ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  cauappcvgprlemopl GIF version

Theorem cauappcvgprlemopl 7620
Description: Lemma for cauappcvgpr 7636. The lower cut of the putative limit is open. (Contributed by Jim Kingdon, 4-Aug-2020.)
Hypotheses
Ref Expression
cauappcvgpr.f (𝜑𝐹:QQ)
cauappcvgpr.app (𝜑 → ∀𝑝Q𝑞Q ((𝐹𝑝) <Q ((𝐹𝑞) +Q (𝑝 +Q 𝑞)) ∧ (𝐹𝑞) <Q ((𝐹𝑝) +Q (𝑝 +Q 𝑞))))
cauappcvgpr.bnd (𝜑 → ∀𝑝Q 𝐴 <Q (𝐹𝑝))
cauappcvgpr.lim 𝐿 = ⟨{𝑙Q ∣ ∃𝑞Q (𝑙 +Q 𝑞) <Q (𝐹𝑞)}, {𝑢Q ∣ ∃𝑞Q ((𝐹𝑞) +Q 𝑞) <Q 𝑢}⟩
Assertion
Ref Expression
cauappcvgprlemopl ((𝜑𝑠 ∈ (1st𝐿)) → ∃𝑟Q (𝑠 <Q 𝑟𝑟 ∈ (1st𝐿)))
Distinct variable groups:   𝐴,𝑝   𝐿,𝑝,𝑞   𝜑,𝑝,𝑞   𝐿,𝑟,𝑠   𝐴,𝑠,𝑝   𝐹,𝑙,𝑢,𝑝,𝑞,𝑟,𝑠   𝜑,𝑟,𝑠
Allowed substitution hints:   𝜑(𝑢,𝑙)   𝐴(𝑢,𝑟,𝑞,𝑙)   𝐿(𝑢,𝑙)

Proof of Theorem cauappcvgprlemopl
Dummy variable 𝑡 is distinct from all other variables.
StepHypRef Expression
1 oveq1 5872 . . . . . . 7 (𝑙 = 𝑠 → (𝑙 +Q 𝑞) = (𝑠 +Q 𝑞))
21breq1d 4008 . . . . . 6 (𝑙 = 𝑠 → ((𝑙 +Q 𝑞) <Q (𝐹𝑞) ↔ (𝑠 +Q 𝑞) <Q (𝐹𝑞)))
32rexbidv 2476 . . . . 5 (𝑙 = 𝑠 → (∃𝑞Q (𝑙 +Q 𝑞) <Q (𝐹𝑞) ↔ ∃𝑞Q (𝑠 +Q 𝑞) <Q (𝐹𝑞)))
4 cauappcvgpr.lim . . . . . . 7 𝐿 = ⟨{𝑙Q ∣ ∃𝑞Q (𝑙 +Q 𝑞) <Q (𝐹𝑞)}, {𝑢Q ∣ ∃𝑞Q ((𝐹𝑞) +Q 𝑞) <Q 𝑢}⟩
54fveq2i 5510 . . . . . 6 (1st𝐿) = (1st ‘⟨{𝑙Q ∣ ∃𝑞Q (𝑙 +Q 𝑞) <Q (𝐹𝑞)}, {𝑢Q ∣ ∃𝑞Q ((𝐹𝑞) +Q 𝑞) <Q 𝑢}⟩)
6 nqex 7337 . . . . . . . 8 Q ∈ V
76rabex 4142 . . . . . . 7 {𝑙Q ∣ ∃𝑞Q (𝑙 +Q 𝑞) <Q (𝐹𝑞)} ∈ V
86rabex 4142 . . . . . . 7 {𝑢Q ∣ ∃𝑞Q ((𝐹𝑞) +Q 𝑞) <Q 𝑢} ∈ V
