ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  caucvgprprlem2 GIF version

Theorem caucvgprprlem2 7865
Description: Lemma for caucvgprpr 7867. Part of showing the putative limit to be a limit. (Contributed by Jim Kingdon, 25-Nov-2020.)
Hypotheses
Ref Expression
caucvgprpr.f (𝜑𝐹:NP)
caucvgprpr.cau (𝜑 → ∀𝑛N𝑘N (𝑛 <N 𝑘 → ((𝐹𝑛)<P ((𝐹𝑘) +P ⟨{𝑙𝑙 <Q (*Q‘[⟨𝑛, 1o⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨𝑛, 1o⟩] ~Q ) <Q 𝑢}⟩) ∧ (𝐹𝑘)<P ((𝐹𝑛) +P ⟨{𝑙𝑙 <Q (*Q‘[⟨𝑛, 1o⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨𝑛, 1o⟩] ~Q ) <Q 𝑢}⟩))))
caucvgprpr.bnd (𝜑 → ∀𝑚N 𝐴<P (𝐹𝑚))
caucvgprpr.lim 𝐿 = ⟨{𝑙Q ∣ ∃𝑟N ⟨{𝑝𝑝 <Q (𝑙 +Q (*Q‘[⟨𝑟, 1o⟩] ~Q ))}, {𝑞 ∣ (𝑙 +Q (*Q‘[⟨𝑟, 1o⟩] ~Q )) <Q 𝑞}⟩<P (𝐹𝑟)}, {𝑢Q ∣ ∃𝑟N ((𝐹𝑟) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝑟, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝑟, 1o⟩] ~Q ) <Q 𝑞}⟩)<P ⟨{𝑝𝑝 <Q 𝑢}, {𝑞𝑢 <Q 𝑞}⟩}⟩
caucvgprprlemlim.q (𝜑𝑄P)
caucvgprprlemlim.jk (𝜑𝐽 <N 𝐾)
caucvgprprlemlim.jkq (𝜑 → ⟨{𝑙𝑙 <Q (*Q‘[⟨𝐽, 1o⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨𝐽, 1o⟩] ~Q ) <Q 𝑢}⟩<P 𝑄)
Assertion
Ref Expression
caucvgprprlem2 (𝜑𝐿<P ((𝐹𝐾) +P 𝑄))
Distinct variable groups:   𝐴,𝑚   𝑚,𝐹   𝐴,𝑟   𝐹,𝑟,𝑢,𝑙,𝑘   𝑛,𝐹   𝐾,𝑙,𝑝,𝑢,𝑞,𝑟   𝐽,𝑙,𝑢   𝑘,𝐿   𝜑,𝑟   𝑘,𝑛   𝑘,𝑟   𝑞,𝑙,𝑟   𝑚,𝑟   𝑘,𝑝,𝑞   𝑢,𝑛,𝑙,𝑘
Allowed substitution hints:   𝜑(𝑢,𝑘,𝑚,𝑛,𝑞,𝑝,𝑙)   𝐴(𝑢,𝑘,𝑛,𝑞,𝑝,𝑙)   𝑄(𝑢,𝑘,𝑚,𝑛,𝑟,𝑞,𝑝,𝑙)   𝐹(𝑞,𝑝)   𝐽(𝑘,𝑚,𝑛,𝑟,𝑞,𝑝)   𝐾(𝑘,𝑚,𝑛)   𝐿(𝑢,𝑚,𝑛,𝑟,𝑞,𝑝,𝑙)

Proof of Theorem caucvgprprlem2
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 caucvgprprlemlim.jk . . . . 5 (𝜑𝐽 <N 𝐾)
2 caucvgprprlemlim.jkq . . . . 5 (𝜑 → ⟨{𝑙𝑙 <Q (*Q‘[⟨𝐽, 1o⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨𝐽, 1o⟩] ~Q ) <Q 𝑢}⟩<P 𝑄)
31, 2caucvgprprlemk 7838 . . . 4 (𝜑 → ⟨{𝑙𝑙 <Q (*Q‘[⟨𝐾, 1o⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨𝐾, 1o⟩] ~Q ) <Q 𝑢}⟩<P 𝑄)
4 ltrelpi 7479 . . . . . . . . . 10 <N ⊆ (N × N)
54brel 4748 . . . . . . . . 9 (𝐽 <N 𝐾 → (𝐽N𝐾N))
61, 5syl 14 . . . . . . . 8 (𝜑 → (𝐽N𝐾N))
76simprd 114 . . . . . . 7 (𝜑𝐾N)
8 nnnq 7577 . . . . . . . 8 (𝐾N → [⟨𝐾, 1o⟩] ~QQ)
9 recclnq 7547 . . . . . . . 8 ([⟨𝐾, 1o⟩] ~QQ → (*Q‘[⟨𝐾, 1o⟩] ~Q ) ∈ Q)
108, 9syl 14 . . . . . . 7 (𝐾N → (*Q‘[⟨𝐾, 1o⟩] ~Q ) ∈ Q)
117, 10syl 14 . . . . . 6 (𝜑 → (*Q‘[⟨𝐾, 1o⟩] ~Q ) ∈ Q)
12 nqprlu 7702 . . . . . 6 ((*Q‘[⟨𝐾, 1o⟩] ~Q ) ∈ Q → ⟨{𝑙𝑙 <Q (*Q‘[⟨𝐾, 1o⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨𝐾, 1o⟩] ~Q ) <Q 𝑢}⟩ ∈ P)
