![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > rpcnd | GIF version |
Description: A positive real is a complex number. (Contributed by Mario Carneiro, 28-May-2016.) |
Ref | Expression |
---|---|
rpred.1 | ⊢ (𝜑 → 𝐴 ∈ ℝ+) |
Ref | Expression |
---|---|
rpcnd | ⊢ (𝜑 → 𝐴 ∈ ℂ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rpred.1 | . . 3 ⊢ (𝜑 → 𝐴 ∈ ℝ+) | |
2 | 1 | rpred 9765 | . 2 ⊢ (𝜑 → 𝐴 ∈ ℝ) |
3 | 2 | recnd 8050 | 1 ⊢ (𝜑 → 𝐴 ∈ ℂ) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∈ wcel 2164 ℂcc 7872 ℝ+crp 9722 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-ext 2175 ax-resscn 7966 |
This theorem depends on definitions: df-bi 117 df-nf 1472 df-sb 1774 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-rab 2481 df-in 3160 df-ss 3167 df-rp 9723 |
This theorem is referenced by: rpcnne0d 9775 ltaddrp2d 9800 iccf1o 10073 bcp1nk 10836 bcpasc 10840 cvg1nlemcxze 11129 cvg1nlemres 11132 resqrexlemdec 11158 resqrexlemlo 11160 resqrexlemcalc2 11162 resqrexlemcalc3 11163 resqrexlemnm 11165 resqrexlemcvg 11166 resqrexlemoverl 11168 sqrtdiv 11189 absdivap 11217 bdtrilem 11385 isumrpcl 11640 expcnvap0 11648 absgtap 11656 cvgratz 11678 mertenslemi1 11681 effsumlt 11838 pythagtriplem12 12416 pythagtriplem14 12418 pythagtriplem16 12420 limcimolemlt 14843 rpdivcxp 15087 rpcxple2 15093 rpcxplt2 15094 rpcxpsqrt 15097 rpabscxpbnd 15114 logbgcd1irr 15140 iooref1o 15594 trilpolemclim 15596 trilpolemisumle 15598 trilpolemeq1 15600 trilpolemlt1 15601 |
Copyright terms: Public domain | W3C validator |