Step | Hyp | Ref
| Expression |
1 | | oveq1 5849 |
. . . . . . 7
⊢ (𝑙 = 𝑠 → (𝑙 +Q 𝑞) = (𝑠 +Q 𝑞)) |
2 | 1 | breq1d 3992 |
. . . . . 6
⊢ (𝑙 = 𝑠 → ((𝑙 +Q 𝑞) <Q
(𝐹‘𝑞) ↔ (𝑠 +Q 𝑞) <Q
(𝐹‘𝑞))) |
3 | 2 | rexbidv 2467 |
. . . . 5
⊢ (𝑙 = 𝑠 → (∃𝑞 ∈ Q (𝑙 +Q 𝑞) <Q
(𝐹‘𝑞) ↔ ∃𝑞 ∈ Q (𝑠 +Q 𝑞) <Q
(𝐹‘𝑞))) |
4 | | cauappcvgpr.lim |
. . . . . . 7
⊢ 𝐿 = 〈{𝑙 ∈ Q ∣ ∃𝑞 ∈ Q (𝑙 +Q
𝑞)
<Q (𝐹‘𝑞)}, {𝑢 ∈ Q ∣ ∃𝑞 ∈ Q ((𝐹‘𝑞) +Q 𝑞) <Q
𝑢}〉 |
5 | 4 | fveq2i 5489 |
. . . . . 6
⊢
(1st ‘𝐿) = (1st ‘〈{𝑙 ∈ Q ∣
∃𝑞 ∈
Q (𝑙
+Q 𝑞) <Q (𝐹‘𝑞)}, {𝑢 ∈ Q ∣ ∃𝑞 ∈ Q ((𝐹‘𝑞) +Q 𝑞) <Q
𝑢}〉) |
6 | | nqex 7304 |
. . . . . . . 8
⊢
Q ∈ V |
7 | 6 | rabex 4126 |
. . . . . . 7
⊢ {𝑙 ∈ Q ∣
∃𝑞 ∈
Q (𝑙
+Q 𝑞) <Q (𝐹‘𝑞)} ∈ V |
8 | 6 | rabex 4126 |
. . . . . . 7
⊢ {𝑢 ∈ Q ∣
∃𝑞 ∈
Q ((𝐹‘𝑞) +Q 𝑞) <Q
𝑢} ∈
V |
9 | 7, 8 | op1st 6114 |
. . . . . 6
⊢
(1st ‘〈{𝑙 ∈ Q ∣ ∃𝑞 ∈ Q (𝑙 +Q
𝑞)
<Q (𝐹‘𝑞)}, {𝑢 ∈ Q ∣ ∃𝑞 ∈ Q ((𝐹‘𝑞) +Q 𝑞) <Q
𝑢}〉) = {𝑙 ∈ Q ∣
∃𝑞 ∈
Q (𝑙
+Q 𝑞) <Q (𝐹‘𝑞)} |
10 | 5, 9 | eqtri 2186 |
. . . . 5
⊢
(1st ‘𝐿) = {𝑙 ∈ Q ∣ ∃𝑞 ∈ Q (𝑙 +Q
𝑞)
<Q (𝐹‘𝑞)} |
11 | 3, 10 | elrab2 2885 |
. . . 4
⊢ (𝑠 ∈ (1st
‘𝐿) ↔ (𝑠 ∈ Q ∧
∃𝑞 ∈
Q (𝑠
+Q 𝑞) <Q (𝐹‘𝑞))) |
12 | 11 | simprbi 273 |
. . 3
⊢ (𝑠 ∈ (1st
‘𝐿) →
∃𝑞 ∈
Q (𝑠
+Q 𝑞) <Q (𝐹‘𝑞)) |
13 | 12 | adantl 275 |
. 2
⊢ ((𝜑 ∧ 𝑠 ∈ (1st ‘𝐿)) → ∃𝑞 ∈ Q (𝑠 +Q
𝑞)
<Q (𝐹‘𝑞)) |
14 | | simprr 522 |
. . . 4
⊢ (((𝜑 ∧ 𝑠 ∈ (1st ‘𝐿)) ∧ (𝑞 ∈ Q ∧ (𝑠 +Q
