ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  caucvgprlemopu GIF version

Theorem caucvgprlemopu 7380
Description: Lemma for caucvgpr 7391. The upper cut of the putative limit is open. (Contributed by Jim Kingdon, 20-Oct-2020.)
Hypotheses
Ref Expression
caucvgpr.f (𝜑𝐹:NQ)
caucvgpr.cau (𝜑 → ∀𝑛N𝑘N (𝑛 <N 𝑘 → ((𝐹𝑛) <Q ((𝐹𝑘) +Q (*Q‘[⟨𝑛, 1o⟩] ~Q )) ∧ (𝐹𝑘) <Q ((𝐹𝑛) +Q (*Q‘[⟨𝑛, 1o⟩] ~Q )))))
caucvgpr.bnd (𝜑 → ∀𝑗N 𝐴 <Q (𝐹𝑗))
caucvgpr.lim 𝐿 = ⟨{𝑙Q ∣ ∃𝑗N (𝑙 +Q (*Q‘[⟨𝑗, 1o⟩] ~Q )) <Q (𝐹𝑗)}, {𝑢Q ∣ ∃𝑗N ((𝐹𝑗) +Q (*Q‘[⟨𝑗, 1o⟩] ~Q )) <Q 𝑢}⟩
Assertion
Ref Expression
caucvgprlemopu ((𝜑𝑟 ∈ (2nd𝐿)) → ∃𝑠Q (𝑠 <Q 𝑟𝑠 ∈ (2nd𝐿)))
Distinct variable groups:   𝐴,𝑗   𝐹,𝑙,𝑟,𝑠   𝑢,𝐹   𝑗,𝐿,𝑟,𝑠   𝑗,𝑙,𝑠   𝜑,𝑗,𝑟,𝑠   𝑢,𝑗,𝑟,𝑠
Allowed substitution hints:   𝜑(𝑢,𝑘,𝑛,𝑙)   𝐴(𝑢,𝑘,𝑛,𝑠,𝑟,𝑙)   𝐹(𝑗,𝑘,𝑛)   𝐿(𝑢,𝑘,𝑛,𝑙)

Proof of Theorem caucvgprlemopu
StepHypRef Expression
1 breq2 3879 . . . . . 6 (𝑢 = 𝑟 → (((𝐹𝑗) +Q (*Q‘[⟨𝑗, 1o⟩] ~Q )) <Q 𝑢 ↔ ((𝐹𝑗) +Q (*Q‘[⟨𝑗, 1o⟩] ~Q )) <Q 𝑟))
21rexbidv 2397 . . . . 5 (𝑢 = 𝑟 → (∃𝑗N ((𝐹𝑗) +Q (*Q‘[⟨𝑗, 1o⟩] ~Q )) <Q 𝑢 ↔ ∃𝑗N ((𝐹𝑗) +Q (*Q‘[⟨𝑗, 1o⟩] ~Q )) <Q 𝑟))
3 caucvgpr.lim . . . . . . 7 𝐿 = ⟨{𝑙Q ∣ ∃𝑗N (𝑙 +Q (*Q‘[⟨𝑗, 1o⟩] ~Q )) <Q (𝐹𝑗)}, {𝑢Q ∣ ∃𝑗N ((𝐹𝑗) +Q (*Q‘[⟨𝑗, 1o⟩] ~Q )) <Q 𝑢}⟩
43fveq2i 5356 . . . . . 6 (2nd𝐿) = (2nd ‘⟨{𝑙Q ∣ ∃𝑗N (𝑙 +Q (*Q‘[⟨𝑗, 1o⟩] ~Q )) <Q (𝐹𝑗)}, {𝑢Q ∣ ∃𝑗N ((𝐹𝑗) +Q (*Q‘[⟨𝑗, 1o⟩] ~Q )) <Q 𝑢}⟩)
5 nqex 7072 . . . . . . . 8 Q ∈ V
65rabex 4012 . . . . . . 7 {𝑙Q ∣ ∃𝑗N (𝑙 +Q (*Q‘[⟨𝑗, 1o⟩] ~Q )) <Q (𝐹𝑗)} ∈ V
75rabex 4012 . . . . . . 7 {𝑢Q ∣ ∃𝑗N ((𝐹𝑗) +Q (*Q‘[⟨𝑗, 1o⟩] ~Q )) <Q 𝑢} ∈ V
86, 7op2nd 5976 . . . . . 6 (2nd ‘⟨{𝑙Q ∣ ∃𝑗N (𝑙 +Q (*Q‘[⟨𝑗, 1o⟩] ~Q )) <Q (𝐹𝑗)}, {𝑢Q ∣ ∃𝑗N ((𝐹𝑗) +Q (*Q‘[⟨𝑗, 1o⟩] ~Q )) <Q 𝑢}⟩) = {𝑢Q ∣ ∃𝑗N ((𝐹𝑗) +Q (*Q‘[⟨𝑗, 1o⟩] ~Q )) <Q 𝑢}
