![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > rexrd | GIF version |
Description: A standard real is an extended real. (Contributed by Mario Carneiro, 28-May-2016.) |
Ref | Expression |
---|---|
rexrd.1 | ⊢ (𝜑 → 𝐴 ∈ ℝ) |
Ref | Expression |
---|---|
rexrd | ⊢ (𝜑 → 𝐴 ∈ ℝ*) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ressxr 8063 | . 2 ⊢ ℝ ⊆ ℝ* | |
2 | rexrd.1 | . 2 ⊢ (𝜑 → 𝐴 ∈ ℝ) | |
3 | 1, 2 | sselid 3177 | 1 ⊢ (𝜑 → 𝐴 ∈ ℝ*) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∈ wcel 2164 ℝcr 7871 ℝ*cxr 8053 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-ext 2175 |
This theorem depends on definitions: df-bi 117 df-tru 1367 df-nf 1472 df-sb 1774 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-v 2762 df-un 3157 df-in 3159 df-ss 3166 df-xr 8058 |
This theorem is referenced by: xnn0xr 9308 rpxr 9727 rpxrd 9763 xnn0dcle 9868 xnegcl 9898 xaddf 9910 xaddval 9911 xnn0lenn0nn0 9931 xposdif 9948 iooshf 10018 icoshftf1o 10057 ioo0 10328 ioom 10329 ico0 10330 ioc0 10331 xqltnle 10336 modqelico 10405 mulqaddmodid 10435 addmodid 10443 elicc4abs 11238 xrmaxiflemcl 11388 fprodge1 11782 pcxcl 12449 pcdvdsb 12458 pcaddlem 12477 pcadd 12478 xblss2ps 14572 xblss2 14573 blss2ps 14574 blss2 14575 blhalf 14576 cnblcld 14703 ioo2blex 14712 tgioo 14714 cnopnap 14765 suplociccreex 14778 suplociccex 14779 dedekindicc 14787 ivthinclemlm 14788 ivthinclemum 14789 ivthinclemlopn 14790 ivthinclemuopn 14792 ivthdec 14798 ivthreinc 14799 sin0pilem2 14917 pilem3 14918 |
Copyright terms: Public domain | W3C validator |