Intuitionistic Logic Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  ILE Home  >  Th. List  >  metcnp GIF version

Theorem metcnp 12691
 Description: Two ways to say a mapping from metric 𝐶 to metric 𝐷 is continuous at point 𝑃. (Contributed by NM, 11-May-2007.) (Revised by Mario Carneiro, 28-Aug-2015.)
Hypotheses
Ref Expression
metcn.2 𝐽 = (MetOpen‘𝐶)
metcn.4 𝐾 = (MetOpen‘𝐷)
Assertion
Ref Expression
metcnp ((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑌) ∧ 𝑃𝑋) → (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃) ↔ (𝐹:𝑋𝑌 ∧ ∀𝑦 ∈ ℝ+𝑧 ∈ ℝ+𝑤𝑋 ((𝑃𝐶𝑤) < 𝑧 → ((𝐹𝑃)𝐷(𝐹𝑤)) < 𝑦))))
Distinct variable groups:   𝑦,𝑤,𝑧,𝐹   𝑤,𝐽,𝑦,𝑧   𝑤,𝐾,𝑦,𝑧   𝑤,𝑋,𝑦,𝑧   𝑤,𝑌,𝑦,𝑧   𝑤,𝐶,𝑦,𝑧   𝑤,𝐷,𝑦,𝑧   𝑤,𝑃,𝑦,𝑧

Proof of Theorem metcnp
StepHypRef Expression
1 metcn.2 . . 3 𝐽 = (MetOpen‘𝐶)
2 metcn.4 . . 3 𝐾 = (MetOpen‘𝐷)
31, 2metcnp3 12690 . 2 ((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑌) ∧ 𝑃𝑋) → (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃) ↔ (𝐹:𝑋𝑌 ∧ ∀𝑦 ∈ ℝ+𝑧 ∈ ℝ+ (𝐹 “ (𝑃(ball‘𝐶)𝑧)) ⊆ ((𝐹𝑃)(ball‘𝐷)𝑦))))
4 ffun 5275 . . . . . . . . 9 (𝐹:𝑋𝑌 → Fun 𝐹)
54ad2antlr 480 . . . . . . . 8 ((((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑌) ∧ 𝑃𝑋) ∧ 𝐹:𝑋𝑌) ∧ (𝑦 ∈ ℝ+𝑧 ∈ ℝ+)) → Fun 𝐹)
6 simpll1 1020 . . . . . . . . . 10 ((((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑌) ∧ 𝑃𝑋) ∧ 𝐹:𝑋𝑌) ∧ (𝑦 ∈ ℝ+𝑧 ∈ ℝ+)) → 𝐶 ∈ (∞Met‘𝑋))
7 simpll3 1022 . . . . . . . . . 10 ((((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑌) ∧ 𝑃𝑋) ∧ 𝐹:𝑋𝑌) ∧ (𝑦 ∈ ℝ+𝑧 ∈ ℝ+)) → 𝑃𝑋)
8 rpxr 9456 . . . . . . . . . . 11 (𝑧 ∈ ℝ+𝑧 ∈ ℝ*)
98ad2antll 482 . . . . . . . . . 10 ((((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑌) ∧ 𝑃𝑋) ∧ 𝐹:𝑋𝑌) ∧ (𝑦 ∈ ℝ+𝑧 ∈ ℝ+)) → 𝑧 ∈ ℝ*)
10 blssm 12600 . . . . . . . . . 10 ((𝐶 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋𝑧 ∈ ℝ*) → (𝑃(ball‘𝐶)𝑧) ⊆ 𝑋)
116, 7, 9, 10syl3anc 1216 . . . . . . . . 9 ((((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑌) ∧ 𝑃𝑋) ∧ 𝐹:𝑋𝑌) ∧ (𝑦 ∈ ℝ+𝑧 ∈ ℝ+)) → (𝑃(ball‘𝐶)𝑧) ⊆ 𝑋)
12 fdm 5278 . . . . . . . . . 10 (𝐹:𝑋𝑌 → dom 𝐹 = 𝑋)
