ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  caucvgprprlem2 GIF version

Theorem caucvgprprlem2 7542
Description: Lemma for caucvgprpr 7544. Part of showing the putative limit to be a limit. (Contributed by Jim Kingdon, 25-Nov-2020.)
Hypotheses
Ref Expression
caucvgprpr.f (𝜑𝐹:NP)
caucvgprpr.cau (𝜑 → ∀𝑛N𝑘N (𝑛 <N 𝑘 → ((𝐹𝑛)<P ((𝐹𝑘) +P ⟨{𝑙𝑙 <Q (*Q‘[⟨𝑛, 1o⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨𝑛, 1o⟩] ~Q ) <Q 𝑢}⟩) ∧ (𝐹𝑘)<P ((𝐹𝑛) +P ⟨{𝑙𝑙 <Q (*Q‘[⟨𝑛, 1o⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨𝑛, 1o⟩] ~Q ) <Q 𝑢}⟩))))
caucvgprpr.bnd (𝜑 → ∀𝑚N 𝐴<P (𝐹𝑚))
caucvgprpr.lim 𝐿 = ⟨{𝑙Q ∣ ∃𝑟N ⟨{𝑝𝑝 <Q (𝑙 +Q (*Q‘[⟨𝑟, 1o⟩] ~Q ))}, {𝑞 ∣ (𝑙 +Q (*Q‘[⟨𝑟, 1o⟩] ~Q )) <Q 𝑞}⟩<P (𝐹𝑟)}, {𝑢Q ∣ ∃𝑟N ((𝐹𝑟) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝑟, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝑟, 1o⟩] ~Q ) <Q 𝑞}⟩)<P ⟨{𝑝𝑝 <Q 𝑢}, {𝑞𝑢 <Q 𝑞}⟩}⟩
caucvgprprlemlim.q (𝜑𝑄P)
caucvgprprlemlim.jk (𝜑𝐽 <N 𝐾)
caucvgprprlemlim.jkq (𝜑 → ⟨{𝑙𝑙 <Q (*Q‘[⟨𝐽, 1o⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨𝐽, 1o⟩] ~Q ) <Q 𝑢}⟩<P 𝑄)
Assertion
Ref Expression
caucvgprprlem2 (𝜑𝐿<P ((𝐹𝐾) +P 𝑄))
Distinct variable groups:   𝐴,𝑚   𝑚,𝐹   𝐴,𝑟   𝐹,𝑟,𝑢,𝑙,𝑘   𝑛,𝐹   𝐾,𝑙,𝑝,𝑢,𝑞,𝑟   𝐽,𝑙,𝑢   𝑘,𝐿   𝜑,𝑟   𝑘,𝑛   𝑘,𝑟   𝑞,𝑙,𝑟   𝑚,𝑟   𝑘,𝑝,𝑞   𝑢,𝑛,𝑙,𝑘
Allowed substitution hints:   𝜑(𝑢,𝑘,𝑚,𝑛,𝑞,𝑝,𝑙)   𝐴(𝑢,𝑘,𝑛,𝑞,𝑝,𝑙)   𝑄(𝑢,𝑘,𝑚,𝑛,𝑟,𝑞,𝑝,𝑙)   𝐹(𝑞,𝑝)   𝐽(𝑘,𝑚,𝑛,𝑟,𝑞,𝑝)   𝐾(𝑘,𝑚,𝑛)   𝐿(𝑢,𝑚,𝑛,𝑟,𝑞,𝑝,𝑙)

Proof of Theorem caucvgprprlem2
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 caucvgprprlemlim.jk . . . . 5 (𝜑𝐽 <N 𝐾)
2 caucvgprprlemlim.jkq . . . . 5 (𝜑 → ⟨{𝑙𝑙 <Q (*Q‘[⟨𝐽, 1o⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨𝐽, 1o⟩] ~Q ) <Q 𝑢}⟩<P 𝑄)
31, 2caucvgprprlemk 7515 . . . 4 (𝜑 → ⟨{𝑙𝑙 <Q (*Q‘[⟨𝐾, 1o⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨𝐾, 1o⟩] ~Q ) <Q 𝑢}⟩<P 𝑄)
4 ltrelpi 7156 . . . . . . . . . 10 <N ⊆ (N × N)
54brel 4599 . . . . . . . . 9 (𝐽 <N 𝐾 → (𝐽N𝐾N))
61, 5syl 14 . . . . . . . 8 (𝜑 → (𝐽N𝐾N))
76simprd 113 . . . . . . 7 (𝜑𝐾N)
8 nnnq 7254 . . . . . . . 8 (𝐾N → [⟨𝐾, 1o⟩] ~QQ)
9 recclnq 7224 . . . . . . . 8 ([⟨𝐾, 1o⟩] ~QQ → (*Q‘[⟨𝐾, 1o⟩] ~Q ) ∈ Q)
108, 9syl 14 . . . . . . 7 (𝐾N → (*Q‘[⟨𝐾, 1o⟩] ~Q ) ∈ Q)
117, 10syl 14 . . . . . 6 (𝜑 → (*Q‘[⟨𝐾, 1o⟩] ~Q ) ∈ Q)
12 nqprlu 7379 . . . . . 6 ((*Q‘[⟨𝐾, 1o⟩] ~Q ) ∈ Q → ⟨{𝑙𝑙 <Q (*Q‘[⟨𝐾, 1o⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨𝐾, 1o⟩] ~Q ) <Q 𝑢}⟩ ∈ P)