1311, 12syl 14 . . . . 5 (𝜑 → ⟨{𝑙𝑙 <Q (*Q‘[⟨𝐾, 1o⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨𝐾, 1o⟩] ~Q ) <Q 𝑢}⟩ ∈ P)
14 caucvgprprlemlim.q . . . . 5 (𝜑𝑄P)
15 caucvgprpr.f . . . . . 6 (𝜑𝐹:NP)
1615, 7ffvelcdmd 5744 . . . . 5 (𝜑 → (𝐹𝐾) ∈ P)
17 ltaprg 7774 . . . . 5 ((⟨{𝑙𝑙 <Q (*Q‘[⟨𝐾, 1o⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨𝐾, 1o⟩] ~Q ) <Q 𝑢}⟩ ∈ P𝑄P ∧ (𝐹𝐾) ∈ P) → (⟨{𝑙𝑙 <Q (*Q‘[⟨𝐾, 1o⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨𝐾, 1o⟩] ~Q ) <Q 𝑢}⟩<P 𝑄 ↔ ((𝐹𝐾) +P ⟨{𝑙𝑙 <Q (*Q‘[⟨𝐾, 1o⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨𝐾, 1o⟩] ~Q ) <Q 𝑢}⟩)<P ((𝐹𝐾) +P 𝑄)))
1813, 14, 16, 17syl3anc 1252 . . . 4 (𝜑 → (⟨{𝑙𝑙 <Q (*Q‘[⟨𝐾, 1o⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨𝐾, 1o⟩] ~Q ) <Q 𝑢}⟩<P 𝑄 ↔ ((𝐹𝐾) +P ⟨{𝑙𝑙 <Q (*Q‘[⟨𝐾, 1o⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨𝐾, 1o⟩] ~Q ) <Q 𝑢}⟩)<P ((𝐹𝐾) +P 𝑄)))
193, 18mpbid 147 . . 3 (𝜑 → ((𝐹𝐾) +P ⟨{𝑙𝑙 <Q (*Q‘[⟨𝐾, 1o⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨𝐾, 1o⟩] ~Q ) <Q 𝑢}⟩)<P ((𝐹𝐾) +P 𝑄))
20 addclpr 7692 . . . . 5 (((𝐹𝐾) ∈ P ∧ ⟨{𝑙𝑙 <Q (*Q‘[⟨𝐾, 1o⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨𝐾, 1o⟩] ~Q ) <Q 𝑢}⟩ ∈ P) → ((𝐹𝐾) +P ⟨{𝑙𝑙 <Q (*Q‘[⟨𝐾, 1o⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨𝐾, 1o⟩] ~Q ) <Q 𝑢}⟩) ∈ P)
2116, 13, 20syl2anc 411 . . . 4 (𝜑 → ((𝐹𝐾) +P ⟨{𝑙𝑙 <Q (*Q‘[⟨𝐾, 1o⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨𝐾, 1o⟩] ~Q ) <Q 𝑢}⟩) ∈ P)
22 addclpr 7692 . . . . 5 (((𝐹𝐾) ∈ P𝑄P) → ((𝐹𝐾) +P 𝑄) ∈ P)
2316, 14, 22syl2anc 411 . . . 4 (𝜑 → ((𝐹𝐾) +P 𝑄) ∈ P)
24 ltdfpr 7661 . . . 4 ((((𝐹𝐾) +P ⟨{𝑙𝑙 <Q (*Q‘[⟨𝐾, 1o⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨𝐾, 1o⟩] ~Q ) <Q 𝑢}⟩) ∈ P ∧ ((𝐹𝐾) +P 𝑄) ∈ P) → (((𝐹𝐾) +P ⟨{𝑙𝑙 <Q (*Q‘[⟨𝐾, 1o⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨𝐾, 1o⟩] ~Q ) <Q 𝑢}⟩)<P ((𝐹𝐾) +P 𝑄) ↔ ∃𝑥Q (𝑥 ∈ (2nd ‘((𝐹𝐾) +P ⟨{𝑙𝑙 <Q (*Q‘[⟨𝐾, 1o⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨𝐾, 1o⟩] ~Q ) <Q 𝑢}⟩)) ∧ 𝑥 ∈ (1st ‘((𝐹𝐾) +P 𝑄)))))
2521, 23, 24syl2anc 411 . . 3 (𝜑 → (((𝐹𝐾) +P ⟨{𝑙𝑙 <Q (*Q‘[⟨𝐾, 1o⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨𝐾, 1o⟩] ~Q ) <Q 𝑢}⟩)<P ((𝐹𝐾) +P 𝑄) ↔ ∃𝑥Q (𝑥 ∈ (2nd ‘((𝐹𝐾) +P ⟨{𝑙𝑙 <Q (*Q‘[⟨𝐾, 1o⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨𝐾, 1o⟩] ~Q ) <Q 𝑢}⟩)) ∧ 𝑥 ∈ (1st ‘((𝐹𝐾) +P 𝑄)))))
2619, 25mpbid 147 . 2 (𝜑 → ∃𝑥Q (𝑥 ∈ (2nd ‘((𝐹𝐾) +P ⟨{𝑙𝑙 <Q (*Q‘[⟨𝐾, 1o⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨𝐾, 1o⟩] ~Q ) <Q 𝑢}⟩)) ∧ 𝑥 ∈ (1st ‘((𝐹𝐾) +P 𝑄))))
