| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > rpcnd | GIF version | ||
| Description: A positive real is a complex number. (Contributed by Mario Carneiro, 28-May-2016.) |
| Ref | Expression |
|---|---|
| rpred.1 | ⊢ (𝜑 → 𝐴 ∈ ℝ+) |
| Ref | Expression |
|---|---|
| rpcnd | ⊢ (𝜑 → 𝐴 ∈ ℂ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rpred.1 | . . 3 ⊢ (𝜑 → 𝐴 ∈ ℝ+) | |
| 2 | 1 | rpred 9860 | . 2 ⊢ (𝜑 → 𝐴 ∈ ℝ) |
| 3 | 2 | recnd 8143 | 1 ⊢ (𝜑 → 𝐴 ∈ ℂ) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∈ wcel 2180 ℂcc 7965 ℝ+crp 9817 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 713 ax-5 1473 ax-7 1474 ax-gen 1475 ax-ie1 1519 ax-ie2 1520 ax-8 1530 ax-10 1531 ax-11 1532 ax-i12 1533 ax-bndl 1535 ax-4 1536 ax-17 1552 ax-i9 1556 ax-ial 1560 ax-i5r 1561 ax-ext 2191 ax-resscn 8059 |
| This theorem depends on definitions: df-bi 117 df-nf 1487 df-sb 1789 df-clab 2196 df-cleq 2202 df-clel 2205 df-nfc 2341 df-rab 2497 df-in 3183 df-ss 3190 df-rp 9818 |
| This theorem is referenced by: rpcnne0d 9870 ltaddrp2d 9895 iccf1o 10168 bcp1nk 10951 bcpasc 10955 cvg1nlemcxze 11459 cvg1nlemres 11462 resqrexlemdec 11488 resqrexlemlo 11490 resqrexlemcalc2 11492 resqrexlemcalc3 11493 resqrexlemnm 11495 resqrexlemcvg 11496 resqrexlemoverl 11498 sqrtdiv 11519 absdivap 11547 bdtrilem 11716 isumrpcl 11971 expcnvap0 11979 absgtap 11987 cvgratz 12009 mertenslemi1 12012 effsumlt 12169 bitsmod 12433 pythagtriplem12 12764 pythagtriplem14 12766 pythagtriplem16 12768 limcimolemlt 15303 rpdivcxp 15550 rpcxple2 15557 rpcxplt2 15558 rpcxpsqrt 15561 rpabscxpbnd 15579 logbgcd1irr 15606 iooref1o 16313 trilpolemclim 16315 trilpolemisumle 16317 trilpolemeq1 16319 trilpolemlt1 16320 |
| Copyright terms: Public domain | W3C validator |