𝑞)
<Q (𝐹‘𝑞))) → (𝑠 +Q 𝑞) <Q
(𝐹‘𝑞)) |
15 | | ltbtwnnqq 7356 |
. . . 4
⊢ ((𝑠 +Q
𝑞)
<Q (𝐹‘𝑞) ↔ ∃𝑡 ∈ Q ((𝑠 +Q 𝑞) <Q
𝑡 ∧ 𝑡 <Q (𝐹‘𝑞))) |
16 | 14, 15 | sylib 121 |
. . 3
⊢ (((𝜑 ∧ 𝑠 ∈ (1st ‘𝐿)) ∧ (𝑞 ∈ Q ∧ (𝑠 +Q
𝑞)
<Q (𝐹‘𝑞))) → ∃𝑡 ∈ Q ((𝑠 +Q 𝑞) <Q
𝑡 ∧ 𝑡 <Q (𝐹‘𝑞))) |
17 | | simplrl 525 |
. . . . . . . 8
⊢ ((((𝜑 ∧ 𝑠 ∈ (1st ‘𝐿)) ∧ (𝑞 ∈ Q ∧ (𝑠 +Q
𝑞)
<Q (𝐹‘𝑞))) ∧ (𝑡 ∈ Q ∧ ((𝑠 +Q
𝑞)
<Q 𝑡 ∧ 𝑡 <Q (𝐹‘𝑞)))) → 𝑞 ∈ Q) |
18 | 11 | simplbi 272 |
. . . . . . . . 9
⊢ (𝑠 ∈ (1st
‘𝐿) → 𝑠 ∈
Q) |
19 | 18 | ad3antlr 485 |
. . . . . . . 8
⊢ ((((𝜑 ∧ 𝑠 ∈ (1st ‘𝐿)) ∧ (𝑞 ∈ Q ∧ (𝑠 +Q
𝑞)
<Q (𝐹‘𝑞))) ∧ (𝑡 ∈ Q ∧ ((𝑠 +Q
𝑞)
<Q 𝑡 ∧ 𝑡 <Q (𝐹‘𝑞)))) → 𝑠 ∈ Q) |
20 | | ltaddnq 7348 |
. . . . . . . 8
⊢ ((𝑞 ∈ Q ∧
𝑠 ∈ Q)
→ 𝑞
<Q (𝑞 +Q 𝑠)) |
21 | 17, 19, 20 | syl2anc 409 |
. . . . . . 7
⊢ ((((𝜑 ∧ 𝑠 ∈ (1st ‘𝐿)) ∧ (𝑞 ∈ Q ∧ (𝑠 +Q
𝑞)
<Q (𝐹‘𝑞))) ∧ (𝑡 ∈ Q ∧ ((𝑠 +Q
𝑞)
<Q 𝑡 ∧ 𝑡 <Q (𝐹‘𝑞)))) → 𝑞 <Q (𝑞 +Q
𝑠)) |
22 | | addcomnqg 7322 |
. . . . . . . 8
⊢ ((𝑞 ∈ Q ∧
𝑠 ∈ Q)
→ (𝑞
+Q 𝑠) = (𝑠 +Q 𝑞)) |
23 | 17, 19, 22 | syl2anc 409 |
. . . . . . 7
⊢ ((((𝜑 ∧ 𝑠 ∈ (1st ‘𝐿)) ∧ (𝑞 ∈ Q ∧ (𝑠 +Q
𝑞)
<Q (𝐹‘𝑞))) ∧ (𝑡 ∈ Q ∧ ((𝑠 +Q
𝑞)
<Q 𝑡 ∧ 𝑡 <Q (𝐹‘𝑞)))) → (𝑞 +Q 𝑠) = (𝑠 +Q 𝑞)) |
24 | 21, 23 | breqtrd 4008 |
. . . . . 6
⊢ ((((𝜑 ∧ 𝑠 ∈ (1st ‘𝐿)) ∧ (𝑞 ∈ Q ∧ (𝑠 +Q
𝑞)
<Q (𝐹‘𝑞))) ∧ (𝑡 ∈ Q ∧ ((𝑠 +Q
𝑞)
<Q 𝑡 ∧ 𝑡 <Q (𝐹‘𝑞)))) → 𝑞 <Q (𝑠 +Q
