Proof of Theorem caucvgprlemopu
| Step | Hyp | Ref
| Expression |
| 1 | | breq2 4038 |
. . . . . 6
⊢ (𝑢 = 𝑟 → (((𝐹‘𝑗) +Q
(*Q‘[〈𝑗, 1o〉]
~Q )) <Q 𝑢 ↔ ((𝐹‘𝑗) +Q
(*Q‘[〈𝑗, 1o〉]
~Q )) <Q 𝑟)) |
| 2 | 1 | rexbidv 2498 |
. . . . 5
⊢ (𝑢 = 𝑟 → (∃𝑗 ∈ N ((𝐹‘𝑗) +Q
(*Q‘[〈𝑗, 1o〉]
~Q )) <Q 𝑢 ↔ ∃𝑗 ∈ N ((𝐹‘𝑗) +Q
(*Q‘[〈𝑗, 1o〉]
~Q )) <Q 𝑟)) |
| 3 | | caucvgpr.lim |
. . . . . . 7
⊢ 𝐿 = 〈{𝑙 ∈ Q ∣ ∃𝑗 ∈ N (𝑙 +Q
(*Q‘[〈𝑗, 1o〉]
~Q )) <Q (𝐹‘𝑗)}, {𝑢 ∈ Q ∣ ∃𝑗 ∈ N ((𝐹‘𝑗) +Q
(*Q‘[〈𝑗, 1o〉]
~Q )) <Q 𝑢}〉 |
| 4 | 3 | fveq2i 5564 |
. . . . . 6
⊢
(2nd ‘𝐿) = (2nd ‘〈{𝑙 ∈ Q ∣
∃𝑗 ∈
N (𝑙
+Q (*Q‘[〈𝑗, 1o〉]
~Q )) <Q (𝐹‘𝑗)}, {𝑢 ∈ Q ∣ ∃𝑗 ∈ N ((𝐹‘𝑗) +Q
(*Q‘[〈𝑗, 1o〉]
~Q )) <Q 𝑢}〉) |
| 5 | | nqex 7447 |
. . . . . . . 8
⊢
Q ∈ V |
| 6 | 5 | rabex 4178 |
. . . . . . 7
⊢ {𝑙 ∈ Q ∣
∃𝑗 ∈
N (𝑙
+Q (*Q‘[〈𝑗, 1o〉]
~Q )) <Q (𝐹‘𝑗)} ∈ V |
| 7 | 5 | rabex 4178 |
. . . . . . 7
⊢ {𝑢 ∈ Q ∣
∃𝑗 ∈
N ((𝐹‘𝑗) +Q
(*Q‘[〈𝑗, 1o〉]
~Q )) <Q 𝑢} ∈ V |
| 8 | 6, 7 | op2nd 6214 |
. . . . . 6
⊢
(2nd ‘〈{𝑙 ∈ Q ∣ ∃𝑗 ∈ N (𝑙 +Q
(*Q‘[〈𝑗, 1o〉]
~Q )) <Q (𝐹‘𝑗)}, {𝑢 ∈ Q ∣ ∃𝑗 ∈ N ((𝐹‘𝑗) +Q
(*Q‘[〈𝑗, 1o〉]
~Q )) <Q 𝑢}〉) = {𝑢 ∈ Q ∣ ∃𝑗 ∈ N ((𝐹‘𝑗) +Q
(*Q‘[〈𝑗, 1o〉]
~Q )) <Q 𝑢} |
| 9 | 4, 8 | eqtri 2217 |
. . . . 5
⊢
(2nd ‘𝐿) = {𝑢 ∈ Q ∣ ∃𝑗 ∈ N ((𝐹‘𝑗) +Q
(*Q‘[〈𝑗, 1o〉]
~Q )) <Q 𝑢} |
| 10 | 2, 9 | elrab2 2923 |
. . . 4
⊢ (𝑟 ∈ (2nd
‘𝐿) ↔ (𝑟 ∈ Q ∧
∃𝑗 ∈
N ((𝐹‘𝑗) +Q
(*Q‘[〈𝑗, 1o〉]
~Q )) <Q 𝑟)) |
| 11 | 10 | simprbi 275 |
. . 3
⊢ (𝑟 ∈ (2nd
‘𝐿) →
∃𝑗 ∈
N ((𝐹‘𝑗) +Q
(*Q‘[〈𝑗, 1o〉]
~Q )) <Q 𝑟) |
| 12 | 11 | adantl 277 |
. 2
⊢ ((𝜑 ∧ 𝑟 ∈ (2nd ‘𝐿)) → ∃𝑗 ∈ N ((𝐹‘𝑗) +Q
(*Q‘[〈𝑗, 1o〉]
~Q )) <Q 𝑟) |
| 13 | | simprr 531 |
. . . 4
