| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > rpcnd | GIF version | ||
| Description: A positive real is a complex number. (Contributed by Mario Carneiro, 28-May-2016.) |
| Ref | Expression |
|---|---|
| rpred.1 | ⊢ (𝜑 → 𝐴 ∈ ℝ+) |
| Ref | Expression |
|---|---|
| rpcnd | ⊢ (𝜑 → 𝐴 ∈ ℂ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rpred.1 | . . 3 ⊢ (𝜑 → 𝐴 ∈ ℝ+) | |
| 2 | 1 | rpred 9771 | . 2 ⊢ (𝜑 → 𝐴 ∈ ℝ) |
| 3 | 2 | recnd 8055 | 1 ⊢ (𝜑 → 𝐴 ∈ ℂ) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∈ wcel 2167 ℂcc 7877 ℝ+crp 9728 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 ax-resscn 7971 |
| This theorem depends on definitions: df-bi 117 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-rab 2484 df-in 3163 df-ss 3170 df-rp 9729 |
| This theorem is referenced by: rpcnne0d 9781 ltaddrp2d 9806 iccf1o 10079 bcp1nk 10854 bcpasc 10858 cvg1nlemcxze 11147 cvg1nlemres 11150 resqrexlemdec 11176 resqrexlemlo 11178 resqrexlemcalc2 11180 resqrexlemcalc3 11181 resqrexlemnm 11183 resqrexlemcvg 11184 resqrexlemoverl 11186 sqrtdiv 11207 absdivap 11235 bdtrilem 11404 isumrpcl 11659 expcnvap0 11667 absgtap 11675 cvgratz 11697 mertenslemi1 11700 effsumlt 11857 pythagtriplem12 12444 pythagtriplem14 12446 pythagtriplem16 12448 limcimolemlt 14900 rpdivcxp 15147 rpcxple2 15154 rpcxplt2 15155 rpcxpsqrt 15158 rpabscxpbnd 15176 logbgcd1irr 15203 iooref1o 15678 trilpolemclim 15680 trilpolemisumle 15682 trilpolemeq1 15684 trilpolemlt1 15685 |
| Copyright terms: Public domain | W3C validator |