94, 8eqtri 2120 . . . . 5 (2nd𝐿) = {𝑢Q ∣ ∃𝑗N ((𝐹𝑗) +Q (*Q‘[⟨𝑗, 1o⟩] ~Q )) <Q 𝑢}
102, 9elrab2 2796 . . . 4 (𝑟 ∈ (2nd𝐿) ↔ (𝑟Q ∧ ∃𝑗N ((𝐹𝑗) +Q (*Q‘[⟨𝑗, 1o⟩] ~Q )) <Q 𝑟))
1110simprbi 271 . . 3 (𝑟 ∈ (2nd𝐿) → ∃𝑗N ((𝐹𝑗) +Q (*Q‘[⟨𝑗, 1o⟩] ~Q )) <Q 𝑟)
1211adantl 273 . 2 ((𝜑𝑟 ∈ (2nd𝐿)) → ∃𝑗N ((𝐹𝑗) +Q (*Q‘[⟨𝑗, 1o⟩] ~Q )) <Q 𝑟)
13 simprr 502 . . . 4 (((𝜑𝑟 ∈ (2nd𝐿)) ∧ (𝑗N ∧ ((𝐹𝑗) +Q (*Q‘[⟨𝑗, 1o⟩] ~Q )) <Q 𝑟)) → ((𝐹𝑗) +Q (*Q‘[⟨𝑗, 1o⟩] ~Q )) <Q 𝑟)
14 ltbtwnnqq 7124 . . . 4 (((𝐹𝑗) +Q (*Q‘[⟨𝑗, 1o⟩] ~Q )) <Q 𝑟 ↔ ∃𝑠Q (((𝐹𝑗) +Q (*Q‘[⟨𝑗, 1o⟩] ~Q )) <Q 𝑠𝑠 <Q 𝑟))
1513, 14sylib 121 . . 3 (((𝜑𝑟 ∈ (2nd𝐿)) ∧ (𝑗N ∧ ((𝐹𝑗) +Q (*Q‘[⟨𝑗, 1o⟩] ~Q )) <Q 𝑟)) → ∃𝑠Q (((𝐹𝑗) +Q (*Q‘[⟨𝑗, 1o⟩] ~Q )) <Q 𝑠𝑠 <Q 𝑟))
16 simprr 502 . . . . . 6 (((((𝜑𝑟 ∈ (2nd𝐿)) ∧ (𝑗N ∧ ((𝐹𝑗) +Q (*Q‘[⟨𝑗, 1o⟩] ~Q )) <Q 𝑟)) ∧ 𝑠Q) ∧ (((𝐹𝑗) +Q (*Q‘[⟨𝑗, 1o⟩] ~Q )) <Q 𝑠𝑠 <Q 𝑟)) → 𝑠 <Q 𝑟)
17 simplr 500 . . . . . . 7 (((((𝜑𝑟 ∈ (2nd𝐿)) ∧ (𝑗N ∧ ((𝐹𝑗) +Q (*Q‘[⟨𝑗, 1o⟩] ~Q )) <Q 𝑟)) ∧ 𝑠Q) ∧ (((𝐹𝑗) +Q (*Q‘[⟨𝑗, 1o⟩] ~Q )) <Q 𝑠𝑠 <Q 𝑟)) → 𝑠Q)
18 simplrl 505 . . . . . . . . 9 ((((𝜑𝑟 ∈ (2nd𝐿)) ∧ (𝑗N ∧ ((𝐹𝑗) +Q (*Q‘[⟨𝑗, 1o⟩] ~Q )) <Q 𝑟)) ∧ 𝑠Q) → 𝑗N)
1918adantr 272 . . . . . . . 8 (((((𝜑𝑟 ∈ (2nd𝐿)) ∧ (𝑗N ∧ ((𝐹𝑗) +Q (*Q‘[⟨𝑗, 1o⟩] ~Q )) <Q 𝑟)) ∧ 𝑠Q) ∧ (((𝐹𝑗) +Q (*Q‘[⟨𝑗, 1o⟩] ~Q )) <Q 𝑠𝑠 <Q 𝑟)) → 𝑗N)
20 simprl 501 . . . . . . . 8 (((((𝜑𝑟 ∈ (2nd𝐿)) ∧ (𝑗N ∧ ((𝐹𝑗) +Q (*Q‘[⟨𝑗, 1o⟩] ~Q )) <Q 𝑟)) ∧ 𝑠Q) ∧ (((𝐹𝑗) +Q (*Q‘[⟨𝑗, 1o⟩] ~Q )) <Q 𝑠𝑠 <Q 𝑟)) → ((𝐹𝑗) +Q (*Q‘[⟨𝑗, 1o⟩] ~Q )) <Q 𝑠)
21 rspe 2440 . . . . . . . 8 ((𝑗N ∧ ((𝐹𝑗) +Q (*Q‘[⟨𝑗, 1o⟩] ~Q )) <Q 𝑠) → ∃𝑗N ((𝐹𝑗) +Q (*Q‘[⟨𝑗, 1o⟩] ~Q )) <Q 𝑠)