27 simprl 529 . . . 4 ((𝜑 ∧ (𝑥Q ∧ (𝑥 ∈ (2nd ‘((𝐹𝐾) +P ⟨{𝑙𝑙 <Q (*Q‘[⟨𝐾, 1o⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨𝐾, 1o⟩] ~Q ) <Q 𝑢}⟩)) ∧ 𝑥 ∈ (1st ‘((𝐹𝐾) +P 𝑄))))) → 𝑥Q)
287adantr 276 . . . . . 6 ((𝜑 ∧ (𝑥Q ∧ (𝑥 ∈ (2nd ‘((𝐹𝐾) +P ⟨{𝑙𝑙 <Q (*Q‘[⟨𝐾, 1o⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨𝐾, 1o⟩] ~Q ) <Q 𝑢}⟩)) ∧ 𝑥 ∈ (1st ‘((𝐹𝐾) +P 𝑄))))) → 𝐾N)
29 simprrl 539 . . . . . . . 8 ((𝜑 ∧ (𝑥Q ∧ (𝑥 ∈ (2nd ‘((𝐹𝐾) +P ⟨{𝑙𝑙 <Q (*Q‘[⟨𝐾, 1o⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨𝐾, 1o⟩] ~Q ) <Q 𝑢}⟩)) ∧ 𝑥 ∈ (1st ‘((𝐹𝐾) +P 𝑄))))) → 𝑥 ∈ (2nd ‘((𝐹𝐾) +P ⟨{𝑙𝑙 <Q (*Q‘[⟨𝐾, 1o⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨𝐾, 1o⟩] ~Q ) <Q 𝑢}⟩)))
30 breq1 4065 . . . . . . . . . . . 12 (𝑙 = 𝑝 → (𝑙 <Q (*Q‘[⟨𝐾, 1o⟩] ~Q ) ↔ 𝑝 <Q (*Q‘[⟨𝐾, 1o⟩] ~Q )))
3130cbvabv 2334 . . . . . . . . . . 11 {𝑙𝑙 <Q (*Q‘[⟨𝐾, 1o⟩] ~Q )} = {𝑝𝑝 <Q (*Q‘[⟨𝐾, 1o⟩] ~Q )}
32 breq2 4066 . . . . . . . . . . . 12 (𝑢 = 𝑞 → ((*Q‘[⟨𝐾, 1o⟩] ~Q ) <Q 𝑢 ↔ (*Q‘[⟨𝐾, 1o⟩] ~Q ) <Q 𝑞))
3332cbvabv 2334 . . . . . . . . . . 11 {𝑢 ∣ (*Q‘[⟨𝐾, 1o⟩] ~Q ) <Q 𝑢} = {𝑞 ∣ (*Q‘[⟨𝐾, 1o⟩] ~Q ) <Q 𝑞}
3431, 33opeq12i 3841 . . . . . . . . . 10 ⟨{𝑙𝑙 <Q (*Q‘[⟨𝐾, 1o⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨𝐾, 1o⟩] ~Q ) <Q 𝑢}⟩ = ⟨{𝑝𝑝 <Q (*Q‘[⟨𝐾, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝐾, 1o⟩] ~Q ) <Q 𝑞}⟩
3534oveq2i 5985 . . . . . . . . 9 ((𝐹𝐾) +P ⟨{𝑙𝑙 <Q (*Q‘[⟨𝐾, 1o⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨𝐾, 1o⟩] ~Q ) <Q 𝑢}⟩) = ((𝐹𝐾) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝐾, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝐾, 1o⟩] ~Q ) <Q 𝑞}⟩)
3635fveq2i 5606 . . . . . . . 8 (2nd ‘((𝐹𝐾) +P ⟨{𝑙𝑙 <Q (*Q‘[⟨𝐾, 1o⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨𝐾, 1o⟩] ~Q ) <Q 𝑢}⟩)) = (2nd ‘((𝐹𝐾) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝐾, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝐾, 1o⟩] ~Q ) <Q 𝑞}⟩))
3729, 36eleqtrdi 2302 . . . . . . 7 ((𝜑 ∧ (𝑥Q ∧ (𝑥 ∈ (2nd ‘((𝐹𝐾) +P ⟨{𝑙𝑙 <Q (*Q‘[⟨𝐾, 1o⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨𝐾, 1o⟩] ~Q ) <Q 𝑢}⟩)) ∧ 𝑥 ∈ (1st ‘((𝐹𝐾) +P 𝑄))))) → 𝑥 ∈ (2nd ‘((𝐹𝐾) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝐾, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝐾, 1o⟩] ~Q ) <Q 𝑞}⟩)))
38 nqprlu 7702 . . . . . . . . . . 11 ((*Q‘[⟨𝐾, 1o⟩] ~Q ) ∈ Q → ⟨{𝑝𝑝 <Q (*Q‘[⟨𝐾, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝐾, 1o⟩] ~Q ) <Q 𝑞}⟩ ∈ P)