97, 8op1st 6137 . . . . . 6 (1st ‘⟨{𝑙Q ∣ ∃𝑞Q (𝑙 +Q 𝑞) <Q (𝐹𝑞)}, {𝑢Q ∣ ∃𝑞Q ((𝐹𝑞) +Q 𝑞) <Q 𝑢}⟩) = {𝑙Q ∣ ∃𝑞Q (𝑙 +Q 𝑞) <Q (𝐹𝑞)}
105, 9eqtri 2196 . . . . 5 (1st𝐿) = {𝑙Q ∣ ∃𝑞Q (𝑙 +Q 𝑞) <Q (𝐹𝑞)}
113, 10elrab2 2894 . . . 4 (𝑠 ∈ (1st𝐿) ↔ (𝑠Q ∧ ∃𝑞Q (𝑠 +Q 𝑞) <Q (𝐹𝑞)))
1211simprbi 275 . . 3 (𝑠 ∈ (1st𝐿) → ∃𝑞Q (𝑠 +Q 𝑞) <Q (𝐹𝑞))
1312adantl 277 . 2 ((𝜑𝑠 ∈ (1st𝐿)) → ∃𝑞Q (𝑠 +Q 𝑞) <Q (𝐹𝑞))
14 simprr 531 . . . 4 (((𝜑𝑠 ∈ (1st𝐿)) ∧ (𝑞Q ∧ (𝑠 +Q 𝑞) <Q (𝐹𝑞))) → (𝑠 +Q 𝑞) <Q (𝐹𝑞))
15 ltbtwnnqq 7389 . . . 4 ((𝑠 +Q 𝑞) <Q (𝐹𝑞) ↔ ∃𝑡Q ((𝑠 +Q 𝑞) <Q 𝑡𝑡 <Q (𝐹𝑞)))
1614, 15sylib 122 . . 3 (((𝜑𝑠 ∈ (1st𝐿)) ∧ (𝑞Q ∧ (𝑠 +Q 𝑞) <Q (𝐹𝑞))) → ∃𝑡Q ((𝑠 +Q 𝑞) <Q 𝑡𝑡 <Q (𝐹𝑞)))
17 simplrl 535 . . . . . . . 8 ((((𝜑𝑠 ∈ (1st𝐿)) ∧ (𝑞Q ∧ (𝑠 +Q 𝑞) <Q (𝐹𝑞))) ∧ (𝑡Q ∧ ((𝑠 +Q 𝑞) <Q 𝑡𝑡 <Q (𝐹𝑞)))) → 𝑞Q)
1811simplbi 274 . . . . . . . . 9 (𝑠 ∈ (1st𝐿) → 𝑠Q)
1918ad3antlr 493 . . . . . . . 8 ((((𝜑𝑠 ∈ (1st𝐿)) ∧ (𝑞Q ∧ (𝑠 +Q 𝑞) <Q (𝐹𝑞))) ∧ (𝑡Q ∧ ((𝑠 +Q 𝑞) <Q 𝑡𝑡 <Q (𝐹𝑞)))) → 𝑠Q)
20 ltaddnq 7381 . . . . . . . 8 ((𝑞Q𝑠Q) → 𝑞 <Q (𝑞 +Q 𝑠))
2117, 19, 20syl2anc 411 . . . . . . 7 ((((𝜑𝑠 ∈ (1st𝐿)) ∧ (𝑞Q ∧ (𝑠 +Q 𝑞) <Q (𝐹𝑞))) ∧ (𝑡Q ∧ ((𝑠 +Q 𝑞) <Q 𝑡𝑡 <Q (𝐹𝑞)))) → 𝑞 <Q (𝑞 +Q 𝑠))
22 addcomnqg 7355 . . . . . . . 8 ((𝑞Q𝑠Q) → (𝑞 +Q 𝑠) = (𝑠 +Q 𝑞))
2317, 19, 22syl2anc 411 . . . . . . 7 ((((𝜑𝑠 ∈ (1st𝐿)) ∧ (𝑞Q ∧ (𝑠 +Q 𝑞) <Q (𝐹𝑞))) ∧ (𝑡Q ∧ ((𝑠 +Q 𝑞) <Q 𝑡𝑡 <Q (𝐹𝑞)))) → (𝑞 +Q 𝑠) = (𝑠 +Q 𝑞))
2421, 23breqtrd 4024 . . . . . 6 ((((𝜑𝑠 ∈ (1st𝐿)) ∧ (𝑞Q ∧ (𝑠 +Q 𝑞) <Q (𝐹𝑞))) ∧ (𝑡Q ∧ ((𝑠 +Q 𝑞) <Q 𝑡𝑡 <Q (𝐹𝑞)))) → 𝑞 <Q (𝑠 +Q 𝑞))