1311, 12syl 14 . . . . 5 (𝜑 → ⟨{𝑙𝑙 <Q (*Q‘[⟨𝐾, 1o⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨𝐾, 1o⟩] ~Q ) <Q 𝑢}⟩ ∈ P)
14 caucvgprprlemlim.q . . . . 5 (𝜑𝑄P)
15 caucvgprpr.f . . . . . 6 (𝜑𝐹:NP)
1615, 7ffvelrnd 5564 . . . . 5 (𝜑 → (𝐹𝐾) ∈ P)
17 ltaprg 7451 . . . . 5 ((⟨{𝑙𝑙 <Q (*Q‘[⟨𝐾, 1o⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨𝐾, 1o⟩] ~Q ) <Q 𝑢}⟩ ∈ P𝑄P ∧ (𝐹𝐾) ∈ P) → (⟨{𝑙𝑙 <Q (*Q‘[⟨𝐾, 1o⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨𝐾, 1o⟩] ~Q ) <Q 𝑢}⟩<P 𝑄 ↔ ((𝐹𝐾) +P ⟨{𝑙𝑙 <Q (*Q‘[⟨𝐾, 1o⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨𝐾, 1o⟩] ~Q ) <Q 𝑢}⟩)<P ((𝐹𝐾) +P 𝑄)))
1813, 14, 16, 17syl3anc 1217 . . . 4 (𝜑 → (⟨{𝑙𝑙 <Q (*Q‘[⟨𝐾, 1o⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨𝐾, 1o⟩] ~Q ) <Q 𝑢}⟩<P 𝑄 ↔ ((𝐹𝐾) +P ⟨{𝑙𝑙 <Q (*Q‘[⟨𝐾, 1o⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨𝐾, 1o⟩] ~Q ) <Q 𝑢}⟩)<P ((𝐹𝐾) +P 𝑄)))
193, 18mpbid 146 . . 3 (𝜑 → ((𝐹𝐾) +P ⟨{𝑙𝑙 <Q (*Q‘[⟨𝐾, 1o⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨𝐾, 1o⟩] ~Q ) <Q 𝑢}⟩)<P ((𝐹𝐾) +P 𝑄))
20 addclpr 7369 . . . . 5 (((𝐹𝐾) ∈ P ∧ ⟨{𝑙𝑙 <Q (*Q‘[⟨𝐾, 1o⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨𝐾, 1o⟩] ~Q ) <Q 𝑢}⟩ ∈ P) → ((𝐹𝐾) +P ⟨{𝑙𝑙 <Q (*Q‘[⟨𝐾, 1o⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨𝐾, 1o⟩] ~Q ) <Q 𝑢}⟩) ∈ P)
2116, 13, 20syl2anc 409 . . . 4 (𝜑 → ((𝐹𝐾) +P ⟨{𝑙𝑙 <Q (*Q‘[⟨𝐾, 1o⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨𝐾, 1o⟩] ~Q ) <Q 𝑢}⟩) ∈ P)
22 addclpr 7369 . . . . 5 (((𝐹𝐾) ∈ P𝑄P) → ((𝐹𝐾) +P 𝑄) ∈ P)
2316, 14, 22syl2anc 409 . . . 4 (𝜑 → ((𝐹𝐾) +P 𝑄) ∈ P)
24 ltdfpr 7338 . . . 4 ((((𝐹𝐾) +P ⟨{𝑙𝑙 <Q (*Q‘[⟨𝐾, 1o⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨𝐾, 1o⟩] ~Q ) <Q 𝑢}⟩) ∈ P ∧ ((𝐹𝐾) +P 𝑄) ∈ P) → (((𝐹𝐾) +P ⟨{𝑙𝑙 <Q (*Q‘[⟨𝐾, 1o⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨𝐾, 1o⟩] ~Q ) <Q 𝑢}⟩)<P ((𝐹𝐾) +P 𝑄) ↔ ∃𝑥Q (𝑥 ∈ (2nd ‘((𝐹𝐾) +P ⟨{𝑙𝑙 <Q (*Q‘[⟨𝐾, 1o⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨𝐾, 1o⟩] ~Q ) <Q 𝑢}⟩)) ∧ 𝑥 ∈ (1st ‘((𝐹𝐾) +P 𝑄)))))
2521, 23, 24syl2anc 409 . . 3 (𝜑 → (((𝐹𝐾) +P ⟨{𝑙𝑙 <Q (*Q‘[⟨𝐾, 1o⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨𝐾, 1o⟩] ~Q ) <Q 𝑢}⟩)<P ((𝐹𝐾) +P 𝑄) ↔ ∃𝑥Q (𝑥 ∈ (2nd ‘((𝐹𝐾) +P ⟨{𝑙𝑙 <Q (*Q‘[⟨𝐾, 1o⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨𝐾, 1o⟩] ~Q ) <Q 𝑢}⟩)) ∧ 𝑥 ∈ (1st ‘((𝐹𝐾) +P 𝑄)))))
2619, 25mpbid 146 . 2 (𝜑 → ∃𝑥Q (𝑥 ∈ (2nd ‘((𝐹𝐾) +P ⟨{𝑙𝑙 <Q (*Q‘[⟨𝐾, 1o⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨𝐾, 1o⟩] ~Q ) <Q 𝑢}⟩)) ∧ 𝑥 ∈ (1st ‘((𝐹𝐾) +P 𝑄))))
