![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > rexrd | GIF version |
Description: A standard real is an extended real. (Contributed by Mario Carneiro, 28-May-2016.) |
Ref | Expression |
---|---|
rexrd.1 | ⊢ (𝜑 → 𝐴 ∈ ℝ) |
Ref | Expression |
---|---|
rexrd | ⊢ (𝜑 → 𝐴 ∈ ℝ*) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ressxr 8065 | . 2 ⊢ ℝ ⊆ ℝ* | |
2 | rexrd.1 | . 2 ⊢ (𝜑 → 𝐴 ∈ ℝ) | |
3 | 1, 2 | sselid 3178 | 1 ⊢ (𝜑 → 𝐴 ∈ ℝ*) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∈ wcel 2164 ℝcr 7873 ℝ*cxr 8055 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-ext 2175 |
This theorem depends on definitions: df-bi 117 df-tru 1367 df-nf 1472 df-sb 1774 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-v 2762 df-un 3158 df-in 3160 df-ss 3167 df-xr 8060 |
This theorem is referenced by: xnn0xr 9311 rpxr 9730 rpxrd 9766 xnn0dcle 9871 xnegcl 9901 xaddf 9913 xaddval 9914 xnn0lenn0nn0 9934 xposdif 9951 iooshf 10021 icoshftf1o 10060 ioo0 10331 ioom 10332 ico0 10333 ioc0 10334 xqltnle 10339 modqelico 10408 mulqaddmodid 10438 addmodid 10446 elicc4abs 11241 xrmaxiflemcl 11391 fprodge1 11785 pcxcl 12452 pcdvdsb 12461 pcaddlem 12480 pcadd 12481 xblss2ps 14583 xblss2 14584 blss2ps 14585 blss2 14586 blhalf 14587 cnblcld 14714 ioo2blex 14731 tgioo 14733 cnopnap 14790 suplociccreex 14803 suplociccex 14804 dedekindicc 14812 ivthinclemlm 14813 ivthinclemum 14814 ivthinclemlopn 14815 ivthinclemuopn 14817 ivthdec 14823 ivthreinc 14824 sin0pilem2 14958 pilem3 14959 |
Copyright terms: Public domain | W3C validator |