25 simprrl 539 . . . . . 6 ((((𝜑𝑠 ∈ (1st𝐿)) ∧ (𝑞Q ∧ (𝑠 +Q 𝑞) <Q (𝐹𝑞))) ∧ (𝑡Q ∧ ((𝑠 +Q 𝑞) <Q 𝑡𝑡 <Q (𝐹𝑞)))) → (𝑠 +Q 𝑞) <Q 𝑡)
26 ltsonq 7372 . . . . . . 7 <Q Or Q
27 ltrelnq 7339 . . . . . . 7 <Q ⊆ (Q × Q)
2826, 27sotri 5016 . . . . . 6 ((𝑞 <Q (𝑠 +Q 𝑞) ∧ (𝑠 +Q 𝑞) <Q 𝑡) → 𝑞 <Q 𝑡)
2924, 25, 28syl2anc 411 . . . . 5 ((((𝜑𝑠 ∈ (1st𝐿)) ∧ (𝑞Q ∧ (𝑠 +Q 𝑞) <Q (𝐹𝑞))) ∧ (𝑡Q ∧ ((𝑠 +Q 𝑞) <Q 𝑡𝑡 <Q (𝐹𝑞)))) → 𝑞 <Q 𝑡)
30 simprl 529 . . . . . 6 ((((𝜑𝑠 ∈ (1st𝐿)) ∧ (𝑞Q ∧ (𝑠 +Q 𝑞) <Q (𝐹𝑞))) ∧ (𝑡Q ∧ ((𝑠 +Q 𝑞) <Q 𝑡𝑡 <Q (𝐹𝑞)))) → 𝑡Q)
31 ltexnqq 7382 . . . . . 6 ((𝑞Q𝑡Q) → (𝑞 <Q 𝑡 ↔ ∃𝑟Q (𝑞 +Q 𝑟) = 𝑡))
3217, 30, 31syl2anc 411 . . . . 5 ((((𝜑𝑠 ∈ (1st𝐿)) ∧ (𝑞Q ∧ (𝑠 +Q 𝑞) <Q (𝐹𝑞))) ∧ (𝑡Q ∧ ((𝑠 +Q 𝑞) <Q 𝑡𝑡 <Q (𝐹𝑞)))) → (𝑞 <Q 𝑡 ↔ ∃𝑟Q (𝑞 +Q 𝑟) = 𝑡))
3329, 32mpbid 147 . . . 4 ((((𝜑𝑠 ∈ (1st𝐿)) ∧ (𝑞Q ∧ (𝑠 +Q 𝑞) <Q (𝐹𝑞))) ∧ (𝑡Q ∧ ((𝑠 +Q 𝑞) <Q 𝑡𝑡 <Q (𝐹𝑞)))) → ∃𝑟Q (𝑞 +Q 𝑟) = 𝑡)
3425ad2antrr 488 . . . . . . . . . 10 ((((((𝜑𝑠 ∈ (1st𝐿)) ∧ (𝑞Q ∧ (𝑠 +Q 𝑞) <Q (𝐹𝑞))) ∧ (𝑡Q ∧ ((𝑠 +Q 𝑞) <Q 𝑡𝑡 <Q (𝐹𝑞)))) ∧ 𝑟Q) ∧ (𝑞 +Q 𝑟) = 𝑡) → (𝑠 +Q 𝑞) <Q 𝑡)
3519ad2antrr 488 . . . . . . . . . . . 12 ((((((𝜑𝑠 ∈ (1st𝐿)) ∧ (𝑞Q ∧ (𝑠 +Q 𝑞) <Q (𝐹𝑞))) ∧ (𝑡Q ∧ ((𝑠 +Q 𝑞) <Q 𝑡𝑡 <Q (𝐹𝑞)))) ∧ 𝑟Q) ∧ (𝑞 +Q 𝑟) = 𝑡) → 𝑠Q)
3617ad2antrr 488 . . . . . . . . . . . 12 ((((((𝜑𝑠 ∈ (1st𝐿)) ∧ (𝑞Q ∧ (𝑠 +Q 𝑞) <Q (𝐹𝑞))) ∧ (𝑡Q ∧ ((𝑠 +Q 𝑞) <Q 𝑡𝑡 <Q (𝐹𝑞)))) ∧ 𝑟Q) ∧ (𝑞 +Q 𝑟) = 𝑡) → 𝑞Q)
37 addcomnqg 7355 . . . . . . . . . . . 12 ((𝑠Q𝑞Q) → (𝑠 +Q 𝑞) = (𝑞 +Q 𝑠))