𝑞)) |
25 | | simprrl 529 |
. . . . . 6
⊢ ((((𝜑 ∧ 𝑠 ∈ (1st ‘𝐿)) ∧ (𝑞 ∈ Q ∧ (𝑠 +Q
𝑞)
<Q (𝐹‘𝑞))) ∧ (𝑡 ∈ Q ∧ ((𝑠 +Q
𝑞)
<Q 𝑡 ∧ 𝑡 <Q (𝐹‘𝑞)))) → (𝑠 +Q 𝑞) <Q
𝑡) |
26 | | ltsonq 7339 |
. . . . . . 7
⊢
<Q Or Q |
27 | | ltrelnq 7306 |
. . . . . . 7
⊢
<Q ⊆ (Q ×
Q) |
28 | 26, 27 | sotri 4999 |
. . . . . 6
⊢ ((𝑞 <Q
(𝑠
+Q 𝑞) ∧ (𝑠 +Q 𝑞) <Q
𝑡) → 𝑞 <Q
𝑡) |
29 | 24, 25, 28 | syl2anc 409 |
. . . . 5
⊢ ((((𝜑 ∧ 𝑠 ∈ (1st ‘𝐿)) ∧ (𝑞 ∈ Q ∧ (𝑠 +Q
𝑞)
<Q (𝐹‘𝑞))) ∧ (𝑡 ∈ Q ∧ ((𝑠 +Q
𝑞)
<Q 𝑡 ∧ 𝑡 <Q (𝐹‘𝑞)))) → 𝑞 <Q 𝑡) |
30 | | simprl 521 |
. . . . . 6
⊢ ((((𝜑 ∧ 𝑠 ∈ (1st ‘𝐿)) ∧ (𝑞 ∈ Q ∧ (𝑠 +Q
𝑞)
<Q (𝐹‘𝑞))) ∧ (𝑡 ∈ Q ∧ ((𝑠 +Q
𝑞)
<Q 𝑡 ∧ 𝑡 <Q (𝐹‘𝑞)))) → 𝑡 ∈ Q) |
31 | | ltexnqq 7349 |
. . . . . 6
⊢ ((𝑞 ∈ Q ∧
𝑡 ∈ Q)
→ (𝑞
<Q 𝑡 ↔ ∃𝑟 ∈ Q (𝑞 +Q 𝑟) = 𝑡)) |
32 | 17, 30, 31 | syl2anc 409 |
. . . . 5
⊢ ((((𝜑 ∧ 𝑠 ∈ (1st ‘𝐿)) ∧ (𝑞 ∈ Q ∧ (𝑠 +Q
𝑞)
<Q (𝐹‘𝑞))) ∧ (𝑡 ∈ Q ∧ ((𝑠 +Q
𝑞)
<Q 𝑡 ∧ 𝑡 <Q (𝐹‘𝑞)))) → (𝑞 <Q 𝑡 ↔ ∃𝑟 ∈ Q (𝑞 +Q
𝑟) = 𝑡)) |
33 | 29, 32 | mpbid 146 |
. . . 4
⊢ ((((𝜑 ∧ 𝑠 ∈ (1st ‘𝐿)) ∧ (𝑞 ∈ Q ∧ (𝑠 +Q
𝑞)
<Q (𝐹‘𝑞))) ∧ (𝑡 ∈ Q ∧ ((𝑠 +Q
𝑞)
<Q 𝑡 ∧ 𝑡 <Q (𝐹‘𝑞)))) → ∃𝑟 ∈ Q (𝑞 +Q 𝑟) = 𝑡) |
34 | 25 | ad2antrr 480 |
. . . . . . . . . 10
⊢
((((((𝜑 ∧ 𝑠 ∈ (1st
‘𝐿)) ∧ (𝑞 ∈ Q ∧
(𝑠
+Q 𝑞) <Q (𝐹‘𝑞))) ∧ (𝑡 ∈ Q ∧ ((𝑠 +Q
𝑞)
<Q 𝑡 ∧ 𝑡 <Q (𝐹‘𝑞)))) ∧ 𝑟 ∈ Q) ∧ (𝑞 +Q
𝑟) = 𝑡) → (𝑠 +Q 𝑞) <Q
𝑡) |
35 | 19 | ad2antrr 480 |
. . . . . . . . . . . 12