1312ad2antlr 480 . . . . . . . . 9 ((((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑌) ∧ 𝑃𝑋) ∧ 𝐹:𝑋𝑌) ∧ (𝑦 ∈ ℝ+𝑧 ∈ ℝ+)) → dom 𝐹 = 𝑋)
1411, 13sseqtrrd 3136 . . . . . . . 8 ((((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑌) ∧ 𝑃𝑋) ∧ 𝐹:𝑋𝑌) ∧ (𝑦 ∈ ℝ+𝑧 ∈ ℝ+)) → (𝑃(ball‘𝐶)𝑧) ⊆ dom 𝐹)
15 funimass4 5472 . . . . . . . 8 ((Fun 𝐹 ∧ (𝑃(ball‘𝐶)𝑧) ⊆ dom 𝐹) → ((𝐹 “ (𝑃(ball‘𝐶)𝑧)) ⊆ ((𝐹𝑃)(ball‘𝐷)𝑦) ↔ ∀𝑤 ∈ (𝑃(ball‘𝐶)𝑧)(𝐹𝑤) ∈ ((𝐹𝑃)(ball‘𝐷)𝑦)))
165, 14, 15syl2anc 408 . . . . . . 7 ((((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑌) ∧ 𝑃𝑋) ∧ 𝐹:𝑋𝑌) ∧ (𝑦 ∈ ℝ+𝑧 ∈ ℝ+)) → ((𝐹 “ (𝑃(ball‘𝐶)𝑧)) ⊆ ((𝐹𝑃)(ball‘𝐷)𝑦) ↔ ∀𝑤 ∈ (𝑃(ball‘𝐶)𝑧)(𝐹𝑤) ∈ ((𝐹𝑃)(ball‘𝐷)𝑦)))
17 elbl 12570 . . . . . . . . . . 11 ((𝐶 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋𝑧 ∈ ℝ*) → (𝑤 ∈ (𝑃(ball‘𝐶)𝑧) ↔ (𝑤𝑋 ∧ (𝑃𝐶𝑤) < 𝑧)))
186, 7, 9, 17syl3anc 1216 . . . . . . . . . 10 ((((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑌) ∧ 𝑃𝑋) ∧ 𝐹:𝑋𝑌) ∧ (𝑦 ∈ ℝ+𝑧 ∈ ℝ+)) → (𝑤 ∈ (𝑃(ball‘𝐶)𝑧) ↔ (𝑤𝑋 ∧ (𝑃𝐶𝑤) < 𝑧)))
1918imbi1d 230 . . . . . . . . 9 ((((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑌) ∧ 𝑃𝑋) ∧ 𝐹:𝑋𝑌) ∧ (𝑦 ∈ ℝ+𝑧 ∈ ℝ+)) → ((𝑤 ∈ (𝑃(ball‘𝐶)𝑧) → (𝐹𝑤) ∈ ((𝐹𝑃)(ball‘𝐷)𝑦)) ↔ ((𝑤𝑋 ∧ (𝑃𝐶𝑤) < 𝑧) → (𝐹𝑤) ∈ ((𝐹𝑃)(ball‘𝐷)𝑦))))
20 impexp 261 . . . . . . . . . 10 (((𝑤𝑋 ∧ (𝑃𝐶𝑤) < 𝑧) → (𝐹𝑤) ∈ ((𝐹𝑃)(ball‘𝐷)𝑦)) ↔ (𝑤𝑋 → ((𝑃𝐶𝑤) < 𝑧 → (𝐹𝑤) ∈ ((𝐹𝑃)(ball‘𝐷)𝑦))))
21 simpl2 985 . . . . . . . . . . . . . 14 (((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑌) ∧ 𝑃𝑋) ∧ 𝐹:𝑋𝑌) → 𝐷 ∈ (∞Met‘𝑌))
2221ad2antrr 479 . . . . . . . . . . . . 13 (((((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑌) ∧ 𝑃𝑋) ∧ 𝐹:𝑋𝑌) ∧ (𝑦 ∈ ℝ+𝑧 ∈ ℝ+)) ∧ 𝑤𝑋) → 𝐷 ∈ (∞Met‘𝑌))
23 simplrl 524 . . . . . . . . . . . . . 14 (((((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑌) ∧ 𝑃𝑋) ∧ 𝐹:𝑋𝑌) ∧ (𝑦 ∈ ℝ+𝑧 ∈ ℝ+)) ∧ 𝑤𝑋) → 𝑦 ∈ ℝ+)
2423rpxrd 9491 . . . . . . . . . . . . 13 (((((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑌) ∧ 𝑃𝑋) ∧ 𝐹:𝑋𝑌) ∧ (𝑦 ∈ ℝ+𝑧 ∈ ℝ+)) ∧ 𝑤𝑋) → 𝑦 ∈ ℝ*)
25 simpllr 523 . . . . . . . . . . . . . 14 (((((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑌) ∧ 𝑃𝑋) ∧ 𝐹:𝑋𝑌) ∧ (𝑦 ∈ ℝ+𝑧 ∈ ℝ+)) ∧ 𝑤𝑋) → 𝐹:𝑋𝑌)