3835, 36, 37syl2anc 411 . . . . . . . . . . 11 ((((((𝜑𝑠 ∈ (1st𝐿)) ∧ (𝑞Q ∧ (𝑠 +Q 𝑞) <Q (𝐹𝑞))) ∧ (𝑡Q ∧ ((𝑠 +Q 𝑞) <Q 𝑡𝑡 <Q (𝐹𝑞)))) ∧ 𝑟Q) ∧ (𝑞 +Q 𝑟) = 𝑡) → (𝑠 +Q 𝑞) = (𝑞 +Q 𝑠))
3938breq1d 4008 . . . . . . . . . 10 ((((((𝜑𝑠 ∈ (1st𝐿)) ∧ (𝑞Q ∧ (𝑠 +Q 𝑞) <Q (𝐹𝑞))) ∧ (𝑡Q ∧ ((𝑠 +Q 𝑞) <Q 𝑡𝑡 <Q (𝐹𝑞)))) ∧ 𝑟Q) ∧ (𝑞 +Q 𝑟) = 𝑡) → ((𝑠 +Q 𝑞) <Q 𝑡 ↔ (𝑞 +Q 𝑠) <Q 𝑡))
4034, 39mpbid 147 . . . . . . . . 9 ((((((𝜑𝑠 ∈ (1st𝐿)) ∧ (𝑞Q ∧ (𝑠 +Q 𝑞) <Q (𝐹𝑞))) ∧ (𝑡Q ∧ ((𝑠 +Q 𝑞) <Q 𝑡𝑡 <Q (𝐹𝑞)))) ∧ 𝑟Q) ∧ (𝑞 +Q 𝑟) = 𝑡) → (𝑞 +Q 𝑠) <Q 𝑡)
41 simpr 110 . . . . . . . . 9 ((((((𝜑𝑠 ∈ (1st𝐿)) ∧ (𝑞Q ∧ (𝑠 +Q 𝑞) <Q (𝐹𝑞))) ∧ (𝑡Q ∧ ((𝑠 +Q 𝑞) <Q 𝑡𝑡 <Q (𝐹𝑞)))) ∧ 𝑟Q) ∧ (𝑞 +Q 𝑟) = 𝑡) → (𝑞 +Q 𝑟) = 𝑡)
4240, 41breqtrrd 4026 . . . . . . . 8 ((((((𝜑𝑠 ∈ (1st𝐿)) ∧ (𝑞Q ∧ (𝑠 +Q 𝑞) <Q (𝐹𝑞))) ∧ (𝑡Q ∧ ((𝑠 +Q 𝑞) <Q 𝑡𝑡 <Q (𝐹𝑞)))) ∧ 𝑟Q) ∧ (𝑞 +Q 𝑟) = 𝑡) → (𝑞 +Q 𝑠) <Q (𝑞 +Q 𝑟))
43 simplr 528 . . . . . . . . 9 ((((((𝜑𝑠 ∈ (1st𝐿)) ∧ (𝑞Q ∧ (𝑠 +Q 𝑞) <Q (𝐹𝑞))) ∧ (𝑡Q ∧ ((𝑠 +Q 𝑞) <Q 𝑡𝑡 <Q (𝐹𝑞)))) ∧ 𝑟Q) ∧ (𝑞 +Q 𝑟) = 𝑡) → 𝑟Q)
44 ltanqg 7374 . . . . . . . . 9 ((𝑠Q𝑟Q𝑞Q) → (𝑠 <Q 𝑟 ↔ (𝑞 +Q 𝑠) <Q (𝑞 +Q 𝑟)))
4535, 43, 36, 44syl3anc 1238 . . . . . . . 8 ((((((𝜑𝑠 ∈ (1st𝐿)) ∧ (𝑞Q ∧ (𝑠 +Q 𝑞) <Q (𝐹𝑞))) ∧ (𝑡Q ∧ ((𝑠 +Q 𝑞) <Q 𝑡𝑡 <Q (𝐹𝑞)))) ∧ 𝑟Q) ∧ (𝑞 +Q 𝑟) = 𝑡) → (𝑠 <Q 𝑟 ↔ (𝑞 +Q 𝑠) <Q (𝑞 +Q 𝑟)))
4642, 45mpbird 167 . . . . . . 7 ((((((𝜑𝑠 ∈ (1st𝐿)) ∧ (𝑞Q ∧ (𝑠 +Q 𝑞) <Q (𝐹𝑞))) ∧ (𝑡Q ∧ ((𝑠 +Q 𝑞) <Q 𝑡𝑡 <Q (𝐹𝑞)))) ∧ 𝑟Q) ∧ (𝑞 +Q 𝑟) = 𝑡) → 𝑠 <Q 𝑟)
47 simprrr 540 . . . . . . . . . . 11 ((((𝜑𝑠 ∈ (1st𝐿)) ∧ (𝑞Q ∧ (𝑠 +Q 𝑞) <Q (𝐹𝑞))) ∧ (𝑡Q ∧ ((𝑠 +Q 𝑞) <Q 𝑡𝑡 <Q (𝐹𝑞)))) → 𝑡 <Q (𝐹𝑞))