⊢ (((𝜑 ∧ 𝑟 ∈ (2nd ‘𝐿)) ∧ (𝑗 ∈ N ∧ ((𝐹‘𝑗) +Q
(*Q‘[〈𝑗, 1o〉]
~Q )) <Q 𝑟)) → ((𝐹‘𝑗) +Q
(*Q‘[〈𝑗, 1o〉]
~Q )) <Q 𝑟) |
| 14 | | ltbtwnnqq 7499 |
. . . 4
⊢ (((𝐹‘𝑗) +Q
(*Q‘[〈𝑗, 1o〉]
~Q )) <Q 𝑟 ↔ ∃𝑠 ∈ Q (((𝐹‘𝑗) +Q
(*Q‘[〈𝑗, 1o〉]
~Q )) <Q 𝑠 ∧ 𝑠 <Q 𝑟)) |
| 15 | 13, 14 | sylib 122 |
. . 3
⊢ (((𝜑 ∧ 𝑟 ∈ (2nd ‘𝐿)) ∧ (𝑗 ∈ N ∧ ((𝐹‘𝑗) +Q
(*Q‘[〈𝑗, 1o〉]
~Q )) <Q 𝑟)) → ∃𝑠 ∈ Q (((𝐹‘𝑗) +Q
(*Q‘[〈𝑗, 1o〉]
~Q )) <Q 𝑠 ∧ 𝑠 <Q 𝑟)) |
| 16 | | simprr 531 |
. . . . . 6
⊢
(((((𝜑 ∧ 𝑟 ∈ (2nd
‘𝐿)) ∧ (𝑗 ∈ N ∧
((𝐹‘𝑗) +Q
(*Q‘[〈𝑗, 1o〉]
~Q )) <Q 𝑟)) ∧ 𝑠 ∈ Q) ∧ (((𝐹‘𝑗) +Q
(*Q‘[〈𝑗, 1o〉]
~Q )) <Q 𝑠 ∧ 𝑠 <Q 𝑟)) → 𝑠 <Q 𝑟) |
| 17 | | simplr 528 |
. . . . . . 7
⊢
(((((𝜑 ∧ 𝑟 ∈ (2nd
‘𝐿)) ∧ (𝑗 ∈ N ∧
((𝐹‘𝑗) +Q
(*Q‘[〈𝑗, 1o〉]
~Q )) <Q 𝑟)) ∧ 𝑠 ∈ Q) ∧ (((𝐹‘𝑗) +Q
(*Q‘[〈𝑗, 1o〉]
~Q )) <Q 𝑠 ∧ 𝑠 <Q 𝑟)) → 𝑠 ∈ Q) |
| 18 | | simplrl 535 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ 𝑟 ∈ (2nd ‘𝐿)) ∧ (𝑗 ∈ N ∧ ((𝐹‘𝑗) +Q
(*Q‘[〈𝑗, 1o〉]
~Q )) <Q 𝑟)) ∧ 𝑠 ∈ Q) → 𝑗 ∈
N) |
| 19 | 18 | adantr 276 |
. . . . . . . 8
⊢
(((((𝜑 ∧ 𝑟 ∈ (2nd
‘𝐿)) ∧ (𝑗 ∈ N ∧
((𝐹‘𝑗) +Q
(*Q‘[〈𝑗, 1o〉]
~Q )) <Q 𝑟)) ∧ 𝑠 ∈ Q) ∧ (((𝐹‘𝑗) +Q
(*Q‘[〈𝑗, 1o〉]
~Q )) <Q 𝑠 ∧ 𝑠 <Q 𝑟)) → 𝑗 ∈ N) |
| 20 | | simprl 529 |
. . . . . . . 8
⊢
(((((𝜑 ∧ 𝑟 ∈ (2nd
‘𝐿)) ∧ (𝑗 ∈ N ∧
((𝐹‘𝑗) +Q
(*Q‘[〈𝑗, 1o〉]
~Q )) <Q 𝑟)) ∧ 𝑠 ∈ Q) ∧ (((𝐹‘𝑗) +Q
(*Q‘[〈𝑗, 1o〉]
~Q )) <Q 𝑠 ∧ 𝑠 <Q 𝑟)) → ((𝐹‘𝑗) +Q
(*Q‘[〈𝑗, 1o〉]
~Q )) <Q 𝑠) |
| 21 | | rspe 2546 |
. . . . . . . 8
⊢ ((𝑗 ∈ N ∧
((𝐹‘𝑗) +Q
(*Q‘[〈𝑗, 1o〉]
~Q )) <Q 𝑠) → ∃𝑗 ∈ N ((𝐹‘𝑗) +Q
(*Q‘[〈𝑗, 1o〉]
~Q )) <Q 𝑠) |
| 22 | 19, 20, 21 | syl2anc 411 |
. . . . . . 7
⊢
(((((𝜑 ∧ 𝑟 ∈ (2nd
‘𝐿)) ∧ (𝑗 ∈ N ∧
((𝐹‘𝑗) +Q
