| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > rpcnd | GIF version | ||
| Description: A positive real is a complex number. (Contributed by Mario Carneiro, 28-May-2016.) |
| Ref | Expression |
|---|---|
| rpred.1 | ⊢ (𝜑 → 𝐴 ∈ ℝ+) |
| Ref | Expression |
|---|---|
| rpcnd | ⊢ (𝜑 → 𝐴 ∈ ℂ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rpred.1 | . . 3 ⊢ (𝜑 → 𝐴 ∈ ℝ+) | |
| 2 | 1 | rpred 9900 | . 2 ⊢ (𝜑 → 𝐴 ∈ ℝ) |
| 3 | 2 | recnd 8183 | 1 ⊢ (𝜑 → 𝐴 ∈ ℂ) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∈ wcel 2200 ℂcc 8005 ℝ+crp 9857 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-ext 2211 ax-resscn 8099 |
| This theorem depends on definitions: df-bi 117 df-nf 1507 df-sb 1809 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-rab 2517 df-in 3203 df-ss 3210 df-rp 9858 |
| This theorem is referenced by: rpcnne0d 9910 ltaddrp2d 9935 iccf1o 10208 bcp1nk 10992 bcpasc 10996 cvg1nlemcxze 11501 cvg1nlemres 11504 resqrexlemdec 11530 resqrexlemlo 11532 resqrexlemcalc2 11534 resqrexlemcalc3 11535 resqrexlemnm 11537 resqrexlemcvg 11538 resqrexlemoverl 11540 sqrtdiv 11561 absdivap 11589 bdtrilem 11758 isumrpcl 12013 expcnvap0 12021 absgtap 12029 cvgratz 12051 mertenslemi1 12054 effsumlt 12211 bitsmod 12475 pythagtriplem12 12806 pythagtriplem14 12808 pythagtriplem16 12810 limcimolemlt 15346 rpdivcxp 15593 rpcxple2 15600 rpcxplt2 15601 rpcxpsqrt 15604 rpabscxpbnd 15622 logbgcd1irr 15649 iooref1o 16432 trilpolemclim 16434 trilpolemisumle 16436 trilpolemeq1 16438 trilpolemlt1 16439 |
| Copyright terms: Public domain | W3C validator |