4847ad2antrr 488 . . . . . . . . . 10 ((((((𝜑𝑠 ∈ (1st𝐿)) ∧ (𝑞Q ∧ (𝑠 +Q 𝑞) <Q (𝐹𝑞))) ∧ (𝑡Q ∧ ((𝑠 +Q 𝑞) <Q 𝑡𝑡 <Q (𝐹𝑞)))) ∧ 𝑟Q) ∧ (𝑞 +Q 𝑟) = 𝑡) → 𝑡 <Q (𝐹𝑞))
49 addcomnqg 7355 . . . . . . . . . . . . 13 ((𝑞Q𝑟Q) → (𝑞 +Q 𝑟) = (𝑟 +Q 𝑞))
5036, 43, 49syl2anc 411 . . . . . . . . . . . 12 ((((((𝜑𝑠 ∈ (1st𝐿)) ∧ (𝑞Q ∧ (𝑠 +Q 𝑞) <Q (𝐹𝑞))) ∧ (𝑡Q ∧ ((𝑠 +Q 𝑞) <Q 𝑡𝑡 <Q (𝐹𝑞)))) ∧ 𝑟Q) ∧ (𝑞 +Q 𝑟) = 𝑡) → (𝑞 +Q 𝑟) = (𝑟 +Q 𝑞))
5150, 41eqtr3d 2210 . . . . . . . . . . 11 ((((((𝜑𝑠 ∈ (1st𝐿)) ∧ (𝑞Q ∧ (𝑠 +Q 𝑞) <Q (𝐹𝑞))) ∧ (𝑡Q ∧ ((𝑠 +Q 𝑞) <Q 𝑡𝑡 <Q (𝐹𝑞)))) ∧ 𝑟Q) ∧ (𝑞 +Q 𝑟) = 𝑡) → (𝑟 +Q 𝑞) = 𝑡)
5251breq1d 4008 . . . . . . . . . 10 ((((((𝜑𝑠 ∈ (1st𝐿)) ∧ (𝑞Q ∧ (𝑠 +Q 𝑞) <Q (𝐹𝑞))) ∧ (𝑡Q ∧ ((𝑠 +Q 𝑞) <Q 𝑡𝑡 <Q (𝐹𝑞)))) ∧ 𝑟Q) ∧ (𝑞 +Q 𝑟) = 𝑡) → ((𝑟 +Q 𝑞) <Q (𝐹𝑞) ↔ 𝑡 <Q (𝐹𝑞)))
5348, 52mpbird 167 . . . . . . . . 9 ((((((𝜑𝑠 ∈ (1st𝐿)) ∧ (𝑞Q ∧ (𝑠 +Q 𝑞) <Q (𝐹𝑞))) ∧ (𝑡Q ∧ ((𝑠 +Q 𝑞) <Q 𝑡𝑡 <Q (𝐹𝑞)))) ∧ 𝑟Q) ∧ (𝑞 +Q 𝑟) = 𝑡) → (𝑟 +Q 𝑞) <Q (𝐹𝑞))
54 rspe 2524 . . . . . . . . 9 ((𝑞Q ∧ (𝑟 +Q 𝑞) <Q (𝐹𝑞)) → ∃𝑞Q (𝑟 +Q 𝑞) <Q (𝐹𝑞))
5536, 53, 54syl2anc 411 . . . . . . . 8 ((((((𝜑𝑠 ∈ (1st𝐿)) ∧ (𝑞Q ∧ (𝑠 +Q 𝑞) <Q (𝐹𝑞))) ∧ (𝑡Q ∧ ((𝑠 +Q 𝑞) <Q 𝑡𝑡 <Q (𝐹𝑞)))) ∧ 𝑟Q) ∧ (𝑞 +Q 𝑟) = 𝑡) → ∃𝑞Q (𝑟 +Q 𝑞) <Q (𝐹𝑞))
56 oveq1 5872 . . . . . . . . . . 11 (𝑙 = 𝑟 → (𝑙 +Q 𝑞) = (𝑟 +Q 𝑞))
5756breq1d 4008 . . . . . . . . . 10 (𝑙 = 𝑟 → ((𝑙 +Q 𝑞) <Q (𝐹𝑞) ↔ (𝑟 +Q 𝑞) <Q (𝐹𝑞)))
5857rexbidv 2476 . . . . . . . . 9 (𝑙 = 𝑟 → (∃𝑞Q (𝑙 +Q 𝑞) <Q (𝐹𝑞) ↔ ∃𝑞Q (𝑟 +Q 𝑞) <Q (𝐹𝑞)))
