| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > rpcnd | GIF version | ||
| Description: A positive real is a complex number. (Contributed by Mario Carneiro, 28-May-2016.) |
| Ref | Expression |
|---|---|
| rpred.1 | ⊢ (𝜑 → 𝐴 ∈ ℝ+) |
| Ref | Expression |
|---|---|
| rpcnd | ⊢ (𝜑 → 𝐴 ∈ ℂ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rpred.1 | . . 3 ⊢ (𝜑 → 𝐴 ∈ ℝ+) | |
| 2 | 1 | rpred 9790 | . 2 ⊢ (𝜑 → 𝐴 ∈ ℝ) |
| 3 | 2 | recnd 8074 | 1 ⊢ (𝜑 → 𝐴 ∈ ℂ) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∈ wcel 2167 ℂcc 7896 ℝ+crp 9747 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 ax-resscn 7990 |
| This theorem depends on definitions: df-bi 117 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-rab 2484 df-in 3163 df-ss 3170 df-rp 9748 |
| This theorem is referenced by: rpcnne0d 9800 ltaddrp2d 9825 iccf1o 10098 bcp1nk 10873 bcpasc 10877 cvg1nlemcxze 11166 cvg1nlemres 11169 resqrexlemdec 11195 resqrexlemlo 11197 resqrexlemcalc2 11199 resqrexlemcalc3 11200 resqrexlemnm 11202 resqrexlemcvg 11203 resqrexlemoverl 11205 sqrtdiv 11226 absdivap 11254 bdtrilem 11423 isumrpcl 11678 expcnvap0 11686 absgtap 11694 cvgratz 11716 mertenslemi1 11719 effsumlt 11876 bitsmod 12140 pythagtriplem12 12471 pythagtriplem14 12473 pythagtriplem16 12475 limcimolemlt 14986 rpdivcxp 15233 rpcxple2 15240 rpcxplt2 15241 rpcxpsqrt 15244 rpabscxpbnd 15262 logbgcd1irr 15289 iooref1o 15769 trilpolemclim 15771 trilpolemisumle 15773 trilpolemeq1 15775 trilpolemlt1 15776 |
| Copyright terms: Public domain | W3C validator |