⊢
((((((𝜑 ∧ 𝑠 ∈ (1st
‘𝐿)) ∧ (𝑞 ∈ Q ∧
(𝑠
+Q 𝑞) <Q (𝐹‘𝑞))) ∧ (𝑡 ∈ Q ∧ ((𝑠 +Q
𝑞)
<Q 𝑡 ∧ 𝑡 <Q (𝐹‘𝑞)))) ∧ 𝑟 ∈ Q) ∧ (𝑞 +Q
𝑟) = 𝑡) → 𝑠 ∈ Q) |
36 | 17 | ad2antrr 480 |
. . . . . . . . . . . 12
⊢
((((((𝜑 ∧ 𝑠 ∈ (1st
‘𝐿)) ∧ (𝑞 ∈ Q ∧
(𝑠
+Q 𝑞) <Q (𝐹‘𝑞))) ∧ (𝑡 ∈ Q ∧ ((𝑠 +Q
𝑞)
<Q 𝑡 ∧ 𝑡 <Q (𝐹‘𝑞)))) ∧ 𝑟 ∈ Q) ∧ (𝑞 +Q
𝑟) = 𝑡) → 𝑞 ∈ Q) |
37 | | addcomnqg 7322 |
. . . . . . . . . . . 12
⊢ ((𝑠 ∈ Q ∧
𝑞 ∈ Q)
→ (𝑠
+Q 𝑞) = (𝑞 +Q 𝑠)) |
38 | 35, 36, 37 | syl2anc 409 |
. . . . . . . . . . 11
⊢
((((((𝜑 ∧ 𝑠 ∈ (1st
‘𝐿)) ∧ (𝑞 ∈ Q ∧
(𝑠
+Q 𝑞) <Q (𝐹‘𝑞))) ∧ (𝑡 ∈ Q ∧ ((𝑠 +Q
𝑞)
<Q 𝑡 ∧ 𝑡 <Q (𝐹‘𝑞)))) ∧ 𝑟 ∈ Q) ∧ (𝑞 +Q
𝑟) = 𝑡) → (𝑠 +Q 𝑞) = (𝑞 +Q 𝑠)) |
39 | 38 | breq1d 3992 |
. . . . . . . . . 10
⊢
((((((𝜑 ∧ 𝑠 ∈ (1st
‘𝐿)) ∧ (𝑞 ∈ Q ∧
(𝑠
+Q 𝑞) <Q (𝐹‘𝑞))) ∧ (𝑡 ∈ Q ∧ ((𝑠 +Q
𝑞)
<Q 𝑡 ∧ 𝑡 <Q (𝐹‘𝑞)))) ∧ 𝑟 ∈ Q) ∧ (𝑞 +Q
𝑟) = 𝑡) → ((𝑠 +Q 𝑞) <Q
𝑡 ↔ (𝑞 +Q
𝑠)
<Q 𝑡)) |
40 | 34, 39 | mpbid 146 |
. . . . . . . . 9
⊢
((((((𝜑 ∧ 𝑠 ∈ (1st
‘𝐿)) ∧ (𝑞 ∈ Q ∧
(𝑠
+Q 𝑞) <Q (𝐹‘𝑞))) ∧ (𝑡 ∈ Q ∧ ((𝑠 +Q
𝑞)
<Q 𝑡 ∧ 𝑡 <Q (𝐹‘𝑞)))) ∧ 𝑟 ∈ Q) ∧ (𝑞 +Q
𝑟) = 𝑡) → (𝑞 +Q 𝑠) <Q
𝑡) |
41 | | simpr 109 |
. . . . . . . . 9
⊢
((((((𝜑 ∧ 𝑠 ∈ (1st
‘𝐿)) ∧ (𝑞 ∈ Q ∧
(𝑠
+Q 𝑞) <Q (𝐹‘𝑞))) ∧ (𝑡 ∈ Q ∧ ((𝑠 +Q
𝑞)
<Q 𝑡 ∧ 𝑡 <Q (𝐹‘𝑞)))) ∧ 𝑟 ∈ Q) ∧ (𝑞 +Q
𝑟) = 𝑡) → (𝑞 +Q 𝑟) = 𝑡) |
42 | 40, 41 | breqtrrd 4010 |
. . . . . . . 8
⊢
((((((𝜑 ∧ 𝑠 ∈ (1st
‘𝐿)) ∧ (𝑞 ∈ Q ∧