267adantr 274 . . . . . . . . . . . . . 14 (((((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑌) ∧ 𝑃𝑋) ∧ 𝐹:𝑋𝑌) ∧ (𝑦 ∈ ℝ+𝑧 ∈ ℝ+)) ∧ 𝑤𝑋) → 𝑃𝑋)
2725, 26ffvelrnd 5556 . . . . . . . . . . . . 13 (((((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑌) ∧ 𝑃𝑋) ∧ 𝐹:𝑋𝑌) ∧ (𝑦 ∈ ℝ+𝑧 ∈ ℝ+)) ∧ 𝑤𝑋) → (𝐹𝑃) ∈ 𝑌)
28 simplr 519 . . . . . . . . . . . . . 14 ((((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑌) ∧ 𝑃𝑋) ∧ 𝐹:𝑋𝑌) ∧ (𝑦 ∈ ℝ+𝑧 ∈ ℝ+)) → 𝐹:𝑋𝑌)
2928ffvelrnda 5555 . . . . . . . . . . . . 13 (((((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑌) ∧ 𝑃𝑋) ∧ 𝐹:𝑋𝑌) ∧ (𝑦 ∈ ℝ+𝑧 ∈ ℝ+)) ∧ 𝑤𝑋) → (𝐹𝑤) ∈ 𝑌)
30 elbl2 12572 . . . . . . . . . . . . 13 (((𝐷 ∈ (∞Met‘𝑌) ∧ 𝑦 ∈ ℝ*) ∧ ((𝐹𝑃) ∈ 𝑌 ∧ (𝐹𝑤) ∈ 𝑌)) → ((𝐹𝑤) ∈ ((𝐹𝑃)(ball‘𝐷)𝑦) ↔ ((𝐹𝑃)𝐷(𝐹𝑤)) < 𝑦))
3122, 24, 27, 29, 30syl22anc 1217 . . . . . . . . . . . 12 (((((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑌) ∧ 𝑃𝑋) ∧ 𝐹:𝑋𝑌) ∧ (𝑦 ∈ ℝ+𝑧 ∈ ℝ+)) ∧ 𝑤𝑋) → ((𝐹𝑤) ∈ ((𝐹𝑃)(ball‘𝐷)𝑦) ↔ ((𝐹𝑃)𝐷(𝐹𝑤)) < 𝑦))
3231imbi2d 229 . . . . . . . . . . 11 (((((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑌) ∧ 𝑃𝑋) ∧ 𝐹:𝑋𝑌) ∧ (𝑦 ∈ ℝ+𝑧 ∈ ℝ+)) ∧ 𝑤𝑋) → (((𝑃𝐶𝑤) < 𝑧 → (𝐹𝑤) ∈ ((𝐹𝑃)(ball‘𝐷)𝑦)) ↔ ((𝑃𝐶𝑤) < 𝑧 → ((𝐹𝑃)𝐷(𝐹𝑤)) < 𝑦)))
3332pm5.74da 439 . . . . . . . . . 10 ((((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑌) ∧ 𝑃𝑋) ∧ 𝐹:𝑋𝑌) ∧ (𝑦 ∈ ℝ+𝑧 ∈ ℝ+)) → ((𝑤𝑋 → ((𝑃𝐶𝑤) < 𝑧 → (𝐹𝑤) ∈ ((𝐹𝑃)(ball‘𝐷)𝑦))) ↔ (𝑤𝑋 → ((𝑃𝐶𝑤) < 𝑧 → ((𝐹𝑃)𝐷(𝐹𝑤)) < 𝑦))))
3420, 33syl5bb 191 . . . . . . . . 9 ((((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑌) ∧ 𝑃𝑋) ∧ 𝐹:𝑋𝑌) ∧ (𝑦 ∈ ℝ+𝑧 ∈ ℝ+)) → (((𝑤𝑋 ∧ (𝑃𝐶𝑤) < 𝑧) → (𝐹𝑤) ∈ ((𝐹𝑃)(ball‘𝐷)𝑦)) ↔ (𝑤𝑋 → ((𝑃𝐶𝑤) < 𝑧 → ((𝐹𝑃)𝐷(𝐹𝑤)) < 𝑦))))
3519, 34bitrd 187 . . . . . . . 8 ((((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑌) ∧ 𝑃𝑋) ∧ 𝐹:𝑋𝑌) ∧ (𝑦 ∈ ℝ+𝑧 ∈ ℝ+)) → ((𝑤 ∈ (𝑃(ball‘𝐶)𝑧) → (𝐹𝑤) ∈ ((𝐹𝑃)(ball‘𝐷)𝑦)) ↔ (𝑤𝑋 → ((𝑃𝐶𝑤) < 𝑧 → ((𝐹𝑃)𝐷(𝐹𝑤)) < 𝑦))))
3635ralbidv2 2439 . . . . . . 7 ((((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑌) ∧ 𝑃𝑋) ∧ 𝐹:𝑋𝑌) ∧ (𝑦 ∈ ℝ+𝑧 ∈ ℝ+)) → (∀𝑤 ∈ (𝑃(ball‘𝐶)𝑧)(𝐹𝑤) ∈ ((𝐹𝑃)(ball‘𝐷)𝑦) ↔ ∀𝑤𝑋 ((𝑃𝐶𝑤) < 𝑧 → ((𝐹𝑃)𝐷(𝐹𝑤)) < 𝑦)))