3911, 38syl 14 . . . . . . . . . 10 (𝜑 → ⟨{𝑝𝑝 <Q (*Q‘[⟨𝐾, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝐾, 1o⟩] ~Q ) <Q 𝑞}⟩ ∈ P)
40 addclpr 7692 . . . . . . . . . 10 (((𝐹𝐾) ∈ P ∧ ⟨{𝑝𝑝 <Q (*Q‘[⟨𝐾, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝐾, 1o⟩] ~Q ) <Q 𝑞}⟩ ∈ P) → ((𝐹𝐾) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝐾, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝐾, 1o⟩] ~Q ) <Q 𝑞}⟩) ∈ P)
4116, 39, 40syl2anc 411 . . . . . . . . 9 (𝜑 → ((𝐹𝐾) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝐾, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝐾, 1o⟩] ~Q ) <Q 𝑞}⟩) ∈ P)
4241adantr 276 . . . . . . . 8 ((𝜑 ∧ (𝑥Q ∧ (𝑥 ∈ (2nd ‘((𝐹𝐾) +P ⟨{𝑙𝑙 <Q (*Q‘[⟨𝐾, 1o⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨𝐾, 1o⟩] ~Q ) <Q 𝑢}⟩)) ∧ 𝑥 ∈ (1st ‘((𝐹𝐾) +P 𝑄))))) → ((𝐹𝐾) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝐾, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝐾, 1o⟩] ~Q ) <Q 𝑞}⟩) ∈ P)
43 nqpru 7707 . . . . . . . 8 ((𝑥Q ∧ ((𝐹𝐾) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝐾, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝐾, 1o⟩] ~Q ) <Q 𝑞}⟩) ∈ P) → (𝑥 ∈ (2nd ‘((𝐹𝐾) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝐾, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝐾, 1o⟩] ~Q ) <Q 𝑞}⟩)) ↔ ((𝐹𝐾) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝐾, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝐾, 1o⟩] ~Q ) <Q 𝑞}⟩)<P ⟨{𝑝𝑝 <Q 𝑥}, {𝑞𝑥 <Q 𝑞}⟩))
4427, 42, 43syl2anc 411 . . . . . . 7 ((𝜑 ∧ (𝑥Q ∧ (𝑥 ∈ (2nd ‘((𝐹𝐾) +P ⟨{𝑙𝑙 <Q (*Q‘[⟨𝐾, 1o⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨𝐾, 1o⟩] ~Q ) <Q 𝑢}⟩)) ∧ 𝑥 ∈ (1st ‘((𝐹𝐾) +P 𝑄))))) → (𝑥 ∈ (2nd ‘((𝐹𝐾) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝐾, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝐾, 1o⟩] ~Q ) <Q 𝑞}⟩)) ↔ ((𝐹𝐾) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝐾, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝐾, 1o⟩] ~Q ) <Q 𝑞}⟩)<P ⟨{𝑝𝑝 <Q 𝑥}, {𝑞𝑥 <Q 𝑞}⟩))
4537, 44mpbid 147 . . . . . 6 ((𝜑 ∧ (𝑥Q ∧ (𝑥 ∈ (2nd ‘((𝐹𝐾) +P ⟨{𝑙𝑙 <Q (*Q‘[⟨𝐾, 1o⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨𝐾, 1o⟩] ~Q ) <Q 𝑢}⟩)) ∧ 𝑥 ∈ (1st ‘((𝐹𝐾) +P 𝑄))))) → ((𝐹𝐾) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝐾, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝐾, 1o⟩] ~Q ) <Q 𝑞}⟩)<P ⟨{𝑝𝑝 <Q 𝑥}, {𝑞𝑥 <Q 𝑞}⟩)
46 fveq2 5603 . . . . . . . . 9 (𝑟 = 𝐾 → (𝐹𝑟) = (𝐹𝐾))
47 opeq1 3836 . . . . . . . . . . . . . 14 (𝑟 = 𝐾 → ⟨𝑟, 1o⟩ = ⟨𝐾, 1o⟩)
