ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  cauappcvgprlemopl GIF version

Theorem cauappcvgprlemopl 7608
Description: Lemma for cauappcvgpr 7624. The lower cut of the putative limit is open. (Contributed by Jim Kingdon, 4-Aug-2020.)
Hypotheses
Ref Expression
cauappcvgpr.f (𝜑𝐹:QQ)
cauappcvgpr.app (𝜑 → ∀𝑝Q𝑞Q ((𝐹𝑝) <Q ((𝐹𝑞) +Q (𝑝 +Q 𝑞)) ∧ (𝐹𝑞) <Q ((𝐹𝑝) +Q (𝑝 +Q 𝑞))))
cauappcvgpr.bnd (𝜑 → ∀𝑝Q 𝐴 <Q (𝐹𝑝))
cauappcvgpr.lim 𝐿 = ⟨{𝑙Q ∣ ∃𝑞Q (𝑙 +Q 𝑞) <Q (𝐹𝑞)}, {𝑢Q ∣ ∃𝑞Q ((𝐹𝑞) +Q 𝑞) <Q 𝑢}⟩
Assertion
Ref Expression
cauappcvgprlemopl ((𝜑𝑠 ∈ (1st𝐿)) → ∃𝑟Q (𝑠 <Q 𝑟𝑟 ∈ (1st𝐿)))
Distinct variable groups:   𝐴,𝑝   𝐿,𝑝,𝑞   𝜑,𝑝,𝑞   𝐿,𝑟,𝑠   𝐴,𝑠,𝑝   𝐹,𝑙,𝑢,𝑝,𝑞,𝑟,𝑠   𝜑,𝑟,𝑠
Allowed substitution hints:   𝜑(𝑢,𝑙)   𝐴(𝑢,𝑟,𝑞,𝑙)   𝐿(𝑢,𝑙)

Proof of Theorem cauappcvgprlemopl
Dummy variable 𝑡 is distinct from all other variables.
StepHypRef Expression
1 oveq1 5860 . . . . . . 7 (𝑙 = 𝑠 → (𝑙 +Q 𝑞) = (𝑠 +Q 𝑞))
21breq1d 3999 . . . . . 6 (𝑙 = 𝑠 → ((𝑙 +Q 𝑞) <Q (𝐹𝑞) ↔ (𝑠 +Q 𝑞) <Q (𝐹𝑞)))
32rexbidv 2471 . . . . 5 (𝑙 = 𝑠 → (∃𝑞Q (𝑙 +Q 𝑞) <Q (𝐹𝑞) ↔ ∃𝑞Q (𝑠 +Q 𝑞) <Q (𝐹𝑞)))
4 cauappcvgpr.lim . . . . . . 7 𝐿 = ⟨{𝑙Q ∣ ∃𝑞Q (𝑙 +Q 𝑞) <Q (𝐹𝑞)}, {𝑢Q ∣ ∃𝑞Q ((𝐹𝑞) +Q 𝑞) <Q 𝑢}⟩
54fveq2i 5499 . . . . . 6 (1st𝐿) = (1st ‘⟨{𝑙Q ∣ ∃𝑞Q (𝑙 +Q 𝑞) <Q (𝐹𝑞)}, {𝑢Q ∣ ∃𝑞Q ((𝐹𝑞) +Q 𝑞) <Q 𝑢}⟩)
6 nqex 7325 . . . . . . . 8 Q ∈ V
76rabex 4133 . . . . . . 7 {𝑙Q ∣ ∃𝑞Q (𝑙 +Q 𝑞) <Q (𝐹𝑞)} ∈ V
86rabex 4133 . . . . . . 7 {𝑢Q ∣ ∃𝑞Q ((𝐹𝑞) +Q 𝑞) <Q 𝑢} ∈ V
