| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > rexrd | GIF version | ||
| Description: A standard real is an extended real. (Contributed by Mario Carneiro, 28-May-2016.) |
| Ref | Expression |
|---|---|
| rexrd.1 | ⊢ (𝜑 → 𝐴 ∈ ℝ) |
| Ref | Expression |
|---|---|
| rexrd | ⊢ (𝜑 → 𝐴 ∈ ℝ*) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ressxr 8186 | . 2 ⊢ ℝ ⊆ ℝ* | |
| 2 | rexrd.1 | . 2 ⊢ (𝜑 → 𝐴 ∈ ℝ) | |
| 3 | 1, 2 | sselid 3222 | 1 ⊢ (𝜑 → 𝐴 ∈ ℝ*) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∈ wcel 2200 ℝcr 7994 ℝ*cxr 8176 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-ext 2211 |
| This theorem depends on definitions: df-bi 117 df-tru 1398 df-nf 1507 df-sb 1809 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-v 2801 df-un 3201 df-in 3203 df-ss 3210 df-xr 8181 |
| This theorem is referenced by: xnn0xr 9433 rpxr 9853 rpxrd 9889 xnn0dcle 9994 xnegcl 10024 xaddf 10036 xaddval 10037 xnn0lenn0nn0 10057 xposdif 10074 iooshf 10144 icoshftf1o 10183 ioo0 10474 ioom 10475 ico0 10476 ioc0 10477 xqltnle 10482 modqelico 10551 mulqaddmodid 10581 addmodid 10589 elicc4abs 11600 xrmaxiflemcl 11751 fprodge1 12145 pcxcl 12829 pcdvdsb 12838 pcaddlem 12857 pcadd 12858 xblss2ps 15072 xblss2 15073 blss2ps 15074 blss2 15075 blhalf 15076 cnblcld 15203 ioo2blex 15220 tgioo 15222 cnopnap 15279 suplociccreex 15292 suplociccex 15293 dedekindicc 15301 ivthinclemlm 15302 ivthinclemum 15303 ivthinclemlopn 15304 ivthinclemuopn 15306 ivthdec 15312 ivthreinc 15313 sin0pilem2 15450 pilem3 15451 |
| Copyright terms: Public domain | W3C validator |