27 simprl 521 . . . 4 ((𝜑 ∧ (𝑥Q ∧ (𝑥 ∈ (2nd ‘((𝐹𝐾) +P ⟨{𝑙𝑙 <Q (*Q‘[⟨𝐾, 1o⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨𝐾, 1o⟩] ~Q ) <Q 𝑢}⟩)) ∧ 𝑥 ∈ (1st ‘((𝐹𝐾) +P 𝑄))))) → 𝑥Q)
287adantr 274 . . . . . 6 ((𝜑 ∧ (𝑥Q ∧ (𝑥 ∈ (2nd ‘((𝐹𝐾) +P ⟨{𝑙𝑙 <Q (*Q‘[⟨𝐾, 1o⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨𝐾, 1o⟩] ~Q ) <Q 𝑢}⟩)) ∧ 𝑥 ∈ (1st ‘((𝐹𝐾) +P 𝑄))))) → 𝐾N)
29 simprrl 529 . . . . . . . 8 ((𝜑 ∧ (𝑥Q ∧ (𝑥 ∈ (2nd ‘((𝐹𝐾) +P ⟨{𝑙𝑙 <Q (*Q‘[⟨𝐾, 1o⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨𝐾, 1o⟩] ~Q ) <Q 𝑢}⟩)) ∧ 𝑥 ∈ (1st ‘((𝐹𝐾) +P 𝑄))))) → 𝑥 ∈ (2nd ‘((𝐹𝐾) +P ⟨{𝑙𝑙 <Q (*Q‘[⟨𝐾, 1o⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨𝐾, 1o⟩] ~Q ) <Q 𝑢}⟩)))
30 breq1 3940 . . . . . . . . . . . 12 (𝑙 = 𝑝 → (𝑙 <Q (*Q‘[⟨𝐾, 1o⟩] ~Q ) ↔ 𝑝 <Q (*Q‘[⟨𝐾, 1o⟩] ~Q )))
3130cbvabv 2265 . . . . . . . . . . 11 {𝑙𝑙 <Q (*Q‘[⟨𝐾, 1o⟩] ~Q )} = {𝑝𝑝 <Q (*Q‘[⟨𝐾, 1o⟩] ~Q )}
32 breq2 3941 . . . . . . . . . . . 12 (𝑢 = 𝑞 → ((*Q‘[⟨𝐾, 1o⟩] ~Q ) <Q 𝑢 ↔ (*Q‘[⟨𝐾, 1o⟩] ~Q ) <Q 𝑞))
3332cbvabv 2265 . . . . . . . . . . 11 {𝑢 ∣ (*Q‘[⟨𝐾, 1o⟩] ~Q ) <Q 𝑢} = {𝑞 ∣ (*Q‘[⟨𝐾, 1o⟩] ~Q ) <Q 𝑞}
3431, 33opeq12i 3718 . . . . . . . . . 10 ⟨{𝑙𝑙 <Q (*Q‘[⟨𝐾, 1o⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨𝐾, 1o⟩] ~Q ) <Q 𝑢}⟩ = ⟨{𝑝𝑝 <Q (*Q‘[⟨𝐾, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝐾, 1o⟩] ~Q ) <Q 𝑞}⟩
3534oveq2i 5793 . . . . . . . . 9 ((𝐹𝐾) +P ⟨{𝑙𝑙 <Q (*Q‘[⟨𝐾, 1o⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨𝐾, 1o⟩] ~Q ) <Q 𝑢}⟩) = ((𝐹𝐾) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝐾, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝐾, 1o⟩] ~Q ) <Q 𝑞}⟩)
3635fveq2i 5432 . . . . . . . 8 (2nd ‘((𝐹𝐾) +P ⟨{𝑙𝑙 <Q (*Q‘[⟨𝐾, 1o⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨𝐾, 1o⟩] ~Q ) <Q 𝑢}⟩)) = (2nd ‘((𝐹𝐾) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝐾, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝐾, 1o⟩] ~Q ) <Q 𝑞}⟩))
3729, 36eleqtrdi 2233 . . . . . . 7 ((𝜑 ∧ (𝑥Q ∧ (𝑥 ∈ (2nd ‘((𝐹𝐾) +P ⟨{𝑙𝑙 <Q (*Q‘[⟨𝐾, 1o⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨𝐾, 1o⟩] ~Q ) <Q 𝑢}⟩)) ∧ 𝑥 ∈ (1st ‘((𝐹𝐾) +P 𝑄))))) → 𝑥 ∈ (2nd ‘((𝐹𝐾) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝐾, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝐾, 1o⟩] ~Q ) <Q 𝑞}⟩)))
38 nqprlu 7379 . . . . . . . . . . 11 ((*Q‘[⟨𝐾, 1o⟩] ~Q ) ∈ Q → ⟨{𝑝𝑝 <Q (*Q‘[⟨𝐾, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝐾, 1o⟩] ~Q ) <Q 𝑞}⟩ ∈ P)
