![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > rpcnd | GIF version |
Description: A positive real is a complex number. (Contributed by Mario Carneiro, 28-May-2016.) |
Ref | Expression |
---|---|
rpred.1 | ⊢ (𝜑 → 𝐴 ∈ ℝ+) |
Ref | Expression |
---|---|
rpcnd | ⊢ (𝜑 → 𝐴 ∈ ℂ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rpred.1 | . . 3 ⊢ (𝜑 → 𝐴 ∈ ℝ+) | |
2 | 1 | rpred 9173 | . 2 ⊢ (𝜑 → 𝐴 ∈ ℝ) |
3 | 2 | recnd 7516 | 1 ⊢ (𝜑 → 𝐴 ∈ ℂ) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∈ wcel 1438 ℂcc 7348 ℝ+crp 9134 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-io 665 ax-5 1381 ax-7 1382 ax-gen 1383 ax-ie1 1427 ax-ie2 1428 ax-8 1440 ax-10 1441 ax-11 1442 ax-i12 1443 ax-bndl 1444 ax-4 1445 ax-17 1464 ax-i9 1468 ax-ial 1472 ax-i5r 1473 ax-ext 2070 ax-resscn 7437 |
This theorem depends on definitions: df-bi 115 df-nf 1395 df-sb 1693 df-clab 2075 df-cleq 2081 df-clel 2084 df-nfc 2217 df-rab 2368 df-in 3005 df-ss 3012 df-rp 9135 |
This theorem is referenced by: rpcnne0d 9183 ltaddrp2d 9208 iccf1o 9421 bcp1nk 10170 bcpasc 10174 cvg1nlemcxze 10415 cvg1nlemres 10418 resqrexlemdec 10444 resqrexlemlo 10446 resqrexlemcalc2 10448 resqrexlemcalc3 10449 resqrexlemnm 10451 resqrexlemcvg 10452 resqrexlemoverl 10454 sqrtdiv 10475 absdivap 10503 isumrpcl 10888 expcnvap0 10896 absgtap 10904 cvgratz 10926 mertenslemi1 10929 effsumlt 10982 |
Copyright terms: Public domain | W3C validator |