97, 8op1st 6125 . . . . . 6 (1st ‘⟨{𝑙Q ∣ ∃𝑞Q (𝑙 +Q 𝑞) <Q (𝐹𝑞)}, {𝑢Q ∣ ∃𝑞Q ((𝐹𝑞) +Q 𝑞) <Q 𝑢}⟩) = {𝑙Q ∣ ∃𝑞Q (𝑙 +Q 𝑞) <Q (𝐹𝑞)}
105, 9eqtri 2191 . . . . 5 (1st𝐿) = {𝑙Q ∣ ∃𝑞Q (𝑙 +Q 𝑞) <Q (𝐹𝑞)}
113, 10elrab2 2889 . . . 4 (𝑠 ∈ (1st𝐿) ↔ (𝑠Q ∧ ∃𝑞Q (𝑠 +Q 𝑞) <Q (𝐹𝑞)))
1211simprbi 273 . . 3 (𝑠 ∈ (1st𝐿) → ∃𝑞Q (𝑠 +Q 𝑞) <Q (𝐹𝑞))
1312adantl 275 . 2 ((𝜑𝑠 ∈ (1st𝐿)) → ∃𝑞Q (𝑠 +Q 𝑞) <Q (𝐹𝑞))
14 simprr 527 . . . 4 (((𝜑𝑠 ∈ (1st𝐿)) ∧ (𝑞Q ∧ (𝑠 +Q 𝑞) <Q (𝐹𝑞))) → (𝑠 +Q 𝑞) <Q (𝐹𝑞))
15 ltbtwnnqq 7377 . . . 4 ((𝑠 +Q 𝑞) <Q (𝐹𝑞) ↔ ∃𝑡Q ((𝑠 +Q 𝑞) <Q 𝑡𝑡 <Q (𝐹𝑞)))
1614, 15sylib 121 . . 3 (((𝜑𝑠 ∈ (1st𝐿)) ∧ (𝑞Q ∧ (𝑠 +Q 𝑞) <Q (𝐹𝑞))) → ∃𝑡Q ((𝑠 +Q 𝑞) <Q 𝑡𝑡 <Q (𝐹𝑞)))
17 simplrl 530 . . . . . . . 8 ((((𝜑𝑠 ∈ (1st𝐿)) ∧ (𝑞Q ∧ (𝑠 +Q 𝑞) <Q (𝐹𝑞))) ∧ (𝑡Q ∧ ((𝑠 +Q 𝑞) <Q 𝑡𝑡 <Q (𝐹𝑞)))) → 𝑞Q)
1811simplbi 272 . . . . . . . . 9 (𝑠 ∈ (1st𝐿) → 𝑠Q)
1918ad3antlr 490 . . . . . . . 8 ((((𝜑𝑠 ∈ (1st𝐿)) ∧ (𝑞Q ∧ (𝑠 +Q 𝑞) <Q (𝐹𝑞))) ∧ (𝑡Q ∧ ((𝑠 +Q 𝑞) <Q 𝑡𝑡 <Q (𝐹𝑞)))) → 𝑠Q)
20 ltaddnq 7369 . . . . . . . 8 ((𝑞Q𝑠Q) → 𝑞 <Q (𝑞 +Q 𝑠))
2117, 19, 20syl2anc 409 . . . . . . 7 ((((𝜑𝑠 ∈ (1st𝐿)) ∧ (𝑞Q ∧ (𝑠 +Q 𝑞) <Q (𝐹𝑞))) ∧ (𝑡Q ∧ ((𝑠 +Q 𝑞) <Q 𝑡𝑡 <Q (𝐹𝑞)))) → 𝑞 <Q (𝑞 +Q 𝑠))
22 addcomnqg 7343 . . . . . . . 8 ((𝑞Q𝑠Q) → (𝑞 +Q 𝑠) = (𝑠 +Q 𝑞))
2317, 19, 22syl2anc 409 . . . . . . 7 ((((𝜑𝑠 ∈ (1st𝐿)) ∧ (𝑞Q ∧ (𝑠 +Q 𝑞) <Q (𝐹𝑞))) ∧ (𝑡Q ∧ ((𝑠 +Q 𝑞) <Q 𝑡𝑡 <Q (𝐹𝑞)))) → (𝑞 +Q 𝑠) = (𝑠 +Q 𝑞))