3911, 38syl 14 . . . . . . . . . 10 (𝜑 → ⟨{𝑝𝑝 <Q (*Q‘[⟨𝐾, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝐾, 1o⟩] ~Q ) <Q 𝑞}⟩ ∈ P)
40 addclpr 7369 . . . . . . . . . 10 (((𝐹𝐾) ∈ P ∧ ⟨{𝑝𝑝 <Q (*Q‘[⟨𝐾, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝐾, 1o⟩] ~Q ) <Q 𝑞}⟩ ∈ P) → ((𝐹𝐾) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝐾, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝐾, 1o⟩] ~Q ) <Q 𝑞}⟩) ∈ P)
4116, 39, 40syl2anc 409 . . . . . . . . 9 (𝜑 → ((𝐹𝐾) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝐾, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝐾, 1o⟩] ~Q ) <Q 𝑞}⟩) ∈ P)
4241adantr 274 . . . . . . . 8 ((𝜑 ∧ (𝑥Q ∧ (𝑥 ∈ (2nd ‘((𝐹𝐾) +P ⟨{𝑙𝑙 <Q (*Q‘[⟨𝐾, 1o⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨𝐾, 1o⟩] ~Q ) <Q 𝑢}⟩)) ∧ 𝑥 ∈ (1st ‘((𝐹𝐾) +P 𝑄))))) → ((𝐹𝐾) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝐾, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝐾, 1o⟩] ~Q ) <Q 𝑞}⟩) ∈ P)
43 nqpru 7384 . . . . . . . 8 ((𝑥Q ∧ ((𝐹𝐾) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝐾, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝐾, 1o⟩] ~Q ) <Q 𝑞}⟩) ∈ P) → (𝑥 ∈ (2nd ‘((𝐹𝐾) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝐾, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝐾, 1o⟩] ~Q ) <Q 𝑞}⟩)) ↔ ((𝐹𝐾) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝐾, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝐾, 1o⟩] ~Q ) <Q 𝑞}⟩)<P ⟨{𝑝𝑝 <Q 𝑥}, {𝑞𝑥 <Q 𝑞}⟩))
4427, 42, 43syl2anc 409 . . . . . . 7 ((𝜑 ∧ (𝑥Q ∧ (𝑥 ∈ (2nd ‘((𝐹𝐾) +P ⟨{𝑙𝑙 <Q (*Q‘[⟨𝐾, 1o⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨𝐾, 1o⟩] ~Q ) <Q 𝑢}⟩)) ∧ 𝑥 ∈ (1st ‘((𝐹𝐾) +P 𝑄))))) → (𝑥 ∈ (2nd ‘((𝐹𝐾) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝐾, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝐾, 1o⟩] ~Q ) <Q 𝑞}⟩)) ↔ ((𝐹𝐾) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝐾, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝐾, 1o⟩] ~Q ) <Q 𝑞}⟩)<P ⟨{𝑝𝑝 <Q 𝑥}, {𝑞𝑥 <Q 𝑞}⟩))
4537, 44mpbid 146 . . . . . 6 ((𝜑 ∧ (𝑥Q ∧ (𝑥 ∈ (2nd ‘((𝐹𝐾) +P ⟨{𝑙𝑙 <Q (*Q‘[⟨𝐾, 1o⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨𝐾, 1o⟩] ~Q ) <Q 𝑢}⟩)) ∧ 𝑥 ∈ (1st ‘((𝐹𝐾) +P 𝑄))))) → ((𝐹𝐾) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝐾, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝐾, 1o⟩] ~Q ) <Q 𝑞}⟩)<P ⟨{𝑝𝑝 <Q 𝑥}, {𝑞𝑥 <Q 𝑞}⟩)
46 fveq2 5429 . . . . . . . . 9 (𝑟 = 𝐾 → (𝐹𝑟) = (𝐹𝐾))
47 opeq1 3713 . . . . . . . . . . . . . 14 (𝑟 = 𝐾 → ⟨𝑟, 1o⟩ = ⟨𝐾, 1o⟩)
