∧ 𝐹:𝑋𝑌) ∧ (𝑦 ∈ ℝ+𝑧 ∈ ℝ+)) ∧ 𝑤𝑋) → 𝑦 ∈ ℝ*)
25 simpllr 523 . . . . . . . . . . . . . 14 (((((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑌) ∧ 𝑃𝑋) ∧ 𝐹:𝑋𝑌) ∧ (𝑦 ∈ ℝ+𝑧 ∈ ℝ+)) ∧ 𝑤𝑋) → 𝐹:𝑋𝑌)
267adantr 274 . . . . . . . . . . . . . 14 (((((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑌) ∧ 𝑃𝑋) ∧ 𝐹:𝑋𝑌) ∧ (𝑦 ∈ ℝ+𝑧 ∈ ℝ+)) ∧ 𝑤𝑋) → 𝑃𝑋)
2725, 26ffvelrnd 5556 . . . . . . . . . . . . 13 (((((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑌) ∧ 𝑃𝑋) ∧ 𝐹:𝑋𝑌) ∧ (𝑦 ∈ ℝ+𝑧 ∈ ℝ+)) ∧ 𝑤𝑋) → (𝐹𝑃) ∈ 𝑌)
28 simplr 519 . . . . . . . . . . . . . 14 ((((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑌) ∧ 𝑃𝑋) ∧ 𝐹:𝑋𝑌) ∧ (𝑦 ∈ ℝ+𝑧 ∈ ℝ+)) → 𝐹:𝑋𝑌)
2928ffvelrnda 5555 . . . . . . . . . . . . 13 (((((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑌) ∧ 𝑃𝑋) ∧ 𝐹:𝑋𝑌) ∧ (𝑦 ∈ ℝ+𝑧 ∈ ℝ+)) ∧ 𝑤𝑋) → (𝐹𝑤) ∈ 𝑌)
30 elbl2 12572 . . . . . . . . . . . . 13 (((𝐷 ∈ (∞Met‘𝑌) ∧ 𝑦 ∈ ℝ*) ∧ ((𝐹𝑃) ∈ 𝑌 ∧ (𝐹𝑤) ∈ 𝑌)) → ((𝐹𝑤) ∈ ((𝐹𝑃)(ball‘𝐷)𝑦) ↔ ((𝐹𝑃)𝐷(𝐹𝑤)) < 𝑦))
3122, 24, 27, 29, 30syl22anc 1217 . . . . . . . . . . . 12 (((((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑌) ∧ 𝑃𝑋) ∧ 𝐹:𝑋𝑌) ∧ (𝑦 ∈ ℝ+𝑧 ∈ ℝ+)) ∧ 𝑤𝑋) → ((𝐹𝑤) ∈ ((𝐹𝑃)(ball‘𝐷)𝑦) ↔ ((𝐹𝑃)𝐷(𝐹𝑤)) < 𝑦))
3231imbi2d 229 . . . . . . . . . . 11 (((((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑌) ∧ 𝑃𝑋) ∧ 𝐹:𝑋𝑌) ∧ (𝑦 ∈ ℝ+𝑧 ∈ ℝ+)) ∧ 𝑤𝑋) → (((𝑃𝐶𝑤) < 𝑧 → (𝐹𝑤) ∈ ((𝐹𝑃)(ball‘𝐷)𝑦)) ↔ ((𝑃𝐶𝑤) < 𝑧 → ((𝐹𝑃)𝐷(𝐹𝑤)) < 𝑦)))
3332pm5.74da 439 . . . . . . . . . 10 ((((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑌) ∧ 𝑃𝑋) ∧ 𝐹:𝑋𝑌) ∧ (𝑦 ∈ ℝ+𝑧 ∈ ℝ+)) → ((𝑤𝑋 → ((𝑃𝐶𝑤) < 𝑧 → (𝐹𝑤) ∈ ((𝐹𝑃)(ball‘𝐷)𝑦))) ↔ (𝑤𝑋 → ((𝑃𝐶𝑤) < 𝑧 → ((𝐹𝑃)𝐷(𝐹𝑤)) < 𝑦))))
3420, 33syl5bb 191 . . . . . . . . 9 ((((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑌) ∧ 𝑃𝑋) ∧ 𝐹:𝑋𝑌) ∧ (𝑦 ∈ ℝ+𝑧 ∈ ℝ+)) → (((𝑤𝑋 ∧ (𝑃𝐶𝑤) < 𝑧) → (𝐹𝑤) ∈ ((𝐹𝑃)(ball‘𝐷)𝑦)) ↔ (𝑤𝑋 → ((𝑃𝐶𝑤) < 𝑧 → ((𝐹𝑃)𝐷(𝐹𝑤)) < 𝑦))))
3519, 34bitrd 187 . . . . . . . 8 ((((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑌) ∧ 𝑃𝑋) ∧ 𝐹:𝑋𝑌) ∧ (𝑦 ∈ ℝ+𝑧 ∈ ℝ+)) → ((𝑤 ∈ (𝑃(ball‘𝐶)𝑧) → (𝐹𝑤) ∈ ((𝐹𝑃)(ball‘𝐷)𝑦)) ↔ (𝑤𝑋 → ((𝑃𝐶𝑤) < 𝑧 → ((𝐹𝑃)𝐷(𝐹𝑤)) < 𝑦))))
