| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > rexrd | GIF version | ||
| Description: A standard real is an extended real. (Contributed by Mario Carneiro, 28-May-2016.) |
| Ref | Expression |
|---|---|
| rexrd.1 | ⊢ (𝜑 → 𝐴 ∈ ℝ) |
| Ref | Expression |
|---|---|
| rexrd | ⊢ (𝜑 → 𝐴 ∈ ℝ*) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ressxr 8089 | . 2 ⊢ ℝ ⊆ ℝ* | |
| 2 | rexrd.1 | . 2 ⊢ (𝜑 → 𝐴 ∈ ℝ) | |
| 3 | 1, 2 | sselid 3182 | 1 ⊢ (𝜑 → 𝐴 ∈ ℝ*) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∈ wcel 2167 ℝcr 7897 ℝ*cxr 8079 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 |
| This theorem depends on definitions: df-bi 117 df-tru 1367 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-v 2765 df-un 3161 df-in 3163 df-ss 3170 df-xr 8084 |
| This theorem is referenced by: xnn0xr 9336 rpxr 9755 rpxrd 9791 xnn0dcle 9896 xnegcl 9926 xaddf 9938 xaddval 9939 xnn0lenn0nn0 9959 xposdif 9976 iooshf 10046 icoshftf1o 10085 ioo0 10368 ioom 10369 ico0 10370 ioc0 10371 xqltnle 10376 modqelico 10445 mulqaddmodid 10475 addmodid 10483 elicc4abs 11278 xrmaxiflemcl 11429 fprodge1 11823 pcxcl 12507 pcdvdsb 12516 pcaddlem 12535 pcadd 12536 xblss2ps 14748 xblss2 14749 blss2ps 14750 blss2 14751 blhalf 14752 cnblcld 14879 ioo2blex 14896 tgioo 14898 cnopnap 14955 suplociccreex 14968 suplociccex 14969 dedekindicc 14977 ivthinclemlm 14978 ivthinclemum 14979 ivthinclemlopn 14980 ivthinclemuopn 14982 ivthdec 14988 ivthreinc 14989 sin0pilem2 15126 pilem3 15127 |
| Copyright terms: Public domain | W3C validator |