4847eceq1d 6473 . . . . . . . . . . . . 13 (𝑟 = 𝐾 → [⟨𝑟, 1o⟩] ~Q = [⟨𝐾, 1o⟩] ~Q )
4948fveq2d 5433 . . . . . . . . . . . 12 (𝑟 = 𝐾 → (*Q‘[⟨𝑟, 1o⟩] ~Q ) = (*Q‘[⟨𝐾, 1o⟩] ~Q ))
5049breq2d 3949 . . . . . . . . . . 11 (𝑟 = 𝐾 → (𝑝 <Q (*Q‘[⟨𝑟, 1o⟩] ~Q ) ↔ 𝑝 <Q (*Q‘[⟨𝐾, 1o⟩] ~Q )))
5150abbidv 2258 . . . . . . . . . 10 (𝑟 = 𝐾 → {𝑝𝑝 <Q (*Q‘[⟨𝑟, 1o⟩] ~Q )} = {𝑝𝑝 <Q (*Q‘[⟨𝐾, 1o⟩] ~Q )})
5249breq1d 3947 . . . . . . . . . . 11 (𝑟 = 𝐾 → ((*Q‘[⟨𝑟, 1o⟩] ~Q ) <Q 𝑞 ↔ (*Q‘[⟨𝐾, 1o⟩] ~Q ) <Q 𝑞))
5352abbidv 2258 . . . . . . . . . 10 (𝑟 = 𝐾 → {𝑞 ∣ (*Q‘[⟨𝑟, 1o⟩] ~Q ) <Q 𝑞} = {𝑞 ∣ (*Q‘[⟨𝐾, 1o⟩] ~Q ) <Q 𝑞})
5451, 53opeq12d 3721 . . . . . . . . 9 (𝑟 = 𝐾 → ⟨{𝑝𝑝 <Q (*Q‘[⟨𝑟, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝑟, 1o⟩] ~Q ) <Q 𝑞}⟩ = ⟨{𝑝𝑝 <Q (*Q‘[⟨𝐾, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝐾, 1o⟩] ~Q ) <Q 𝑞}⟩)
5546, 54oveq12d 5800 . . . . . . . 8 (𝑟 = 𝐾 → ((𝐹𝑟) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝑟, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝑟, 1o⟩] ~Q ) <Q 𝑞}⟩) = ((𝐹𝐾) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝐾, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝐾, 1o⟩] ~Q ) <Q 𝑞}⟩))
5655breq1d 3947 . . . . . . 7 (𝑟 = 𝐾 → (((𝐹𝑟) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝑟, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝑟, 1o⟩] ~Q ) <Q 𝑞}⟩)<P ⟨{𝑝𝑝 <Q 𝑥}, {𝑞𝑥 <Q 𝑞}⟩ ↔ ((𝐹𝐾) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝐾, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝐾, 1o⟩] ~Q ) <Q 𝑞}⟩)<P ⟨{𝑝𝑝 <Q 𝑥}, {𝑞𝑥 <Q 𝑞}⟩))
5756rspcev 2793 . . . . . 6 ((𝐾N ∧ ((𝐹𝐾) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝐾, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝐾, 1o⟩] ~Q ) <Q 𝑞}⟩)<P ⟨{𝑝𝑝 <Q 𝑥}, {𝑞𝑥 <Q 𝑞}⟩) → ∃𝑟N ((𝐹𝑟) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝑟, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝑟, 1o⟩] ~Q ) <Q 𝑞}⟩)<P ⟨{𝑝𝑝 <Q 𝑥}, {𝑞𝑥 <Q 𝑞}⟩)
5828, 45, 57syl2anc 409 . . . . 5 ((𝜑 ∧ (𝑥Q ∧ (𝑥 ∈ (2nd ‘((𝐹𝐾) +P ⟨{𝑙𝑙 <Q (*Q‘[⟨𝐾, 1o⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨𝐾, 1o⟩] ~Q ) <Q 𝑢}⟩)) ∧ 𝑥 ∈ (1st ‘((𝐹𝐾) +P 𝑄))))) → ∃𝑟N ((𝐹𝑟) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝑟, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝑟, 1o⟩] ~Q ) <Q 𝑞}⟩)<P ⟨{𝑝𝑝 <Q 𝑥}, {𝑞𝑥 <Q 𝑞}⟩)
59 breq2 3941 . . . . . . . . . 10 (𝑢 = 𝑥 → (𝑝 <Q 𝑢𝑝 <Q 𝑥))
6059abbidv 2258 . . . . . . . . 9 (𝑢 = 𝑥 → {𝑝𝑝 <Q 𝑢} = {𝑝𝑝 <Q 𝑥})