2421, 23breqtrd 4015 . . . . . 6 ((((𝜑𝑠 ∈ (1st𝐿)) ∧ (𝑞Q ∧ (𝑠 +Q 𝑞) <Q (𝐹𝑞))) ∧ (𝑡Q ∧ ((𝑠 +Q 𝑞) <Q 𝑡𝑡 <Q (𝐹𝑞)))) → 𝑞 <Q (𝑠 +Q 𝑞))
25 simprrl 534 . . . . . 6 ((((𝜑𝑠 ∈ (1st𝐿)) ∧ (𝑞Q ∧ (𝑠 +Q 𝑞) <Q (𝐹𝑞))) ∧ (𝑡Q ∧ ((𝑠 +Q 𝑞) <Q 𝑡𝑡 <Q (𝐹𝑞)))) → (𝑠 +Q 𝑞) <Q 𝑡)
26 ltsonq 7360 . . . . . . 7 <Q Or Q
27 ltrelnq 7327 . . . . . . 7 <Q ⊆ (Q × Q)
2826, 27sotri 5006 . . . . . 6 ((𝑞 <Q (𝑠 +Q 𝑞) ∧ (𝑠 +Q 𝑞) <Q 𝑡) → 𝑞 <Q 𝑡)
2924, 25, 28syl2anc 409 . . . . 5 ((((𝜑𝑠 ∈ (1st𝐿)) ∧ (𝑞Q ∧ (𝑠 +Q 𝑞) <Q (𝐹𝑞))) ∧ (𝑡Q ∧ ((𝑠 +Q 𝑞) <Q 𝑡𝑡 <Q (𝐹𝑞)))) → 𝑞 <Q 𝑡)
30 simprl 526 . . . . . 6 ((((𝜑𝑠 ∈ (1st𝐿)) ∧ (𝑞Q ∧ (𝑠 +Q 𝑞) <Q (𝐹𝑞))) ∧ (𝑡Q ∧ ((𝑠 +Q 𝑞) <Q 𝑡𝑡 <Q (𝐹𝑞)))) → 𝑡Q)
31 ltexnqq 7370 . . . . . 6 ((𝑞Q𝑡Q) → (𝑞 <Q 𝑡 ↔ ∃𝑟Q (𝑞 +Q 𝑟) = 𝑡))
3217, 30, 31syl2anc 409 . . . . 5 ((((𝜑𝑠 ∈ (1st𝐿)) ∧ (𝑞Q ∧ (𝑠 +Q 𝑞) <Q (𝐹𝑞))) ∧ (𝑡Q ∧ ((𝑠 +Q 𝑞) <Q 𝑡𝑡 <Q (𝐹𝑞)))) → (𝑞 <Q 𝑡 ↔ ∃𝑟Q (𝑞 +Q 𝑟) = 𝑡))
3329, 32mpbid 146 . . . 4 ((((𝜑𝑠 ∈ (1st𝐿)) ∧ (𝑞Q ∧ (𝑠 +Q 𝑞) <Q (𝐹𝑞))) ∧ (𝑡Q ∧ ((𝑠 +Q 𝑞) <Q 𝑡𝑡 <Q (𝐹𝑞)))) → ∃𝑟Q (𝑞 +Q 𝑟) = 𝑡)
3425ad2antrr 485 . . . . . . . . . 10 ((((((𝜑𝑠 ∈ (1st𝐿)) ∧ (𝑞Q ∧ (𝑠 +Q 𝑞) <Q (𝐹𝑞))) ∧ (𝑡Q ∧ ((𝑠 +Q 𝑞) <Q 𝑡𝑡 <Q (𝐹𝑞)))) ∧ 𝑟Q) ∧ (𝑞 +Q 𝑟) = 𝑡) → (𝑠 +Q 𝑞) <Q 𝑡)
3519ad2antrr 485 . . . . . . . . . . . 12 ((((((𝜑𝑠 ∈ (1st𝐿)) ∧ (𝑞Q ∧ (𝑠 +Q 𝑞) <Q (𝐹𝑞))) ∧ (𝑡Q ∧ ((𝑠 +Q 𝑞) <Q 𝑡𝑡 <Q (𝐹𝑞)))) ∧ 𝑟Q) ∧ (𝑞 +Q 𝑟) = 𝑡) → 𝑠Q)
3617ad2antrr 485 . . . . . . . . . . . 12 ((((((𝜑𝑠 ∈ (1st𝐿)) ∧ (𝑞Q ∧ (𝑠 +Q 𝑞) <Q (𝐹𝑞))) ∧ (𝑡Q ∧ ((𝑠 +Q 𝑞) <Q 𝑡𝑡 <Q (𝐹𝑞)))) ∧ 𝑟Q) ∧ (𝑞 +Q 𝑟) = 𝑡) → 𝑞Q)