(𝑠
+Q 𝑞) <Q (𝐹‘𝑞))) ∧ (𝑡 ∈ Q ∧ ((𝑠 +Q
𝑞)
<Q 𝑡 ∧ 𝑡 <Q (𝐹‘𝑞)))) ∧ 𝑟 ∈ Q) ∧ (𝑞 +Q
𝑟) = 𝑡) → (𝑞 +Q 𝑠) <Q
(𝑞
+Q 𝑟)) |
43 | | simplr 520 |
. . . . . . . . 9
⊢
((((((𝜑 ∧ 𝑠 ∈ (1st
‘𝐿)) ∧ (𝑞 ∈ Q ∧
(𝑠
+Q 𝑞) <Q (𝐹‘𝑞))) ∧ (𝑡 ∈ Q ∧ ((𝑠 +Q
𝑞)
<Q 𝑡 ∧ 𝑡 <Q (𝐹‘𝑞)))) ∧ 𝑟 ∈ Q) ∧ (𝑞 +Q
𝑟) = 𝑡) → 𝑟 ∈ Q) |
44 | | ltanqg 7341 |
. . . . . . . . 9
⊢ ((𝑠 ∈ Q ∧
𝑟 ∈ Q
∧ 𝑞 ∈
Q) → (𝑠
<Q 𝑟 ↔ (𝑞 +Q 𝑠) <Q
(𝑞
+Q 𝑟))) |
45 | 35, 43, 36, 44 | syl3anc 1228 |
. . . . . . . 8
⊢
((((((𝜑 ∧ 𝑠 ∈ (1st
‘𝐿)) ∧ (𝑞 ∈ Q ∧
(𝑠
+Q 𝑞) <Q (𝐹‘𝑞))) ∧ (𝑡 ∈ Q ∧ ((𝑠 +Q
𝑞)
<Q 𝑡 ∧ 𝑡 <Q (𝐹‘𝑞)))) ∧ 𝑟 ∈ Q) ∧ (𝑞 +Q
𝑟) = 𝑡) → (𝑠 <Q 𝑟 ↔ (𝑞 +Q 𝑠) <Q
(𝑞
+Q 𝑟))) |
46 | 42, 45 | mpbird 166 |
. . . . . . 7
⊢
((((((𝜑 ∧ 𝑠 ∈ (1st
‘𝐿)) ∧ (𝑞 ∈ Q ∧
(𝑠
+Q 𝑞) <Q (𝐹‘𝑞))) ∧ (𝑡 ∈ Q ∧ ((𝑠 +Q
𝑞)
<Q 𝑡 ∧ 𝑡 <Q (𝐹‘𝑞)))) ∧ 𝑟 ∈ Q) ∧ (𝑞 +Q
𝑟) = 𝑡) → 𝑠 <Q 𝑟) |
47 | | simprrr 530 |
. . . . . . . . . . 11
⊢ ((((𝜑 ∧ 𝑠 ∈ (1st ‘𝐿)) ∧ (𝑞 ∈ Q ∧ (𝑠 +Q
𝑞)
<Q (𝐹‘𝑞))) ∧ (𝑡 ∈ Q ∧ ((𝑠 +Q
𝑞)
<Q 𝑡 ∧ 𝑡 <Q (𝐹‘𝑞)))) → 𝑡 <Q (𝐹‘𝑞)) |
48 | 47 | ad2antrr 480 |
. . . . . . . . . 10
⊢
((((((𝜑 ∧ 𝑠 ∈ (1st
‘𝐿)) ∧ (𝑞 ∈ Q ∧
(𝑠
+Q 𝑞) <Q (𝐹‘𝑞))) ∧ (𝑡 ∈ Q ∧ ((𝑠 +Q
𝑞)
<Q 𝑡 ∧ 𝑡 <Q (𝐹‘𝑞)))) ∧ 𝑟 ∈ Q) ∧ (𝑞 +Q
𝑟) = 𝑡) → 𝑡 <Q (𝐹‘𝑞)) |
49 | | addcomnqg 7322 |
. . . . . . . . . . . . 13
⊢ ((𝑞 ∈ Q ∧
𝑟 ∈ Q)
→ (𝑞
+Q 𝑟) = (𝑟 +Q 𝑞)) |
50 | 36, 43, 49 | syl2anc 409 |
. . . . . . . . . . . 12