61 breq1 3940 . . . . . . . . . 10 (𝑢 = 𝑥 → (𝑢 <Q 𝑞𝑥 <Q 𝑞))
6261abbidv 2258 . . . . . . . . 9 (𝑢 = 𝑥 → {𝑞𝑢 <Q 𝑞} = {𝑞𝑥 <Q 𝑞})
6360, 62opeq12d 3721 . . . . . . . 8 (𝑢 = 𝑥 → ⟨{𝑝𝑝 <Q 𝑢}, {𝑞𝑢 <Q 𝑞}⟩ = ⟨{𝑝𝑝 <Q 𝑥}, {𝑞𝑥 <Q 𝑞}⟩)
6463breq2d 3949 . . . . . . 7 (𝑢 = 𝑥 → (((𝐹𝑟) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝑟, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝑟, 1o⟩] ~Q ) <Q 𝑞}⟩)<P ⟨{𝑝𝑝 <Q 𝑢}, {𝑞𝑢 <Q 𝑞}⟩ ↔ ((𝐹𝑟) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝑟, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝑟, 1o⟩] ~Q ) <Q 𝑞}⟩)<P ⟨{𝑝𝑝 <Q 𝑥}, {𝑞𝑥 <Q 𝑞}⟩))
6564rexbidv 2439 . . . . . 6 (𝑢 = 𝑥 → (∃𝑟N ((𝐹𝑟) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝑟, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝑟, 1o⟩] ~Q ) <Q 𝑞}⟩)<P ⟨{𝑝𝑝 <Q 𝑢}, {𝑞𝑢 <Q 𝑞}⟩ ↔ ∃𝑟N ((𝐹𝑟) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝑟, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝑟, 1o⟩] ~Q ) <Q 𝑞}⟩)<P ⟨{𝑝𝑝 <Q 𝑥}, {𝑞𝑥 <Q 𝑞}⟩))
66 caucvgprpr.lim . . . . . . . 8 𝐿 = ⟨{𝑙Q ∣ ∃𝑟N ⟨{𝑝𝑝 <Q (𝑙 +Q (*Q‘[⟨𝑟, 1o⟩] ~Q ))}, {𝑞 ∣ (𝑙 +Q (*Q‘[⟨𝑟, 1o⟩] ~Q )) <Q 𝑞}⟩<P (𝐹𝑟)}, {𝑢Q ∣ ∃𝑟N ((𝐹𝑟) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝑟, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝑟, 1o⟩] ~Q ) <Q 𝑞}⟩)<P ⟨{𝑝𝑝 <Q 𝑢}, {𝑞𝑢 <Q 𝑞}⟩}⟩
6766fveq2i 5432 . . . . . . 7 (2nd𝐿) = (2nd ‘⟨{𝑙Q ∣ ∃𝑟N ⟨{𝑝𝑝 <Q (𝑙 +Q (*Q‘[⟨𝑟, 1o⟩] ~Q ))}, {𝑞 ∣ (𝑙 +Q (*Q‘[⟨𝑟, 1o⟩] ~Q )) <Q 𝑞}⟩<P (𝐹𝑟)}, {𝑢Q ∣ ∃𝑟N ((𝐹𝑟) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝑟, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝑟, 1o⟩] ~Q ) <Q 𝑞}⟩)<P ⟨{𝑝𝑝 <Q 𝑢}, {𝑞𝑢 <Q 𝑞}⟩}⟩)
68 nqex 7195 . . . . . . . . 9 Q ∈ V
6968rabex 4080 . . . . . . . 8 {𝑙Q ∣ ∃𝑟N ⟨{𝑝𝑝 <Q (𝑙 +Q (*Q‘[⟨𝑟, 1o⟩] ~Q ))}, {𝑞 ∣ (𝑙 +Q (*Q‘[⟨𝑟, 1o⟩] ~Q )) <Q 𝑞}⟩<P (𝐹𝑟)} ∈ V
7068rabex 4080 . . . . . . . 8 {𝑢Q ∣ ∃𝑟N ((𝐹𝑟) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝑟, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝑟, 1o⟩] ~Q ) <Q 𝑞}⟩)<P ⟨{𝑝𝑝 <Q 𝑢}, {𝑞𝑢 <Q 𝑞}⟩} ∈ V
7169, 70op2nd 6053 . . . . . . 7 (2nd ‘⟨{𝑙Q ∣ ∃𝑟N ⟨{𝑝𝑝 <Q (𝑙 +Q (*Q‘[⟨𝑟, 1o⟩] ~Q ))}, {𝑞 ∣ (𝑙 +Q (*Q‘[⟨𝑟, 1o⟩] ~Q )) <Q 𝑞}⟩<P (𝐹𝑟)}, {𝑢Q ∣ ∃𝑟N ((𝐹𝑟) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝑟, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝑟, 1o⟩] ~Q ) <Q 𝑞}⟩)<P ⟨{𝑝𝑝 <Q 𝑢}, {𝑞𝑢 <Q 𝑞}⟩}⟩) = {𝑢Q ∣ ∃𝑟N ((𝐹𝑟) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝑟, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝑟, 1o⟩] ~Q ) <Q 𝑞}⟩)<P ⟨{𝑝𝑝 <Q 𝑢}, {𝑞𝑢 <Q 𝑞}⟩}