37 addcomnqg 7343 . . . . . . . . . . . 12 ((𝑠Q𝑞Q) → (𝑠 +Q 𝑞) = (𝑞 +Q 𝑠))
3835, 36, 37syl2anc 409 . . . . . . . . . . 11 ((((((𝜑𝑠 ∈ (1st𝐿)) ∧ (𝑞Q ∧ (𝑠 +Q 𝑞) <Q (𝐹𝑞))) ∧ (𝑡Q ∧ ((𝑠 +Q 𝑞) <Q 𝑡𝑡 <Q (𝐹𝑞)))) ∧ 𝑟Q) ∧ (𝑞 +Q 𝑟) = 𝑡) → (𝑠 +Q 𝑞) = (𝑞 +Q 𝑠))
3938breq1d 3999 . . . . . . . . . 10 ((((((𝜑𝑠 ∈ (1st𝐿)) ∧ (𝑞Q ∧ (𝑠 +Q 𝑞) <Q (𝐹𝑞))) ∧ (𝑡Q ∧ ((𝑠 +Q 𝑞) <Q 𝑡𝑡 <Q (𝐹𝑞)))) ∧ 𝑟Q) ∧ (𝑞 +Q 𝑟) = 𝑡) → ((𝑠 +Q 𝑞) <Q 𝑡 ↔ (𝑞 +Q 𝑠) <Q 𝑡))
4034, 39mpbid 146 . . . . . . . . 9 ((((((𝜑𝑠 ∈ (1st𝐿)) ∧ (𝑞Q ∧ (𝑠 +Q 𝑞) <Q (𝐹𝑞))) ∧ (𝑡Q ∧ ((𝑠 +Q 𝑞) <Q 𝑡𝑡 <Q (𝐹𝑞)))) ∧ 𝑟Q) ∧ (𝑞 +Q 𝑟) = 𝑡) → (𝑞 +Q 𝑠) <Q 𝑡)
41 simpr 109 . . . . . . . . 9 ((((((𝜑𝑠 ∈ (1st𝐿)) ∧ (𝑞Q ∧ (𝑠 +Q 𝑞) <Q (𝐹𝑞))) ∧ (𝑡Q ∧ ((𝑠 +Q 𝑞) <Q 𝑡𝑡 <Q (𝐹𝑞)))) ∧ 𝑟Q) ∧ (𝑞 +Q 𝑟) = 𝑡) → (𝑞 +Q 𝑟) = 𝑡)
4240, 41breqtrrd 4017 . . . . . . . 8 ((((((𝜑𝑠 ∈ (1st𝐿)) ∧ (𝑞Q ∧ (𝑠 +Q 𝑞) <Q (𝐹𝑞))) ∧ (𝑡Q ∧ ((𝑠 +Q 𝑞) <Q 𝑡𝑡 <Q (𝐹𝑞)))) ∧ 𝑟Q) ∧ (𝑞 +Q 𝑟) = 𝑡) → (𝑞 +Q 𝑠) <Q (𝑞 +Q 𝑟))
43 simplr 525 . . . . . . . . 9 ((((((𝜑𝑠 ∈ (1st𝐿)) ∧ (𝑞Q ∧ (𝑠 +Q 𝑞) <Q (𝐹𝑞))) ∧ (𝑡Q ∧ ((𝑠 +Q 𝑞) <Q 𝑡𝑡 <Q (𝐹𝑞)))) ∧ 𝑟Q) ∧ (𝑞 +Q 𝑟) = 𝑡) → 𝑟Q)
44 ltanqg 7362 . . . . . . . . 9 ((𝑠Q𝑟Q𝑞Q) → (𝑠 <Q 𝑟 ↔ (𝑞 +Q 𝑠) <Q (𝑞 +Q 𝑟)))
4535, 43, 36, 44syl3anc 1233 . . . . . . . 8 ((((((𝜑𝑠 ∈ (1st𝐿)) ∧ (𝑞Q ∧ (𝑠 +Q 𝑞) <Q (𝐹𝑞))) ∧ (𝑡Q ∧ ((𝑠 +Q 𝑞) <Q 𝑡𝑡 <Q (𝐹𝑞)))) ∧ 𝑟Q) ∧ (𝑞 +Q 𝑟) = 𝑡) → (𝑠 <Q 𝑟 ↔ (𝑞 +Q 𝑠) <Q (𝑞 +Q 𝑟)))
4642, 45mpbird 166 . . . . . . 7 ((((((𝜑𝑠 ∈ (1st𝐿)) ∧ (𝑞Q ∧ (𝑠 +Q 𝑞) <Q (𝐹𝑞))) ∧ (𝑡Q ∧ ((𝑠 +Q 𝑞) <Q 𝑡𝑡 <Q (𝐹𝑞)))) ∧ 𝑟Q) ∧ (𝑞 +Q 𝑟) = 𝑡) → 𝑠 <Q 𝑟)