⊢
((((((𝜑 ∧ 𝑠 ∈ (1st
‘𝐿)) ∧ (𝑞 ∈ Q ∧
(𝑠
+Q 𝑞) <Q (𝐹‘𝑞))) ∧ (𝑡 ∈ Q ∧ ((𝑠 +Q
𝑞)
<Q 𝑡 ∧ 𝑡 <Q (𝐹‘𝑞)))) ∧ 𝑟 ∈ Q) ∧ (𝑞 +Q
𝑟) = 𝑡) → (𝑞 +Q 𝑟) = (𝑟 +Q 𝑞)) |
51 | 50, 41 | eqtr3d 2200 |
. . . . . . . . . . 11
⊢
((((((𝜑 ∧ 𝑠 ∈ (1st
‘𝐿)) ∧ (𝑞 ∈ Q ∧
(𝑠
+Q 𝑞) <Q (𝐹‘𝑞))) ∧ (𝑡 ∈ Q ∧ ((𝑠 +Q
𝑞)
<Q 𝑡 ∧ 𝑡 <Q (𝐹‘𝑞)))) ∧ 𝑟 ∈ Q) ∧ (𝑞 +Q
𝑟) = 𝑡) → (𝑟 +Q 𝑞) = 𝑡) |
52 | 51 | breq1d 3992 |
. . . . . . . . . 10
⊢
((((((𝜑 ∧ 𝑠 ∈ (1st
‘𝐿)) ∧ (𝑞 ∈ Q ∧
(𝑠
+Q 𝑞) <Q (𝐹‘𝑞))) ∧ (𝑡 ∈ Q ∧ ((𝑠 +Q
𝑞)
<Q 𝑡 ∧ 𝑡 <Q (𝐹‘𝑞)))) ∧ 𝑟 ∈ Q) ∧ (𝑞 +Q
𝑟) = 𝑡) → ((𝑟 +Q 𝑞) <Q
(𝐹‘𝑞) ↔ 𝑡 <Q (𝐹‘𝑞))) |
53 | 48, 52 | mpbird 166 |
. . . . . . . . 9
⊢
((((((𝜑 ∧ 𝑠 ∈ (1st
‘𝐿)) ∧ (𝑞 ∈ Q ∧
(𝑠
+Q 𝑞) <Q (𝐹‘𝑞))) ∧ (𝑡 ∈ Q ∧ ((𝑠 +Q
𝑞)
<Q 𝑡 ∧ 𝑡 <Q (𝐹‘𝑞)))) ∧ 𝑟 ∈ Q) ∧ (𝑞 +Q
𝑟) = 𝑡) → (𝑟 +Q 𝑞) <Q
(𝐹‘𝑞)) |
54 | | rspe 2515 |
. . . . . . . . 9
⊢ ((𝑞 ∈ Q ∧
(𝑟
+Q 𝑞) <Q (𝐹‘𝑞)) → ∃𝑞 ∈ Q (𝑟 +Q 𝑞) <Q
(𝐹‘𝑞)) |
55 | 36, 53, 54 | syl2anc 409 |
. . . . . . . 8
⊢
((((((𝜑 ∧ 𝑠 ∈ (1st
‘𝐿)) ∧ (𝑞 ∈ Q ∧
(𝑠
+Q 𝑞) <Q (𝐹‘𝑞))) ∧ (𝑡 ∈ Q ∧ ((𝑠 +Q
𝑞)
<Q 𝑡 ∧ 𝑡 <Q (𝐹‘𝑞)))) ∧ 𝑟 ∈ Q) ∧ (𝑞 +Q
𝑟) = 𝑡) → ∃𝑞 ∈ Q (𝑟 +Q 𝑞) <Q
(𝐹‘𝑞)) |
56 | | oveq1 5849 |
. . . . . . . . . . 11
⊢ (𝑙 = 𝑟 → (𝑙 +Q 𝑞) = (𝑟 +Q 𝑞)) |
57 | 56 | breq1d 3992 |
. . . . . . . . . 10
⊢ (𝑙 = 𝑟 → ((𝑙 +Q 𝑞) <Q
(𝐹‘𝑞) ↔ (𝑟 +Q 𝑞) <Q
(𝐹‘𝑞))) |
58 | 57 | rexbidv 2467 |
. . . . . . . . 9
⊢ (𝑙 = 𝑟 → (∃𝑞 ∈ Q (𝑙 +Q 𝑞) <Q