4847eceq1d 6686 . . . . . . . . . . . . 13 (𝑟 = 𝐾 → [⟨𝑟, 1o⟩] ~Q = [⟨𝐾, 1o⟩] ~Q )
4948fveq2d 5607 . . . . . . . . . . . 12 (𝑟 = 𝐾 → (*Q‘[⟨𝑟, 1o⟩] ~Q ) = (*Q‘[⟨𝐾, 1o⟩] ~Q ))
5049breq2d 4074 . . . . . . . . . . 11 (𝑟 = 𝐾 → (𝑝 <Q (*Q‘[⟨𝑟, 1o⟩] ~Q ) ↔ 𝑝 <Q (*Q‘[⟨𝐾, 1o⟩] ~Q )))
5150abbidv 2327 . . . . . . . . . 10 (𝑟 = 𝐾 → {𝑝𝑝 <Q (*Q‘[⟨𝑟, 1o⟩] ~Q )} = {𝑝𝑝 <Q (*Q‘[⟨𝐾, 1o⟩] ~Q )})
5249breq1d 4072 . . . . . . . . . . 11 (𝑟 = 𝐾 → ((*Q‘[⟨𝑟, 1o⟩] ~Q ) <Q 𝑞 ↔ (*Q‘[⟨𝐾, 1o⟩] ~Q ) <Q 𝑞))
5352abbidv 2327 . . . . . . . . . 10 (𝑟 = 𝐾 → {𝑞 ∣ (*Q‘[⟨𝑟, 1o⟩] ~Q ) <Q 𝑞} = {𝑞 ∣ (*Q‘[⟨𝐾, 1o⟩] ~Q ) <Q 𝑞})
5451, 53opeq12d 3844 . . . . . . . . 9 (𝑟 = 𝐾 → ⟨{𝑝𝑝 <Q (*Q‘[⟨𝑟, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝑟, 1o⟩] ~Q ) <Q 𝑞}⟩ = ⟨{𝑝𝑝 <Q (*Q‘[⟨𝐾, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝐾, 1o⟩] ~Q ) <Q 𝑞}⟩)
5546, 54oveq12d 5992 . . . . . . . 8 (𝑟 = 𝐾 → ((𝐹𝑟) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝑟, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝑟, 1o⟩] ~Q ) <Q 𝑞}⟩) = ((𝐹𝐾) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝐾, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝐾, 1o⟩] ~Q ) <Q 𝑞}⟩))
5655breq1d 4072 . . . . . . 7 (𝑟 = 𝐾 → (((𝐹𝑟) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝑟, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝑟, 1o⟩] ~Q ) <Q 𝑞}⟩)<P ⟨{𝑝𝑝 <Q 𝑥}, {𝑞𝑥 <Q 𝑞}⟩ ↔ ((𝐹𝐾) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝐾, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝐾, 1o⟩] ~Q ) <Q 𝑞}⟩)<P ⟨{𝑝𝑝 <Q 𝑥}, {𝑞𝑥 <Q 𝑞}⟩))
5756rspcev 2887 . . . . . 6 ((𝐾N ∧ ((𝐹𝐾) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝐾, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝐾, 1o⟩] ~Q ) <Q 𝑞}⟩)<P ⟨{𝑝𝑝 <Q 𝑥}, {𝑞𝑥 <Q 𝑞}⟩) → ∃𝑟N ((𝐹𝑟) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝑟, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝑟, 1o⟩] ~Q ) <Q 𝑞}⟩)<P ⟨{𝑝𝑝 <Q 𝑥}, {𝑞𝑥 <Q 𝑞}⟩)
5828, 45, 57syl2anc 411 . . . . 5 ((𝜑 ∧ (𝑥Q ∧ (𝑥 ∈ (2nd ‘((𝐹𝐾) +P ⟨{𝑙𝑙 <Q (*Q‘[⟨𝐾, 1o⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨𝐾, 1o⟩] ~Q ) <Q 𝑢}⟩)) ∧ 𝑥 ∈ (1st ‘((𝐹𝐾) +P 𝑄))))) → ∃𝑟N ((𝐹𝑟) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝑟, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝑟, 1o⟩] ~Q ) <Q 𝑞}⟩)<P ⟨{𝑝𝑝 <Q 𝑥}, {𝑞𝑥 <Q 𝑞}⟩)
59 breq2 4066 . . . . . . . . . 10 (𝑢 = 𝑥 → (𝑝 <Q 𝑢𝑝 <Q 𝑥))
6059abbidv 2327 . . . . . . . . 9 (𝑢 = 𝑥 → {𝑝𝑝 <Q 𝑢} = {𝑝𝑝 <Q 𝑥})