47 simprrr 535 . . . . . . . . . . 11 ((((𝜑𝑠 ∈ (1st𝐿)) ∧ (𝑞Q ∧ (𝑠 +Q 𝑞) <Q (𝐹𝑞))) ∧ (𝑡Q ∧ ((𝑠 +Q 𝑞) <Q 𝑡𝑡 <Q (𝐹𝑞)))) → 𝑡 <Q (𝐹𝑞))
4847ad2antrr 485 . . . . . . . . . 10 ((((((𝜑𝑠 ∈ (1st𝐿)) ∧ (𝑞Q ∧ (𝑠 +Q 𝑞) <Q (𝐹𝑞))) ∧ (𝑡Q ∧ ((𝑠 +Q 𝑞) <Q 𝑡𝑡 <Q (𝐹𝑞)))) ∧ 𝑟Q) ∧ (𝑞 +Q 𝑟) = 𝑡) → 𝑡 <Q (𝐹𝑞))
49 addcomnqg 7343 . . . . . . . . . . . . 13 ((𝑞Q𝑟Q) → (𝑞 +Q 𝑟) = (𝑟 +Q 𝑞))
5036, 43, 49syl2anc 409 . . . . . . . . . . . 12 ((((((𝜑𝑠 ∈ (1st𝐿)) ∧ (𝑞Q ∧ (𝑠 +Q 𝑞) <Q (𝐹𝑞))) ∧ (𝑡Q ∧ ((𝑠 +Q 𝑞) <Q 𝑡𝑡 <Q (𝐹𝑞)))) ∧ 𝑟Q) ∧ (𝑞 +Q 𝑟) = 𝑡) → (𝑞 +Q 𝑟) = (𝑟 +Q 𝑞))
5150, 41eqtr3d 2205 . . . . . . . . . . 11 ((((((𝜑𝑠 ∈ (1st𝐿)) ∧ (𝑞Q ∧ (𝑠 +Q 𝑞) <Q (𝐹𝑞))) ∧ (𝑡Q ∧ ((𝑠 +Q 𝑞) <Q 𝑡𝑡 <Q (𝐹𝑞)))) ∧ 𝑟Q) ∧ (𝑞 +Q 𝑟) = 𝑡) → (𝑟 +Q 𝑞) = 𝑡)
5251breq1d 3999 . . . . . . . . . 10 ((((((𝜑𝑠 ∈ (1st𝐿)) ∧ (𝑞Q ∧ (𝑠 +Q 𝑞) <Q (𝐹𝑞))) ∧ (𝑡Q ∧ ((𝑠 +Q 𝑞) <Q 𝑡𝑡 <Q (𝐹𝑞)))) ∧ 𝑟Q) ∧ (𝑞 +Q 𝑟) = 𝑡) → ((𝑟 +Q 𝑞) <Q (𝐹𝑞) ↔ 𝑡 <Q (𝐹𝑞)))
5348, 52mpbird 166 . . . . . . . . 9 ((((((𝜑𝑠 ∈ (1st𝐿)) ∧ (𝑞Q ∧ (𝑠 +Q 𝑞) <Q (𝐹𝑞))) ∧ (𝑡Q ∧ ((𝑠 +Q 𝑞) <Q 𝑡𝑡 <Q (𝐹𝑞)))) ∧ 𝑟Q) ∧ (𝑞 +Q 𝑟) = 𝑡) → (𝑟 +Q 𝑞) <Q (𝐹𝑞))
54 rspe 2519 . . . . . . . . 9 ((𝑞Q ∧ (𝑟 +Q 𝑞) <Q (𝐹𝑞)) → ∃𝑞Q (𝑟 +Q 𝑞) <Q (𝐹𝑞))
5536, 53, 54syl2anc 409 . . . . . . . 8 ((((((𝜑𝑠 ∈ (1st𝐿)) ∧ (𝑞Q ∧ (𝑠 +Q 𝑞) <Q (𝐹𝑞))) ∧ (𝑡Q ∧ ((𝑠 +Q 𝑞) <Q 𝑡𝑡 <Q (𝐹𝑞)))) ∧ 𝑟Q) ∧ (𝑞 +Q 𝑟) = 𝑡) → ∃𝑞Q (𝑟 +Q 𝑞) <Q (𝐹𝑞))
56 oveq1 5860 . . . . . . . . . . 11 (𝑙 = 𝑟 → (𝑙 +Q 𝑞) = (𝑟 +Q 𝑞))