3635ralbidv2 2439 . . . . . . 7 ((((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑌) ∧ 𝑃𝑋) ∧ 𝐹:𝑋𝑌) ∧ (𝑦 ∈ ℝ+𝑧 ∈ ℝ+)) → (∀𝑤 ∈ (𝑃(ball‘𝐶)𝑧)(𝐹𝑤) ∈ ((𝐹𝑃)(ball‘𝐷)𝑦) ↔ ∀𝑤𝑋 ((𝑃𝐶𝑤) < 𝑧 → ((𝐹𝑃)𝐷(𝐹𝑤)) < 𝑦)))
3716, 36bitrd 187 . . . . . 6 ((((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑌) ∧ 𝑃𝑋) ∧ 𝐹:𝑋𝑌) ∧ (𝑦 ∈ ℝ+𝑧 ∈ ℝ+)) → ((𝐹 “ (𝑃(ball‘𝐶)𝑧)) ⊆ ((𝐹𝑃)(ball‘𝐷)𝑦) ↔ ∀𝑤𝑋 ((𝑃𝐶𝑤) < 𝑧 → ((𝐹𝑃)𝐷(𝐹𝑤)) < 𝑦)))
3837anassrs 397 . . . . 5 (((((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑌) ∧ 𝑃𝑋) ∧ 𝐹:𝑋𝑌) ∧ 𝑦 ∈ ℝ+) ∧ 𝑧 ∈ ℝ+) → ((𝐹 “ (𝑃(ball‘𝐶)𝑧)) ⊆ ((𝐹𝑃)(ball‘𝐷)𝑦) ↔ ∀𝑤𝑋 ((𝑃𝐶𝑤) < 𝑧 → ((𝐹𝑃)𝐷(𝐹𝑤)) < 𝑦)))
3938rexbidva 2434 . . . 4 ((((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑌) ∧ 𝑃𝑋) ∧ 𝐹:𝑋𝑌) ∧ 𝑦 ∈ ℝ+) → (∃𝑧 ∈ ℝ+ (𝐹 “ (𝑃(ball‘𝐶)𝑧)) ⊆ ((𝐹𝑃)(ball‘𝐷)𝑦) ↔ ∃𝑧 ∈ ℝ+𝑤𝑋 ((𝑃𝐶𝑤) < 𝑧 → ((𝐹𝑃)𝐷(𝐹𝑤)) < 𝑦)))
4039ralbidva 2433 . . 3 (((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑌) ∧ 𝑃𝑋) ∧ 𝐹:𝑋𝑌) → (∀𝑦 ∈ ℝ+𝑧 ∈ ℝ+ (𝐹 “ (𝑃(ball‘𝐶)𝑧)) ⊆ ((𝐹𝑃)(ball‘𝐷)𝑦) ↔ ∀𝑦 ∈ ℝ+𝑧 ∈ ℝ+𝑤𝑋 ((𝑃𝐶𝑤) < 𝑧 → ((𝐹𝑃)𝐷(𝐹𝑤)) < 𝑦)))
4140pm5.32da 447 . 2 ((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑌) ∧ 𝑃𝑋) → ((𝐹:𝑋𝑌 ∧ ∀𝑦 ∈ ℝ+𝑧 ∈ ℝ+ (𝐹 “ (𝑃(ball‘𝐶)𝑧)) ⊆ ((𝐹𝑃)(ball‘𝐷)𝑦)) ↔ (𝐹:𝑋𝑌 ∧ ∀𝑦 ∈ ℝ+𝑧 ∈ ℝ+𝑤𝑋 ((𝑃𝐶𝑤) < 𝑧 → ((𝐹𝑃)𝐷(𝐹𝑤)) < 𝑦))))
423, 41bitrd 187 1 ((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑌) ∧ 𝑃𝑋) → (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃) ↔ (𝐹:𝑋𝑌 ∧ ∀𝑦 ∈ ℝ+𝑧 ∈ ℝ+𝑤𝑋 ((𝑃𝐶𝑤) < 𝑧 → ((𝐹𝑃)𝐷(𝐹𝑤)) < 𝑦))))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wb 104  w3a 962   = wceq 1331  wcel 1480  wral 2416  wrex 2417  wss 3071   class class class wbr 3929  dom cdm 4539  cima 4542  Fun wfun 5117  wf 5119  cfv 5123  (class class class)co 5774  *cxr 7806   < clt 7807  +crp 9448  ∞Metcxmet 12159  ballcbl 12161  MetOpencmopn 12164   CnP ccnp 12365
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 603  ax-in2 604  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-13 1491  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2121  ax-coll 4043  ax-sep 4046  ax-nul 4054  ax-pow 4098  ax-pr 4131  ax-un 4355  ax-setind 4452  ax-iinf 4502  ax-cnex 7718  ax-resscn 7719  ax-1cn 7720  ax-1re 7721  ax-icn 7722  ax-addcl 