61 breq1 4065 . . . . . . . . . 10 (𝑢 = 𝑥 → (𝑢 <Q 𝑞𝑥 <Q 𝑞))
6261abbidv 2327 . . . . . . . . 9 (𝑢 = 𝑥 → {𝑞𝑢 <Q 𝑞} = {𝑞𝑥 <Q 𝑞})
6360, 62opeq12d 3844 . . . . . . . 8 (𝑢 = 𝑥 → ⟨{𝑝𝑝 <Q 𝑢}, {𝑞𝑢 <Q 𝑞}⟩ = ⟨{𝑝𝑝 <Q 𝑥}, {𝑞𝑥 <Q 𝑞}⟩)
6463breq2d 4074 . . . . . . 7 (𝑢 = 𝑥 → (((𝐹𝑟) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝑟, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝑟, 1o⟩] ~Q ) <Q 𝑞}⟩)<P ⟨{𝑝𝑝 <Q 𝑢}, {𝑞𝑢 <Q 𝑞}⟩ ↔ ((𝐹𝑟) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝑟, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝑟, 1o⟩] ~Q ) <Q 𝑞}⟩)<P ⟨{𝑝𝑝 <Q 𝑥}, {𝑞𝑥 <Q 𝑞}⟩))
6564rexbidv 2511 . . . . . 6 (𝑢 = 𝑥 → (∃𝑟N ((𝐹𝑟) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝑟, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝑟, 1o⟩] ~Q ) <Q 𝑞}⟩)<P ⟨{𝑝𝑝 <Q 𝑢}, {𝑞𝑢 <Q 𝑞}⟩ ↔ ∃𝑟N ((𝐹𝑟) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝑟, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝑟, 1o⟩] ~Q ) <Q 𝑞}⟩)<P ⟨{𝑝𝑝 <Q 𝑥}, {𝑞𝑥 <Q 𝑞}⟩))
66 caucvgprpr.lim . . . . . . . 8 𝐿 = ⟨{𝑙Q ∣ ∃𝑟N ⟨{𝑝𝑝 <Q (𝑙 +Q (*Q‘[⟨𝑟, 1o⟩] ~Q ))}, {𝑞 ∣ (𝑙 +Q (*Q‘[⟨𝑟, 1o⟩] ~Q )) <Q 𝑞}⟩<P (𝐹𝑟)}, {𝑢Q ∣ ∃𝑟N ((𝐹𝑟) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝑟, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝑟, 1o⟩] ~Q ) <Q 𝑞}⟩)<P ⟨{𝑝𝑝 <Q 𝑢}, {𝑞𝑢 <Q 𝑞}⟩}⟩
6766fveq2i 5606 . . . . . . 7 (2nd𝐿) = (2nd ‘⟨{𝑙Q ∣ ∃𝑟N ⟨{𝑝𝑝 <Q (𝑙 +Q (*Q‘[⟨𝑟, 1o⟩] ~Q ))}, {𝑞 ∣ (𝑙 +Q (*Q‘[⟨𝑟, 1o⟩] ~Q )) <Q 𝑞}⟩<P (𝐹𝑟)}, {𝑢Q ∣ ∃𝑟N ((𝐹𝑟) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝑟, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝑟, 1o⟩] ~Q ) <Q 𝑞}⟩)<P ⟨{𝑝𝑝 <Q 𝑢}, {𝑞𝑢 <Q 𝑞}⟩}⟩)
68 nqex 7518 . . . . . . . . 9 Q ∈ V
6968rabex 4207 . . . . . . . 8 {𝑙Q ∣ ∃𝑟N ⟨{𝑝𝑝 <Q (𝑙 +Q (*Q‘[⟨𝑟, 1o⟩] ~Q ))}, {𝑞 ∣ (𝑙 +Q (*Q‘[⟨𝑟, 1o⟩] ~Q )) <Q 𝑞}⟩<P (𝐹𝑟)} ∈ V
7068rabex 4207 . . . . . . . 8 {𝑢Q ∣ ∃𝑟N ((𝐹𝑟) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝑟, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝑟, 1o⟩] ~Q ) <Q 𝑞}⟩)<P ⟨{𝑝𝑝 <Q 𝑢}, {𝑞𝑢 <Q 𝑞}⟩} ∈ V
7169, 70op2nd 6263 . . . . . . 7 (2nd ‘⟨{𝑙Q ∣ ∃𝑟N ⟨{𝑝𝑝 <Q (𝑙 +Q (*Q‘[⟨𝑟, 1o⟩] ~Q ))}, {𝑞 ∣ (𝑙 +Q (*Q‘[⟨𝑟, 1o⟩] ~Q )) <Q 𝑞}⟩<P (𝐹𝑟)}, {𝑢Q ∣ ∃𝑟N ((𝐹𝑟) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝑟, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝑟, 1o⟩] ~Q ) <Q 𝑞}⟩)<P ⟨{𝑝𝑝 <Q 𝑢}, {𝑞𝑢 <Q 𝑞}⟩}⟩) = {𝑢Q ∣ ∃𝑟N ((𝐹𝑟) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝑟, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝑟, 1o⟩] ~Q ) <Q 𝑞}⟩)<P ⟨{𝑝𝑝 <Q 𝑢}, {𝑞𝑢 <Q 𝑞}⟩}