5756breq1d 3999 . . . . . . . . . 10 (𝑙 = 𝑟 → ((𝑙 +Q 𝑞) <Q (𝐹𝑞) ↔ (𝑟 +Q 𝑞) <Q (𝐹𝑞)))
5857rexbidv 2471 . . . . . . . . 9 (𝑙 = 𝑟 → (∃𝑞Q (𝑙 +Q 𝑞) <Q (𝐹𝑞) ↔ ∃𝑞Q (𝑟 +Q 𝑞) <Q (𝐹𝑞)))
5958, 10elrab2 2889 . . . . . . . 8 (𝑟 ∈ (1st𝐿) ↔ (𝑟Q ∧ ∃𝑞Q (𝑟 +Q 𝑞) <Q (𝐹𝑞)))
6043, 55, 59sylanbrc 415 . . . . . . 7 ((((((𝜑𝑠 ∈ (1st𝐿)) ∧ (𝑞Q ∧ (𝑠 +Q 𝑞) <Q (𝐹𝑞))) ∧ (𝑡Q ∧ ((𝑠 +Q 𝑞) <Q 𝑡𝑡 <Q (𝐹𝑞)))) ∧ 𝑟Q) ∧ (𝑞 +Q 𝑟) = 𝑡) → 𝑟 ∈ (1st𝐿))
6146, 60jca 304 . . . . . 6 ((((((𝜑𝑠 ∈ (1st𝐿)) ∧ (𝑞Q ∧ (𝑠 +Q 𝑞) <Q (𝐹𝑞))) ∧ (𝑡Q ∧ ((𝑠 +Q 𝑞) <Q 𝑡𝑡 <Q (𝐹𝑞)))) ∧ 𝑟Q) ∧ (𝑞 +Q 𝑟) = 𝑡) → (𝑠 <Q 𝑟𝑟 ∈ (1st𝐿)))
6261ex 114 . . . . 5 (((((𝜑𝑠 ∈ (1st𝐿)) ∧ (𝑞Q ∧ (𝑠 +Q 𝑞) <Q (𝐹𝑞))) ∧ (𝑡Q ∧ ((𝑠 +Q 𝑞) <Q 𝑡𝑡 <Q (𝐹𝑞)))) ∧ 𝑟Q) → ((𝑞 +Q 𝑟) = 𝑡 → (𝑠 <Q 𝑟𝑟 ∈ (1st𝐿))))
6362reximdva 2572 . . . 4 ((((𝜑𝑠 ∈ (1st𝐿)) ∧ (𝑞Q ∧ (𝑠 +Q 𝑞) <Q (𝐹𝑞))) ∧ (𝑡Q ∧ ((𝑠 +Q 𝑞) <Q 𝑡𝑡 <Q (𝐹𝑞)))) → (∃𝑟Q (𝑞 +Q 𝑟) = 𝑡 → ∃𝑟Q (𝑠 <Q 𝑟𝑟 ∈ (1st𝐿))))
6433, 63mpd 13 . . 3 ((((𝜑𝑠 ∈ (1st𝐿)) ∧ (𝑞Q ∧ (𝑠 +Q 𝑞) <Q (𝐹𝑞))) ∧ (𝑡Q ∧ ((𝑠 +Q 𝑞) <Q 𝑡𝑡 <Q (𝐹𝑞)))) → ∃𝑟Q (𝑠 <Q 𝑟𝑟 ∈ (1st𝐿)))
6516, 64rexlimddv 2592 . 2 (((𝜑𝑠 ∈ (1st𝐿)) ∧ (𝑞Q ∧ (𝑠 +Q 𝑞) <Q (𝐹𝑞))) → ∃𝑟Q (𝑠 <Q 𝑟𝑟 ∈ (1st𝐿)))
6613, 65rexlimddv 2592 1 ((𝜑𝑠 ∈ (1st𝐿)) → ∃𝑟Q (𝑠 <Q 𝑟𝑟 ∈ (1st𝐿)))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wb 104   = wceq 1348  wcel 2141  wral 2448  wrex 2449  {crab 2452  cop 3586   class class class wbr 3989  wf 5194  cfv 5198  (class class class)co 5853  1st c1st 6117  Qcnq 7242   +Q cplq 7244   <Q cltq 7247