5958, 10elrab2 2894 . . . . . . . 8 (𝑟 ∈ (1st𝐿) ↔ (𝑟Q ∧ ∃𝑞Q (𝑟 +Q 𝑞) <Q (𝐹𝑞)))
6043, 55, 59sylanbrc 417 . . . . . . 7 ((((((𝜑𝑠 ∈ (1st𝐿)) ∧ (𝑞Q ∧ (𝑠 +Q 𝑞) <Q (𝐹𝑞))) ∧ (𝑡Q ∧ ((𝑠 +Q 𝑞) <Q 𝑡𝑡 <Q (𝐹𝑞)))) ∧ 𝑟Q) ∧ (𝑞 +Q 𝑟) = 𝑡) → 𝑟 ∈ (1st𝐿))
6146, 60jca 306 . . . . . 6 ((((((𝜑𝑠 ∈ (1st𝐿)) ∧ (𝑞Q ∧ (𝑠 +Q 𝑞) <Q (𝐹𝑞))) ∧ (𝑡Q ∧ ((𝑠 +Q 𝑞) <Q 𝑡𝑡 <Q (𝐹𝑞)))) ∧ 𝑟Q) ∧ (𝑞 +Q 𝑟) = 𝑡) → (𝑠 <Q 𝑟𝑟 ∈ (1st𝐿)))
6261ex 115 . . . . 5 (((((𝜑𝑠 ∈ (1st𝐿)) ∧ (𝑞Q ∧ (𝑠 +Q 𝑞) <Q (𝐹𝑞))) ∧ (𝑡Q ∧ ((𝑠 +Q 𝑞) <Q 𝑡𝑡 <Q (𝐹𝑞)))) ∧ 𝑟Q) → ((𝑞 +Q 𝑟) = 𝑡 → (𝑠 <Q 𝑟𝑟 ∈ (1st𝐿))))
6362reximdva 2577 . . . 4 ((((𝜑𝑠 ∈ (1st𝐿)) ∧ (𝑞Q ∧ (𝑠 +Q 𝑞) <Q (𝐹𝑞))) ∧ (𝑡Q ∧ ((𝑠 +Q 𝑞) <Q 𝑡𝑡 <Q (𝐹𝑞)))) → (∃𝑟Q (𝑞 +Q 𝑟) = 𝑡 → ∃𝑟Q (𝑠 <Q 𝑟𝑟 ∈ (1st𝐿))))
6433, 63mpd 13 . . 3 ((((𝜑𝑠 ∈ (1st𝐿)) ∧ (𝑞Q ∧ (𝑠 +Q 𝑞) <Q (𝐹𝑞))) ∧ (𝑡Q ∧ ((𝑠 +Q 𝑞) <Q 𝑡𝑡 <Q (𝐹𝑞)))) → ∃𝑟Q (𝑠 <Q 𝑟𝑟 ∈ (1st𝐿)))
6516, 64rexlimddv 2597 . 2 (((𝜑𝑠 ∈ (1st𝐿)) ∧ (𝑞Q ∧ (𝑠 +Q 𝑞) <Q (𝐹𝑞))) → ∃𝑟Q (𝑠 <Q 𝑟𝑟 ∈ (1st𝐿)))
6613, 65rexlimddv 2597 1 ((𝜑𝑠 ∈ (1st𝐿)) → ∃𝑟Q (𝑠 <Q 𝑟𝑟 ∈ (1st𝐿)))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105   = wceq 1353  wcel 2146  wral 2453  wrex 2454  {crab 2457  cop 3592   class class class wbr 3998  wf 5204  cfv 5208  (class class class)co 5865  1st c1st 6129  Qcnq 7254   +Q cplq 7256   <Q cltq 7259
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1445  ax-7 1446  ax-gen 1447  ax-ie1 1491  ax-ie2 1492  ax-8 1502  ax-10 1503  ax-11 1504  ax-i12 1505  ax-bndl 1507  ax-4 1508  ax-17 1524  ax-i9 1528  ax-ial 1532  ax-i5r 1533  ax-13 2148  ax-14 2149  ax-ext 2157  ax-coll 4113  ax-sep 4116  ax-nul 4124  ax-pow 4169  ax-pr 4203  ax-un 4427  ax-setind 4530  ax-iinf 4581