7723  ax-addrcl 7724  ax-mulcl 7725  ax-mulrcl 7726  ax-addcom 7727  ax-mulcom 7728  ax-addass 7729  ax-mulass 7730  ax-distr 7731  ax-i2m1 7732  ax-0lt1 7733  ax-1rid 7734  ax-0id 7735  ax-rnegex 7736  ax-precex 7737  ax-cnre 7738  ax-pre-ltirr 7739  ax-pre-ltwlin 7740  ax-pre-lttrn 7741  ax-pre-apti 7742  ax-pre-ltadd 7743  ax-pre-mulgt0 7744  ax-pre-mulext 7745  ax-arch 7746  ax-caucvg 7747
This theorem depends on definitions:  df-bi 116  df-stab 816  df-dc 820  df-3or 963  df-3an 964  df-tru 1334  df-fal 1337  df-nf 1437  df-sb 1736  df-eu 2002  df-mo 2003  df-clab 2126  df-cleq 2132  df-clel 2135  df-nfc 2270  df-ne 2309  df-nel 2404  df-ral 2421  df-rex 2422  df-reu 2423  df-rmo 2424  df-rab 2425  df-v 2688  df-sbc 2910  df-csb 3004  df-dif 3073  df-un 3075  df-in 3077  df-ss 3084  df-nul 3364  df-if 3475  df-pw 3512  df-sn 3533  df-pr 3534  df-op 3536  df-uni 3737  df-int 3772  df-iun 3815  df-br 3930  df-opab 3990  df-mpt 3991  df-tr 4027  df-id 4215  df-po 4218  df-iso 4219  df-iord 4288  df-on 4290  df-ilim 4291  df-suc 4293  df-iom 4505  df-xp 4545  df-rel 4546  df-cnv 4547  df-co 4548  df-dm 4549  df-rn 4550  df-res 4551  df-ima 4552  df-iota 5088  df-fun 5125  df-fn 5126  df-f 5127  df-f1 5128  df-fo 5129  df-f1o 5130  df-fv 5131  df-isom 5132  df-riota 5730  df-ov 5777  df-oprab 5778  df-mpo 5779  df-1st 6038  df-2nd 6039  df-recs 6202  df-frec 6288  df-map 6544  df-sup 6871  df-inf 6872  df-pnf 7809  df-mnf 7810  df-xr 7811  df-ltxr 7812  df-le 7813  df-sub 7942  df-neg 7943  df-reap 8344  df-ap 8351  df-div 8440  df-inn 8728  df-2 8786  df-3 8787  df-4 8788  df-n0 8985  df-z 9062  df-uz 9334  df-q 9419  df-rp 9449  df-xneg 9566  df-xadd 9567  df-seqfrec 10226  df-exp 10300  df-cj 10621  df-re 10622  df-im 10623  df-rsqrt 10777  df-abs 10778  df-topgen 12151  df-psmet 12166  df-xmet 12167  df-bl 12169  df-mopn 12170  df-top 12175  df-topon 12188  df-bases 12220  df-cnp 12368
This theorem is referenced by:  metcnp2  12692  metcn  12693  metcnpi  12694  txmetcnp  12697  metcnpd  12699
  Copyright terms: Public domain W3C validator