2219, 20, 21syl2anc 406 . . . . . . 7 (((((𝜑𝑟 ∈ (2nd𝐿)) ∧ (𝑗N ∧ ((𝐹𝑗) +Q (*Q‘[⟨𝑗, 1o⟩] ~Q )) <Q 𝑟)) ∧ 𝑠Q) ∧ (((𝐹𝑗) +Q (*Q‘[⟨𝑗, 1o⟩] ~Q )) <Q 𝑠𝑠 <Q 𝑟)) → ∃𝑗N ((𝐹𝑗) +Q (*Q‘[⟨𝑗, 1o⟩] ~Q )) <Q 𝑠)
23 breq2 3879 . . . . . . . . 9 (𝑢 = 𝑠 → (((𝐹𝑗) +Q (*Q‘[⟨𝑗, 1o⟩] ~Q )) <Q 𝑢 ↔ ((𝐹𝑗) +Q (*Q‘[⟨𝑗, 1o⟩] ~Q )) <Q 𝑠))
2423rexbidv 2397 . . . . . . . 8 (𝑢 = 𝑠 → (∃𝑗N ((𝐹𝑗) +Q (*Q‘[⟨𝑗, 1o⟩] ~Q )) <Q 𝑢 ↔ ∃𝑗N ((𝐹𝑗) +Q (*Q‘[⟨𝑗, 1o⟩] ~Q )) <Q 𝑠))
2524, 9elrab2 2796 . . . . . . 7 (𝑠 ∈ (2nd𝐿) ↔ (𝑠Q ∧ ∃𝑗N ((𝐹𝑗) +Q (*Q‘[⟨𝑗, 1o⟩] ~Q )) <Q 𝑠))
2617, 22, 25sylanbrc 411 . . . . . 6 (((((𝜑𝑟 ∈ (2nd𝐿)) ∧ (𝑗N ∧ ((𝐹𝑗) +Q (*Q‘[⟨𝑗, 1o⟩] ~Q )) <Q 𝑟)) ∧ 𝑠Q) ∧ (((𝐹𝑗) +Q (*Q‘[⟨𝑗, 1o⟩] ~Q )) <Q 𝑠𝑠 <Q 𝑟)) → 𝑠 ∈ (2nd𝐿))
2716, 26jca 302 . . . . 5 (((((𝜑𝑟 ∈ (2nd𝐿)) ∧ (𝑗N ∧ ((𝐹𝑗) +Q (*Q‘[⟨𝑗, 1o⟩] ~Q )) <Q 𝑟)) ∧ 𝑠Q) ∧ (((𝐹𝑗) +Q (*Q‘[⟨𝑗, 1o⟩] ~Q )) <Q 𝑠𝑠 <Q 𝑟)) → (𝑠 <Q 𝑟𝑠 ∈ (2nd𝐿)))
2827ex 114 . . . 4 ((((𝜑𝑟 ∈ (2nd𝐿)) ∧ (𝑗N ∧ ((𝐹𝑗) +Q (*Q‘[⟨𝑗, 1o⟩] ~Q )) <Q 𝑟)) ∧ 𝑠Q) → ((((𝐹𝑗) +Q (*Q‘[⟨𝑗, 1o⟩] ~Q )) <Q 𝑠𝑠 <Q 𝑟) → (𝑠 <Q 𝑟𝑠 ∈ (2nd𝐿))))
2928reximdva 2493 . . 3 (((𝜑𝑟 ∈ (2nd𝐿)) ∧ (𝑗N ∧ ((𝐹𝑗) +Q (*Q‘[⟨𝑗, 1o⟩] ~Q )) <Q 𝑟)) → (∃𝑠Q (((𝐹𝑗) +Q (*Q‘[⟨𝑗, 1o⟩] ~Q )) <Q 𝑠𝑠 <Q 𝑟) → ∃𝑠Q (𝑠 <Q 𝑟𝑠 ∈ (2nd𝐿))))
3015, 29mpd 13 . 2 (((𝜑𝑟 ∈ (2nd𝐿)) ∧ (𝑗N ∧ ((𝐹𝑗) +Q (*Q‘[⟨𝑗, 1o⟩] ~Q )) <Q 𝑟)) → ∃𝑠Q (𝑠 <Q 𝑟𝑠 ∈ (2nd𝐿)))
3112, 30rexlimddv 2513 1 ((𝜑𝑟 ∈ (2nd𝐿)) → ∃𝑠Q (𝑠 <Q 𝑟𝑠 ∈ (2nd𝐿)))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103   = wceq 1299  wcel 1448  wral 2375  wrex 2376  {crab 2379  cop 3477   class class class wbr 3875  wf 5055  cfv 5059  (class class class)co 5706  2nd c2nd 5968  1oc1o 6236  [cec 6357  Ncnpi 6981   <N clti 6984   ~Q ceq 6988  Qcnq 6989   +Q cplq 6991  *Qcrq 6993   <Q cltq 6994