This theorem depends on definitions:  df-bi 117  df-dc 835  df-3or 979  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1459  df-sb 1761  df-eu 2027  df-mo 2028  df-clab 2162  df-cleq 2168  df-clel 2171  df-nfc 2306  df-ne 2346  df-ral 2458  df-rex 2459  df-reu 2460  df-rab 2462  df-v 2737  df-sbc 2961  df-csb 3056  df-dif 3129  df-un 3131  df-in 3133  df-ss 3140  df-nul 3421  df-pw 3574  df-sn 3595  df-pr 3596  df-op 3598  df-uni 3806  df-int 3841  df-iun 3884  df-br 3999  df-opab 4060  df-mpt 4061  df-tr 4097  df-eprel 4283  df-id 4287  df-po 4290  df-iso 4291  df-iord 4360  df-on 4362  df-suc 4365  df-iom 4584  df-xp 4626  df-rel 4627  df-cnv 4628  df-co 4629  df-dm 4630  df-rn 4631  df-res 4632  df-ima 4633  df-iota 5170  df-fun 5210  df-fn 5211  df-f 5212  df-f1 5213  df-fo 5214  df-f1o 5215  df-fv 5216  df-ov 5868  df-oprab 5869  df-mpo 5870  df-1st 6131  df-2nd 6132  df-recs 6296  df-irdg 6361  df-1o 6407  df-oadd 6411  df-omul 6412  df-er 6525  df-ec 6527  df-qs 6531  df-ni 7278  df-pli 7279  df-mi 7280  df-lti 7281  df-plpq 7318  df-mpq 7319  df-enq 7321  df-nqqs 7322  df-plqqs 7323  df-mqqs 7324  df-1nqqs 7325  df-rq 7326  df-ltnqqs 7327
This theorem is referenced by:  cauappcvgprlemrnd  7624
  Copyright terms: Public domain W3C validator