Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > rexrd | GIF version |
Description: A standard real is an extended real. (Contributed by Mario Carneiro, 28-May-2016.) |
Ref | Expression |
---|---|
rexrd.1 | ⊢ (𝜑 → 𝐴 ∈ ℝ) |
Ref | Expression |
---|---|
rexrd | ⊢ (𝜑 → 𝐴 ∈ ℝ*) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ressxr 7963 | . 2 ⊢ ℝ ⊆ ℝ* | |
2 | rexrd.1 | . 2 ⊢ (𝜑 → 𝐴 ∈ ℝ) | |
3 | 1, 2 | sselid 3145 | 1 ⊢ (𝜑 → 𝐴 ∈ ℝ*) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∈ wcel 2141 ℝcr 7773 ℝ*cxr 7953 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-ext 2152 |
This theorem depends on definitions: df-bi 116 df-tru 1351 df-nf 1454 df-sb 1756 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-v 2732 df-un 3125 df-in 3127 df-ss 3134 df-xr 7958 |
This theorem is referenced by: xnn0xr 9203 rpxr 9618 rpxrd 9654 xnn0dcle 9759 xnegcl 9789 xaddf 9801 xaddval 9802 xnn0lenn0nn0 9822 xposdif 9839 iooshf 9909 icoshftf1o 9948 ioo0 10216 ioom 10217 ico0 10218 ioc0 10219 modqelico 10290 mulqaddmodid 10320 addmodid 10328 elicc4abs 11058 xrmaxiflemcl 11208 fprodge1 11602 pcxcl 12265 pcdvdsb 12273 pcaddlem 12292 pcadd 12293 xblss2ps 13198 xblss2 13199 blss2ps 13200 blss2 13201 blhalf 13202 cnblcld 13329 ioo2blex 13338 tgioo 13340 cnopnap 13388 suplociccreex 13396 suplociccex 13397 dedekindicc 13405 ivthinclemlm 13406 ivthinclemum 13407 ivthinclemlopn 13408 ivthinclemuopn 13410 ivthdec 13416 sin0pilem2 13497 pilem3 13498 |
Copyright terms: Public domain | W3C validator |