7267, 71eqtri 2161 . . . . . 6 (2nd𝐿) = {𝑢Q ∣ ∃𝑟N ((𝐹𝑟) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝑟, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝑟, 1o⟩] ~Q ) <Q 𝑞}⟩)<P ⟨{𝑝𝑝 <Q 𝑢}, {𝑞𝑢 <Q 𝑞}⟩}
7365, 72elrab2 2847 . . . . 5 (𝑥 ∈ (2nd𝐿) ↔ (𝑥Q ∧ ∃𝑟N ((𝐹𝑟) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝑟, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝑟, 1o⟩] ~Q ) <Q 𝑞}⟩)<P ⟨{𝑝𝑝 <Q 𝑥}, {𝑞𝑥 <Q 𝑞}⟩))
7427, 58, 73sylanbrc 414 . . . 4 ((𝜑 ∧ (𝑥Q ∧ (𝑥 ∈ (2nd ‘((𝐹𝐾) +P ⟨{𝑙𝑙 <Q (*Q‘[⟨𝐾, 1o⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨𝐾, 1o⟩] ~Q ) <Q 𝑢}⟩)) ∧ 𝑥 ∈ (1st ‘((𝐹𝐾) +P 𝑄))))) → 𝑥 ∈ (2nd𝐿))
75 simprrr 530 . . . 4 ((𝜑 ∧ (𝑥Q ∧ (𝑥 ∈ (2nd ‘((𝐹𝐾) +P ⟨{𝑙𝑙 <Q (*Q‘[⟨𝐾, 1o⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨𝐾, 1o⟩] ~Q ) <Q 𝑢}⟩)) ∧ 𝑥 ∈ (1st ‘((𝐹𝐾) +P 𝑄))))) → 𝑥 ∈ (1st ‘((𝐹𝐾) +P 𝑄)))
76 rspe 2484 . . . 4 ((𝑥Q ∧ (𝑥 ∈ (2nd𝐿) ∧ 𝑥 ∈ (1st ‘((𝐹𝐾) +P 𝑄)))) → ∃𝑥Q (𝑥 ∈ (2nd𝐿) ∧ 𝑥 ∈ (1st ‘((𝐹𝐾) +P 𝑄))))
7727, 74, 75, 76syl12anc 1215 . . 3 ((𝜑 ∧ (𝑥Q ∧ (𝑥 ∈ (2nd ‘((𝐹𝐾) +P ⟨{𝑙𝑙 <Q (*Q‘[⟨𝐾, 1o⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨𝐾, 1o⟩] ~Q ) <Q 𝑢}⟩)) ∧ 𝑥 ∈ (1st ‘((𝐹𝐾) +P 𝑄))))) → ∃𝑥Q (𝑥 ∈ (2nd𝐿) ∧ 𝑥 ∈ (1st ‘((𝐹𝐾) +P 𝑄))))
78 caucvgprpr.cau . . . . . 6 (𝜑 → ∀𝑛N𝑘N (𝑛 <N 𝑘 → ((𝐹𝑛)<P ((𝐹𝑘) +P ⟨{𝑙𝑙 <Q (*Q‘[⟨𝑛, 1o⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨𝑛, 1o⟩] ~Q ) <Q 𝑢}⟩) ∧ (𝐹𝑘)<P ((𝐹𝑛) +P ⟨{𝑙𝑙 <Q (*Q‘[⟨𝑛, 1o⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨𝑛, 1o⟩] ~Q ) <Q 𝑢}⟩))))
79 caucvgprpr.bnd . . . . . 6 (𝜑 → ∀𝑚N 𝐴<P (𝐹𝑚))
8015, 78, 79, 66caucvgprprlemcl 7536 . . . . 5 (𝜑𝐿P)
8180adantr 274 . . . 4 ((𝜑 ∧ (𝑥Q ∧ (𝑥 ∈ (2nd ‘((𝐹𝐾) +P ⟨{𝑙𝑙 <Q (*Q‘[⟨𝐾, 1o⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨𝐾, 1o⟩] ~Q ) <Q 𝑢}⟩)) ∧ 𝑥 ∈ (1st ‘((𝐹𝐾) +P 𝑄))))) → 𝐿P)
8223adantr 274 . . . 4 ((𝜑 ∧ (𝑥Q ∧ (𝑥 ∈ (2nd ‘((𝐹𝐾) +P ⟨{𝑙𝑙 <Q (*Q‘[⟨𝐾, 1o⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨𝐾, 1o⟩] ~Q ) <Q 𝑢}⟩)) ∧ 𝑥 ∈ (1st ‘((𝐹𝐾) +P 𝑄))))) → ((𝐹𝐾) +P 𝑄) ∈ P)
83 ltdfpr 7338 . . . 4 ((𝐿P ∧ ((𝐹𝐾) +P 𝑄) ∈ P) → (𝐿<P ((𝐹𝐾) +P 𝑄) ↔ ∃𝑥Q (𝑥 ∈ (2nd𝐿) ∧ 𝑥 ∈ (1st ‘((𝐹𝐾) +P 𝑄)))))
8481, 82, 83syl2anc 409 . . 3 ((𝜑 ∧ (𝑥Q ∧ (𝑥 ∈ (2nd ‘((𝐹𝐾) +P ⟨{𝑙𝑙 <Q (*Q‘[⟨𝐾, 1o⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨𝐾, 1o⟩] ~Q ) <Q 𝑢}⟩)) ∧ 𝑥 ∈ (1st ‘((𝐹𝐾) +P 𝑄))))) → (𝐿<P ((𝐹𝐾) +P 𝑄) ↔ ∃𝑥Q (𝑥 ∈ (2nd𝐿) ∧ 𝑥 ∈ (1st ‘((𝐹𝐾) +P 𝑄)))))