3716, 36bitrd 187 . . . . . 6 ((((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑌) ∧ 𝑃𝑋) ∧ 𝐹:𝑋𝑌) ∧ (𝑦 ∈ ℝ+𝑧 ∈ ℝ+)) → ((𝐹 “ (𝑃(ball‘𝐶)𝑧)) ⊆ ((𝐹𝑃)(ball‘𝐷)𝑦) ↔ ∀𝑤𝑋 ((𝑃𝐶𝑤) < 𝑧 → ((𝐹𝑃)𝐷(𝐹𝑤)) < 𝑦)))
3837anassrs 397 . . . . 5 (((((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑌) ∧ 𝑃𝑋) ∧ 𝐹:𝑋𝑌) ∧ 𝑦 ∈ ℝ+) ∧ 𝑧 ∈ ℝ+) → ((𝐹 “ (𝑃(ball‘𝐶)𝑧)) ⊆ ((𝐹𝑃)(ball‘𝐷)𝑦) ↔ ∀𝑤𝑋 ((𝑃𝐶𝑤) < 𝑧 → ((𝐹𝑃)𝐷(𝐹𝑤)) < 𝑦)))
3938rexbidva 2434 . . . 4 ((((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑌) ∧ 𝑃𝑋) ∧ 𝐹:𝑋𝑌) ∧ 𝑦 ∈ ℝ+) → (∃𝑧 ∈ ℝ+ (𝐹 “ (𝑃(ball‘𝐶)𝑧)) ⊆ ((𝐹𝑃)(ball‘𝐷)𝑦) ↔ ∃𝑧 ∈ ℝ+𝑤𝑋 ((𝑃𝐶𝑤) < 𝑧 → ((𝐹𝑃)𝐷(𝐹𝑤)) < 𝑦)))
4039ralbidva 2433 . . 3 (((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑌) ∧ 𝑃𝑋) ∧ 𝐹:𝑋𝑌) → (∀𝑦 ∈ ℝ+𝑧 ∈ ℝ+ (𝐹 “ (𝑃(ball‘𝐶)𝑧)) ⊆ ((𝐹𝑃)(ball‘𝐷)𝑦) ↔ ∀𝑦 ∈ ℝ+𝑧 ∈ ℝ+𝑤𝑋 ((𝑃𝐶𝑤) < 𝑧 → ((𝐹𝑃)𝐷(𝐹𝑤)) < 𝑦)))
4140pm5.32da 447 . 2 ((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑌) ∧ 𝑃𝑋) → ((𝐹:𝑋𝑌 ∧ ∀𝑦 ∈ ℝ+𝑧 ∈ ℝ+ (𝐹 “ (𝑃(ball‘𝐶)𝑧)) ⊆ ((𝐹𝑃)(ball‘𝐷)𝑦)) ↔ (𝐹:𝑋𝑌 ∧ ∀𝑦 ∈ ℝ+𝑧 ∈ ℝ+𝑤𝑋 ((𝑃𝐶𝑤) < 𝑧 → ((𝐹𝑃)𝐷(𝐹𝑤)) < 𝑦))))
423, 41bitrd 187 1 ((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑌) ∧ 𝑃𝑋) → (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃) ↔ (𝐹:𝑋𝑌 ∧ ∀𝑦 ∈ ℝ+𝑧 ∈ ℝ+𝑤𝑋 ((𝑃𝐶𝑤) < 𝑧 → ((𝐹𝑃)𝐷(𝐹𝑤)) < 𝑦))))
 Colors of variables: wff set class Syntax hints:   → wi 4   ∧ wa 103   ↔ wb 104   ∧ w3a 962   = wceq 1331   ∈ wcel 1480  ∀wral 2416  ∃wrex 2417   ⊆ wss 3071   class class class wbr 3929  dom cdm 4539   “ cima 4542  Fun wfun 5117  ⟶wf 5119  ‘cfv 5123  (class class class)co 5774  ℝ*cxr 7806   < clt 7807  ℝ+crp 9448  ∞Metcxmet 12159  ballcbl 12161  MetOpencmopn 12164   CnP ccnp 12365 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 603  ax-in2 604  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-13 1491  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2121  ax-coll 4043  ax-sep 4046  ax-nul 4054  ax-pow 4098  ax-pr 4131  ax-un 4355  ax-setind 4452  ax-iinf 4502  ax-cnex 7718  ax-resscn 7719  ax-1cn 7720  ax-1re 7721  ax-icn 7722  ax-addcl 7723  ax-addrcl 7724  ax-mulcl 7725  ax-mulrcl 