7267, 71eqtri 2230 . . . . . 6 (2nd𝐿) = {𝑢Q ∣ ∃𝑟N ((𝐹𝑟) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝑟, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝑟, 1o⟩] ~Q ) <Q 𝑞}⟩)<P ⟨{𝑝𝑝 <Q 𝑢}, {𝑞𝑢 <Q 𝑞}⟩}
7365, 72elrab2 2942 . . . . 5 (𝑥 ∈ (2nd𝐿) ↔ (𝑥Q ∧ ∃𝑟N ((𝐹𝑟) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝑟, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝑟, 1o⟩] ~Q ) <Q 𝑞}⟩)<P ⟨{𝑝𝑝 <Q 𝑥}, {𝑞𝑥 <Q 𝑞}⟩))
7427, 58, 73sylanbrc 417 . . . 4 ((𝜑 ∧ (𝑥Q ∧ (𝑥 ∈ (2nd ‘((𝐹𝐾) +P ⟨{𝑙𝑙 <Q (*Q‘[⟨𝐾, 1o⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨𝐾, 1o⟩] ~Q ) <Q 𝑢}⟩)) ∧ 𝑥 ∈ (1st ‘((𝐹𝐾) +P 𝑄))))) → 𝑥 ∈ (2nd𝐿))
75 simprrr 540 . . . 4 ((𝜑 ∧ (𝑥Q ∧ (𝑥 ∈ (2nd ‘((𝐹𝐾) +P ⟨{𝑙𝑙 <Q (*Q‘[⟨𝐾, 1o⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨𝐾, 1o⟩] ~Q ) <Q 𝑢}⟩)) ∧ 𝑥 ∈ (1st ‘((𝐹𝐾) +P 𝑄))))) → 𝑥 ∈ (1st ‘((𝐹𝐾) +P 𝑄)))
76 rspe 2559 . . . 4 ((𝑥Q ∧ (𝑥 ∈ (2nd𝐿) ∧ 𝑥 ∈ (1st ‘((𝐹𝐾) +P 𝑄)))) → ∃𝑥Q (𝑥 ∈ (2nd𝐿) ∧ 𝑥 ∈ (1st ‘((𝐹𝐾) +P 𝑄))))
7727, 74, 75, 76syl12anc 1250 . . 3 ((𝜑 ∧ (𝑥Q ∧ (𝑥 ∈ (2nd ‘((𝐹𝐾) +P ⟨{𝑙𝑙 <Q (*Q‘[⟨𝐾, 1o⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨𝐾, 1o⟩] ~Q ) <Q 𝑢}⟩)) ∧ 𝑥 ∈ (1st ‘((𝐹𝐾) +P 𝑄))))) → ∃𝑥Q (𝑥 ∈ (2nd𝐿) ∧ 𝑥 ∈ (1st ‘((𝐹𝐾) +P 𝑄))))
78 caucvgprpr.cau . . . . . 6 (𝜑 → ∀𝑛N𝑘N (𝑛 <N 𝑘 → ((𝐹𝑛)<P ((𝐹𝑘) +P ⟨{𝑙𝑙 <Q (*Q‘[⟨𝑛, 1o⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨𝑛, 1o⟩] ~Q ) <Q 𝑢}⟩) ∧ (𝐹𝑘)<P ((𝐹𝑛) +P ⟨{𝑙𝑙 <Q (*Q‘[⟨𝑛, 1o⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨𝑛, 1o⟩] ~Q ) <Q 𝑢}⟩))))
79 caucvgprpr.bnd . . . . . 6 (𝜑 → ∀𝑚N 𝐴<P (𝐹𝑚))
8015, 78, 79, 66caucvgprprlemcl 7859 . . . . 5 (𝜑𝐿P)
8180adantr 276 . . . 4 ((𝜑 ∧ (𝑥Q ∧ (𝑥 ∈ (2nd ‘((𝐹𝐾) +P ⟨{𝑙𝑙 <Q (*Q‘[⟨𝐾, 1o⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨𝐾, 1o⟩] ~Q ) <Q 𝑢}⟩)) ∧ 𝑥 ∈ (1st ‘((𝐹𝐾) +P 𝑄))))) → 𝐿P)
8223adantr 276 . . . 4 ((𝜑 ∧ (𝑥Q ∧ (𝑥 ∈ (2nd ‘((𝐹𝐾) +P ⟨{𝑙𝑙 <Q (*Q‘[⟨𝐾, 1o⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨𝐾, 1o⟩] ~Q ) <Q 𝑢}⟩)) ∧ 𝑥 ∈ (1st ‘((𝐹𝐾) +P 𝑄))))) → ((𝐹𝐾) +P 𝑄) ∈ P)
83 ltdfpr 7661 . . . 4 ((𝐿P ∧ ((𝐹𝐾) +P 𝑄) ∈ P) → (𝐿<P ((𝐹𝐾) +P 𝑄) ↔ ∃𝑥Q (𝑥 ∈ (2nd𝐿) ∧ 𝑥 ∈ (1st ‘((𝐹𝐾) +P 𝑄)))))
8481, 82, 83syl2anc 411 . . 3 ((𝜑 ∧ (𝑥Q ∧ (𝑥 ∈ (2nd ‘((𝐹𝐾) +P ⟨{𝑙𝑙 <Q (*Q‘[⟨𝐾, 1o⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨𝐾, 1o⟩] ~Q ) <Q 𝑢}⟩)) ∧ 𝑥 ∈ (1st ‘((𝐹𝐾) +P 𝑄))))) → (𝐿<P ((𝐹𝐾) +P 𝑄) ↔ ∃𝑥Q (𝑥 ∈ (2nd𝐿) ∧ 𝑥 ∈ (1st ‘((𝐹𝐾) +P 𝑄)))))
