| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > rpcnd | GIF version | ||
| Description: A positive real is a complex number. (Contributed by Mario Carneiro, 28-May-2016.) |
| Ref | Expression |
|---|---|
| rpred.1 | ⊢ (𝜑 → 𝐴 ∈ ℝ+) |
| Ref | Expression |
|---|---|
| rpcnd | ⊢ (𝜑 → 𝐴 ∈ ℂ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rpred.1 | . . 3 ⊢ (𝜑 → 𝐴 ∈ ℝ+) | |
| 2 | 1 | rpred 9825 | . 2 ⊢ (𝜑 → 𝐴 ∈ ℝ) |
| 3 | 2 | recnd 8108 | 1 ⊢ (𝜑 → 𝐴 ∈ ℂ) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∈ wcel 2177 ℂcc 7930 ℝ+crp 9782 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-ext 2188 ax-resscn 8024 |
| This theorem depends on definitions: df-bi 117 df-nf 1485 df-sb 1787 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-rab 2494 df-in 3173 df-ss 3180 df-rp 9783 |
| This theorem is referenced by: rpcnne0d 9835 ltaddrp2d 9860 iccf1o 10133 bcp1nk 10914 bcpasc 10918 cvg1nlemcxze 11337 cvg1nlemres 11340 resqrexlemdec 11366 resqrexlemlo 11368 resqrexlemcalc2 11370 resqrexlemcalc3 11371 resqrexlemnm 11373 resqrexlemcvg 11374 resqrexlemoverl 11376 sqrtdiv 11397 absdivap 11425 bdtrilem 11594 isumrpcl 11849 expcnvap0 11857 absgtap 11865 cvgratz 11887 mertenslemi1 11890 effsumlt 12047 bitsmod 12311 pythagtriplem12 12642 pythagtriplem14 12644 pythagtriplem16 12646 limcimolemlt 15180 rpdivcxp 15427 rpcxple2 15434 rpcxplt2 15435 rpcxpsqrt 15438 rpabscxpbnd 15456 logbgcd1irr 15483 iooref1o 16047 trilpolemclim 16049 trilpolemisumle 16051 trilpolemeq1 16053 trilpolemlt1 16054 |
| Copyright terms: Public domain | W3C validator |