(*Q‘[〈𝑗, 1o〉]
~Q )) <Q 𝑟)) ∧ 𝑠 ∈ Q) ∧ (((𝐹‘𝑗) +Q
(*Q‘[〈𝑗, 1o〉]
~Q )) <Q 𝑠 ∧ 𝑠 <Q 𝑟)) → ∃𝑗 ∈ N ((𝐹‘𝑗) +Q
(*Q‘[〈𝑗, 1o〉]
~Q )) <Q 𝑠) |
| 23 | | breq2 4038 |
. . . . . . . . 9
⊢ (𝑢 = 𝑠 → (((𝐹‘𝑗) +Q
(*Q‘[〈𝑗, 1o〉]
~Q )) <Q 𝑢 ↔ ((𝐹‘𝑗) +Q
(*Q‘[〈𝑗, 1o〉]
~Q )) <Q 𝑠)) |
| 24 | 23 | rexbidv 2498 |
. . . . . . . 8
⊢ (𝑢 = 𝑠 → (∃𝑗 ∈ N ((𝐹‘𝑗) +Q
(*Q‘[〈𝑗, 1o〉]
~Q )) <Q 𝑢 ↔ ∃𝑗 ∈ N ((𝐹‘𝑗) +Q
(*Q‘[〈𝑗, 1o〉]
~Q )) <Q 𝑠)) |
| 25 | 24, 9 | elrab2 2923 |
. . . . . . 7
⊢ (𝑠 ∈ (2nd
‘𝐿) ↔ (𝑠 ∈ Q ∧
∃𝑗 ∈
N ((𝐹‘𝑗) +Q
(*Q‘[〈𝑗, 1o〉]
~Q )) <Q 𝑠)) |
| 26 | 17, 22, 25 | sylanbrc 417 |
. . . . . 6
⊢
(((((𝜑 ∧ 𝑟 ∈ (2nd
‘𝐿)) ∧ (𝑗 ∈ N ∧
((𝐹‘𝑗) +Q
(*Q‘[〈𝑗, 1o〉]
~Q )) <Q 𝑟)) ∧ 𝑠 ∈ Q) ∧ (((𝐹‘𝑗) +Q
(*Q‘[〈𝑗, 1o〉]
~Q )) <Q 𝑠 ∧ 𝑠 <Q 𝑟)) → 𝑠 ∈ (2nd ‘𝐿)) |
| 27 | 16, 26 | jca 306 |
. . . . 5
⊢
(((((𝜑 ∧ 𝑟 ∈ (2nd
‘𝐿)) ∧ (𝑗 ∈ N ∧
((𝐹‘𝑗) +Q
(*Q‘[〈𝑗, 1o〉]
~Q )) <Q 𝑟)) ∧ 𝑠 ∈ Q) ∧ (((𝐹‘𝑗) +Q
(*Q‘[〈𝑗, 1o〉]
~Q )) <Q 𝑠 ∧ 𝑠 <Q 𝑟)) → (𝑠 <Q 𝑟 ∧ 𝑠 ∈ (2nd ‘𝐿))) |
| 28 | 27 | ex 115 |
. . . 4
⊢ ((((𝜑 ∧ 𝑟 ∈ (2nd ‘𝐿)) ∧ (𝑗 ∈ N ∧ ((𝐹‘𝑗) +Q
(*Q‘[〈𝑗, 1o〉]
~Q )) <Q 𝑟)) ∧ 𝑠 ∈ Q) → ((((𝐹‘𝑗) +Q
(*Q‘[〈𝑗, 1o〉]
~Q )) <Q 𝑠 ∧ 𝑠 <Q 𝑟) → (𝑠 <Q 𝑟 ∧ 𝑠 ∈ (2nd ‘𝐿)))) |
| 29 | 28 | reximdva 2599 |
. . 3
⊢ (((𝜑 ∧ 𝑟 ∈ (2nd ‘𝐿)) ∧ (𝑗 ∈ N ∧ ((𝐹‘𝑗) +Q
(*Q‘[〈𝑗, 1o〉]
~Q )) <Q 𝑟)) → (∃𝑠 ∈ Q (((𝐹‘𝑗) +Q
(*Q‘[〈𝑗, 1o〉]
~Q )) <Q 𝑠 ∧ 𝑠 <Q 𝑟) → ∃𝑠 ∈ Q (𝑠 <Q
𝑟 ∧ 𝑠 ∈ (2nd ‘𝐿)))) |
| 30 | 15, 29 | mpd 13 |
. 2
⊢ (((𝜑 ∧ 𝑟 ∈ (2nd ‘𝐿)) ∧ (𝑗 ∈ N ∧ ((𝐹‘𝑗) +Q
(*Q‘[〈𝑗, 1o〉]
~Q )) <Q 𝑟)) → ∃𝑠 ∈ Q (𝑠 <Q
𝑟 ∧ 𝑠 ∈ (2nd ‘𝐿))) |
| 31 | 12, 30 | rexlimddv 2619 |
1
⊢ ((𝜑 ∧ 𝑟 ∈ (2nd ‘𝐿)) → ∃𝑠 ∈ Q (𝑠 <Q
𝑟 ∧ 𝑠 ∈ (2nd ‘𝐿))) |