8577, 84mpbird 167 . 2 ((𝜑 ∧ (𝑥Q ∧ (𝑥 ∈ (2nd ‘((𝐹𝐾) +P ⟨{𝑙𝑙 <Q (*Q‘[⟨𝐾, 1o⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨𝐾, 1o⟩] ~Q ) <Q 𝑢}⟩)) ∧ 𝑥 ∈ (1st ‘((𝐹𝐾) +P 𝑄))))) → 𝐿<P ((𝐹𝐾) +P 𝑄))
8626, 85rexlimddv 2633 1 (𝜑𝐿<P ((𝐹𝐾) +P 𝑄))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105   = wceq 1375  wcel 2180  {cab 2195  wral 2488  wrex 2489  {crab 2492  cop 3649   class class class wbr 4062  wf 5290  cfv 5294  (class class class)co 5974  1st c1st 6254  2nd c2nd 6255  1oc1o 6525  [cec 6648  Ncnpi 7427   <N clti 7430   ~Q ceq 7434  Qcnq 7435   +Q cplq 7437  *Qcrq 7439   <Q cltq 7440  Pcnp 7446   +P cpp 7448  <P cltp 7450
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 713  ax-5 1473  ax-7 1474  ax-gen 1475  ax-ie1 1519  ax-ie2 1520  ax-8 1530  ax-10 1531  ax-11 1532  ax-i12 1533  ax-bndl 1535  ax-4 1536  ax-17 1552  ax-i9 1556  ax-ial 1560  ax-i5r 1561  ax-13 2182  ax-14 2183  ax-ext 2191  ax-coll 4178  ax-sep 4181  ax-nul 4189  ax-pow 4237  ax-pr 4272  ax-un 4501  ax-setind 4606  ax-iinf 4657
This theorem depends on definitions:  df-bi 117  df-dc 839  df-3or 984  df-3an 985  df-tru 1378  df-fal 1381  df-nf 1487  df-sb 1789  df-eu 2060  df-mo 2061  df-clab 2196  df-cleq 2202  df-clel 2205  df-nfc 2341  df-ne 2381  df-ral 2493  df-rex 2494  df-reu 2495  df-rab 2497  df-v 2781  df-sbc 3009  df-csb 3105  df-dif 3179  df-un 3181  df-in 3183  df-ss 3190  df-nul 3472  df-pw 3631  df-sn 3652  df-pr 3653  df-op 3655  df-uni 3868  df-int 3903  df-iun 3946  df-br 4063  df-opab 4125  df-mpt 4126  df-tr 4162  df-eprel 4357  df-id 4361  df-po 4364  df-iso 4365  df-iord 4434  df-on 4436  df-suc 4439  df-iom 4660  df-xp 4702  df-rel 4703  df-cnv 4704  df-co 4705  df-dm 4706  df-rn 4707  df-res 4708  df-ima 4709  df-iota 5254  df-fun 5296  df-fn 5297  df-f 5298  df-f1 5299  df-fo 5300  df-f1o 5301  df-fv 5302  df-ov 5977  df-oprab 5978  df-mpo 5979  df-1st 6256  df-2nd 6257  df-recs 6421  df-irdg 6486  df-1o 6532  df-2o 6533  df-oadd 6536  df-omul 6537  df-er 6650  df-ec 6652  df-qs 6656  df-ni 7459  df-pli 7460  df-mi 7461  df-lti 7462  df-plpq 7499  df-mpq 7500  df-enq 7502  df-nqqs 7503  df-plqqs 7504  df-mqqs 7505  df-1nqqs 7506  df-rq 7507  df-ltnqqs 7508  df-enq0 7579  df-nq0 7580  df-0nq0 7581  df-plq0 7582  df-mq0 7583  df-inp 7621  df-iplp 7623  df-iltp 7625
This theorem is referenced by:  caucvgprprlemlim  7866
  Copyright terms: Public domain W3C validator