8577, 84mpbird 166 . 2 ((𝜑 ∧ (𝑥Q ∧ (𝑥 ∈ (2nd ‘((𝐹𝐾) +P ⟨{𝑙𝑙 <Q (*Q‘[⟨𝐾, 1o⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨𝐾, 1o⟩] ~Q ) <Q 𝑢}⟩)) ∧ 𝑥 ∈ (1st ‘((𝐹𝐾) +P 𝑄))))) → 𝐿<P ((𝐹𝐾) +P 𝑄))
8626, 85rexlimddv 2557 1 (𝜑𝐿<P ((𝐹𝐾) +P 𝑄))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wb 104   = wceq 1332  wcel 1481  {cab 2126  wral 2417  wrex 2418  {crab 2421  cop 3535   class class class wbr 3937  wf 5127  cfv 5131  (class class class)co 5782  1st c1st 6044  2nd c2nd 6045  1oc1o 6314  [cec 6435  Ncnpi 7104   <N clti 7107   ~Q ceq 7111  Qcnq 7112   +Q cplq 7114  *Qcrq 7116   <Q cltq 7117  Pcnp 7123   +P cpp 7125  <P cltp 7127
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1424  ax-7 1425  ax-gen 1426  ax-ie1 1470  ax-ie2 1471  ax-8 1483  ax-10 1484  ax-11 1485  ax-i12 1486  ax-bndl 1487  ax-4 1488  ax-13 1492  ax-14 1493  ax-17 1507  ax-i9 1511  ax-ial 1515  ax-i5r 1516  ax-ext 2122  ax-coll 4051  ax-sep 4054  ax-nul 4062  ax-pow 4106  ax-pr 4139  ax-un 4363  ax-setind 4460  ax-iinf 4510
This theorem depends on definitions:  df-bi 116  df-dc 821  df-3or 964  df-3an 965  df-tru 1335  df-fal 1338  df-nf 1438  df-sb 1737  df-eu 2003  df-mo 2004  df-clab 2127  df-cleq 2133  df-clel 2136  df-nfc 2271  df-ne 2310  df-ral 2422  df-rex 2423  df-reu 2424  df-rab 2426  df-v 2691  df-sbc 2914  df-csb 3008  df-dif 3078  df-un 3080  df-in 3082  df-ss 3089  df-nul 3369  df-pw 3517  df-sn 3538  df-pr 3539  df-op 3541  df-uni 3745  df-int 3780  df-iun 3823  df-br 3938  df-opab 3998  df-mpt 3999  df-tr 4035  df-eprel 4219  df-id 4223  df-po 4226  df-iso 4227  df-iord 4296  df-on 4298  df-suc 4301  df-iom 4513  df-xp 4553  df-rel 4554  df-cnv 4555  df-co 4556  df-dm 4557  df-rn 4558  df-res 4559  df-ima 4560  df-iota 5096  df-fun 5133  df-fn 5134  df-f 5135  df-f1 5136  df-fo 5137  df-f1o 5138  df-fv 5139  df-ov 5785  df-oprab 5786  df-mpo 5787  df-1st 6046  df-2nd 6047  df-recs 6210  df-irdg 6275  df-1o 6321  df-2o 6322  df-oadd 6325  df-omul 6326  df-er 6437  df-ec 6439  df-qs 6443  df-ni 7136  df-pli 7137  df-mi 7138  df-lti 7139  df-plpq 7176  df-mpq 7177  df-enq 7179  df-nqqs 7180  df-plqqs 7181  df-mqqs 7182  df-1nqqs 7183  df-rq 7184  df-ltnqqs 7185  df-enq0 7256  df-nq0 7257  df-0nq0 7258  df-plq0 7259  df-mq0 7260  df-inp 7298  df-iplp 7300  df-iltp 7302
This theorem is referenced by:  caucvgprprlemlim  7543
  Copyright terms: Public domain W3C validator