ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  rexrd GIF version

Theorem rexrd 7687
Description: A standard real is an extended real. (Contributed by Mario Carneiro, 28-May-2016.)
Hypothesis
Ref Expression
rexrd.1 (𝜑𝐴 ∈ ℝ)
Assertion
Ref Expression
rexrd (𝜑𝐴 ∈ ℝ*)

Proof of Theorem rexrd
StepHypRef Expression
1 ressxr 7681 . 2 ℝ ⊆ ℝ*
2 rexrd.1 . 2 (𝜑𝐴 ∈ ℝ)
31, 2sseldi 3045 1 (𝜑𝐴 ∈ ℝ*)
Colors of variables: wff set class
Syntax hints:  wi 4  wcel 1448  cr 7499  *cxr 7671
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 671  ax-5 1391  ax-7 1392  ax-gen 1393  ax-ie1 1437  ax-ie2 1438  ax-8 1450  ax-10 1451  ax-11 1452  ax-i12 1453  ax-bndl 1454  ax-4 1455  ax-17 1474  ax-i9 1478  ax-ial 1482  ax-i5r 1483  ax-ext 2082
This theorem depends on definitions:  df-bi 116  df-tru 1302  df-nf 1405  df-sb 1704  df-clab 2087  df-cleq 2093  df-clel 2096  df-nfc 2229  df-v 2643  df-un 3025  df-in 3027  df-ss 3034  df-xr 7676
This theorem is referenced by:  xnn0xr  8897  rpxr  9298  rpxrd  9331  xnegcl  9456  xaddf  9468  xaddval  9469  xnn0lenn0nn0  9489  xposdif  9506  iooshf  9576  icoshftf1o  9615  ioo0  9878  ioom  9879  ico0  9880  ioc0  9881  modqelico  9948  mulqaddmodid  9978  addmodid  9986  elicc4abs  10706  xrmaxiflemcl  10853  xblss2ps  12332  xblss2  12333  blss2ps  12334  blss2  12335  blhalf  12336  cnblcld  12457  ioo2blex  12463  tgioo  12465
  Copyright terms: Public domain W3C validator