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 584  ax-in2 585  ax-io 671  ax-5 1391  ax-7 1392  ax-gen 1393  ax-ie1 1437  ax-ie2 1438  ax-8 1450  ax-10 1451  ax-11 1452  ax-i12 1453  ax-bndl 1454  ax-4 1455  ax-13 1459  ax-14 1460  ax-17 1474  ax-i9 1478  ax-ial 1482  ax-i5r 1483  ax-ext 2082  ax-coll 3983  ax-sep 3986  ax-nul 3994  ax-pow 4038  ax-pr 4069  ax-un 4293  ax-setind 4390  ax-iinf 4440
This theorem depends on definitions:  df-bi 116  df-dc 787  df-3or 931  df-3an 932  df-tru 1302  df-fal 1305  df-nf 1405  df-sb 1704  df-eu 1963  df-mo 1964  df-clab 2087  df-cleq 2093  df-clel 2096  df-nfc 2229  df-ne 2268  df-ral 2380  df-rex 2381  df-reu 2382  df-rab 2384  df-v 2643  df-sbc 2863  df-csb 2956  df-dif 3023  df-un 3025  df-in 3027  df-ss 3034  df-nul 3311  df-pw 3459  df-sn 3480  df-pr 3481  df-op 3483  df-uni 3684  df-int 3719  df-iun 3762  df-br 3876  df-opab 3930  df-mpt 3931  df-tr 3967  df-eprel 4149  df-id 4153  df-po 4156  df-iso 4157  df-iord 4226  df-on 4228  df-suc 4231  df-iom 4443  df-xp 4483  df-rel 4484  df-cnv 4485  df-co 4486  df-dm 4487  df-rn 4488  df-res 4489  df-ima 4490  df-iota 5024  df-fun 5061  df-fn 5062  df-f 5063  df-f1 5064  df-fo 5065  df-f1o 5066  df-fv 5067  df-ov 5709  df-oprab 5710  df-mpo 5711  df-1st 5969  df-2nd 5970  df-recs 6132  df-irdg 6197  df-1o 6243  df-oadd 6247  df-omul 6248  df-er 6359  df-ec 6361  df-qs 6365  df-ni 7013  df-pli 7014  df-mi 7015  df-lti 7016  df-plpq 7053  df-mpq 7054  df-enq 7056  df-nqqs 7057  df-plqqs 7058  df-mqqs 7059  df-1nqqs 7060  df-rq 7061  df-ltnqqs 7062
This theorem is referenced by:  caucvgprlemrnd  7382
  Copyright terms: Public domain W3C validator