![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > rexrd | GIF version |
Description: A standard real is an extended real. (Contributed by Mario Carneiro, 28-May-2016.) |
Ref | Expression |
---|---|
rexrd.1 | ⊢ (𝜑 → 𝐴 ∈ ℝ) |
Ref | Expression |
---|---|
rexrd | ⊢ (𝜑 → 𝐴 ∈ ℝ*) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ressxr 7681 | . 2 ⊢ ℝ ⊆ ℝ* | |
2 | rexrd.1 | . 2 ⊢ (𝜑 → 𝐴 ∈ ℝ) | |
3 | 1, 2 | sseldi 3045 | 1 ⊢ (𝜑 → 𝐴 ∈ ℝ*) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∈ wcel 1448 ℝcr 7499 ℝ*cxr 7671 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 671 ax-5 1391 ax-7 1392 ax-gen 1393 ax-ie1 1437 ax-ie2 1438 ax-8 1450 ax-10 1451 ax-11 1452 ax-i12 1453 ax-bndl 1454 ax-4 1455 ax-17 1474 ax-i9 1478 ax-ial 1482 ax-i5r 1483 ax-ext 2082 |
This theorem depends on definitions: df-bi 116 df-tru 1302 df-nf 1405 df-sb 1704 df-clab 2087 df-cleq 2093 df-clel 2096 df-nfc 2229 df-v 2643 df-un 3025 df-in 3027 df-ss 3034 df-xr 7676 |
This theorem is referenced by: xnn0xr 8897 rpxr 9298 rpxrd 9331 xnegcl 9456 xaddf 9468 xaddval 9469 xnn0lenn0nn0 9489 xposdif 9506 iooshf 9576 icoshftf1o 9615 ioo0 9878 ioom 9879 ico0 9880 ioc0 9881 modqelico 9948 mulqaddmodid 9978 addmodid 9986 elicc4abs 10706 xrmaxiflemcl 10853 xblss2ps 12332 xblss2 12333 blss2ps 12334 blss2 12335 blhalf 12336 cnblcld 12457 ioo2blex 12463 tgioo 12465 |
Copyright terms: Public domain | W3C validator |