(𝐹‘𝑞) ↔ ∃𝑞 ∈ Q (𝑟 +Q 𝑞) <Q
(𝐹‘𝑞))) |
59 | 58, 10 | elrab2 2885 |
. . . . . . . 8
⊢ (𝑟 ∈ (1st
‘𝐿) ↔ (𝑟 ∈ Q ∧
∃𝑞 ∈
Q (𝑟
+Q 𝑞) <Q (𝐹‘𝑞))) |
60 | 43, 55, 59 | sylanbrc 414 |
. . . . . . 7
⊢
((((((𝜑 ∧ 𝑠 ∈ (1st
‘𝐿)) ∧ (𝑞 ∈ Q ∧
(𝑠
+Q 𝑞) <Q (𝐹‘𝑞))) ∧ (𝑡 ∈ Q ∧ ((𝑠 +Q
𝑞)
<Q 𝑡 ∧ 𝑡 <Q (𝐹‘𝑞)))) ∧ 𝑟 ∈ Q) ∧ (𝑞 +Q
𝑟) = 𝑡) → 𝑟 ∈ (1st ‘𝐿)) |
61 | 46, 60 | jca 304 |
. . . . . 6
⊢
((((((𝜑 ∧ 𝑠 ∈ (1st
‘𝐿)) ∧ (𝑞 ∈ Q ∧
(𝑠
+Q 𝑞) <Q (𝐹‘𝑞))) ∧ (𝑡 ∈ Q ∧ ((𝑠 +Q
𝑞)
<Q 𝑡 ∧ 𝑡 <Q (𝐹‘𝑞)))) ∧ 𝑟 ∈ Q) ∧ (𝑞 +Q
𝑟) = 𝑡) → (𝑠 <Q 𝑟 ∧ 𝑟 ∈ (1st ‘𝐿))) |
62 | 61 | ex 114 |
. . . . 5
⊢
(((((𝜑 ∧ 𝑠 ∈ (1st
‘𝐿)) ∧ (𝑞 ∈ Q ∧
(𝑠
+Q 𝑞) <Q (𝐹‘𝑞))) ∧ (𝑡 ∈ Q ∧ ((𝑠 +Q
𝑞)
<Q 𝑡 ∧ 𝑡 <Q (𝐹‘𝑞)))) ∧ 𝑟 ∈ Q) → ((𝑞 +Q
𝑟) = 𝑡 → (𝑠 <Q 𝑟 ∧ 𝑟 ∈ (1st ‘𝐿)))) |
63 | 62 | reximdva 2568 |
. . . 4
⊢ ((((𝜑 ∧ 𝑠 ∈ (1st ‘𝐿)) ∧ (𝑞 ∈ Q ∧ (𝑠 +Q
𝑞)
<Q (𝐹‘𝑞))) ∧ (𝑡 ∈ Q ∧ ((𝑠 +Q
𝑞)
<Q 𝑡 ∧ 𝑡 <Q (𝐹‘𝑞)))) → (∃𝑟 ∈ Q (𝑞 +Q 𝑟) = 𝑡 → ∃𝑟 ∈ Q (𝑠 <Q 𝑟 ∧ 𝑟 ∈ (1st ‘𝐿)))) |
64 | 33, 63 | mpd 13 |
. . 3
⊢ ((((𝜑 ∧ 𝑠 ∈ (1st ‘𝐿)) ∧ (𝑞 ∈ Q ∧ (𝑠 +Q
𝑞)
<Q (𝐹‘𝑞))) ∧ (𝑡 ∈ Q ∧ ((𝑠 +Q
𝑞)
<Q 𝑡 ∧ 𝑡 <Q (𝐹‘𝑞)))) → ∃𝑟 ∈ Q (𝑠 <Q 𝑟 ∧ 𝑟 ∈ (1st ‘𝐿))) |
65 | 16, 64 | rexlimddv 2588 |
. 2
⊢ (((𝜑 ∧ 𝑠 ∈ (1st ‘𝐿)) ∧ (𝑞 ∈ Q ∧ (𝑠 +Q
𝑞)
<Q (𝐹‘𝑞))) → ∃𝑟 ∈ Q (𝑠 <Q 𝑟 ∧ 𝑟 ∈ (1st ‘𝐿))) |
66 | 13, 65 | rexlimddv 2588 |
1
⊢ ((𝜑 ∧ 𝑠 ∈ (1st ‘𝐿)) → ∃𝑟 ∈ Q (𝑠 <Q
𝑟 ∧ 𝑟 ∈ (1st ‘𝐿))) |