7726  ax-addcom 7727  ax-mulcom 7728  ax-addass 7729  ax-mulass 7730  ax-distr 7731  ax-i2m1 7732  ax-0lt1 7733  ax-1rid 7734  ax-0id 7735  ax-rnegex 7736  ax-precex 7737  ax-cnre 7738  ax-pre-ltirr 7739  ax-pre-ltwlin 7740  ax-pre-lttrn 7741  ax-pre-apti 7742  ax-pre-ltadd 7743  ax-pre-mulgt0 7744  ax-pre-mulext 7745  ax-arch 7746  ax-caucvg 7747 This theorem depends on definitions:  df-bi 116  df-stab 816  df-dc 820  df-3or 963  df-3an 964  df-tru 1334  df-fal 1337  df-nf 1437  df-sb 1736  df-eu 2002  df-mo 2003  df-clab 2126  df-cleq 2132  df-clel 2135  df-nfc 2270  df-ne 2309  df-nel 2404  df-ral 2421  df-rex 2422  df-reu 2423  df-rmo 2424  df-rab 2425  df-v 2688  df-sbc 2910  df-csb 3004  df-dif 3073  df-un 3075  df-in 3077  df-ss 3084  df-nul 3364  df-if 3475  df-pw 3512  df-sn 3533  df-pr 3534  df-op 3536  df-uni 3737  df-int 3772  df-iun 3815  df-br 3930  df-opab 3990  df-mpt 3991  df-tr 4027  df-id 4215  df-po 4218  df-iso 4219  df-iord 4288  df-on 4290  df-ilim 4291  df-suc 4293  df-iom 4505  df-xp 4545  df-rel 4546  df-cnv 4547  df-co 4548  df-dm 4549  df-rn 4550  df-res 4551  df-ima 4552  df-iota 5088  df-fun 5125  df-fn 5126  df-f 5127  df-f1 5128  df-fo 5129  df-f1o 5130  df-fv 5131  df-isom 5132  df-riota 5730  df-ov 5777  df-oprab 5778  df-mpo 5779  df-1st 6038  df-2nd 6039  df-recs 6202  df-frec 6288  df-map 6544  df-sup 6871  df-inf 6872  df-pnf 7809  df-mnf 7810  df-xr 7811  df-ltxr 7812  df-le 7813  df-sub 7942  df-neg 7943  df-reap 8344  df-ap 8351  df-div 8440  df-inn 8728  df-2 8786  df-3 8787  df-4 8788  df-n0 8985  df-z 9062  df-uz 9334  df-q 9419  df-rp 9449  df-xneg 9566  df-xadd 9567  df-seqfrec 10226  df-exp 10300  df-cj 10621  df-re 10622  df-im 10623  df-rsqrt 10777  df-abs 10778  df-topgen 12151  df-psmet 12166  df-xmet 12167  df-bl 12169  df-mopn 12170  df-top 12175  df-topon 12188  df-bases 12220  df-cnp 12368 This theorem is referenced by:  metcnp2  12692  metcn  12693  metcnpi  12694  txmetcnp  12697  metcnpd  12699
 Copyright terms: Public domain W3C validator