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 609  ax-in2 610  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-13 2143  ax-14 2144  ax-ext 2152  ax-coll 4104  ax-sep 4107  ax-nul 4115  ax-pow 4160  ax-pr 4194  ax-un 4418  ax-setind 4521  ax-iinf 4572
This theorem depends on definitions:  df-bi 116  df-dc 830  df-3or 974  df-3an 975  df-tru 1351  df-fal 1354  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ne 2341  df-ral 2453  df-rex 2454  df-reu 2455  df-rab 2457  df-v 2732  df-sbc 2956  df-csb 3050  df-dif 3123  df-un 3125  df-in 3127  df-ss 3134  df-nul 3415  df-pw 3568  df-sn 3589  df-pr 3590  df-op 3592  df-uni 3797  df-int 3832  df-iun 3875  df-br 3990  df-opab 4051  df-mpt 4052  df-tr 4088  df-eprel 4274  df-id 4278  df-po 4281  df-iso 4282  df-iord 4351  df-on 4353  df-suc 4356  df-iom 4575  df-xp 4617  df-rel 4618  df-cnv 4619  df-co 4620  df-dm 4621  df-rn 4622  df-res 4623  df-ima 4624  df-iota 5160  df-fun 5200  df-fn 5201  df-f 5202  df-f1 5203  df-fo 5204  df-f1o 5205  df-fv 5206  df-ov 5856  df-oprab 5857  df-mpo 5858  df-1st 6119  df-2nd 6120  df-recs 6284  df-irdg 6349  df-1o 6395  df-oadd 6399  df-omul 6400  df-er 6513  df-ec 6515  df-qs 6519  df-ni 7266  df-pli 7267  df-mi 7268  df-lti 7269  df-plpq 7306  df-mpq 7307  df-enq 7309  df-nqqs 7310  df-plqqs 7311  df-mqqs 7312  df-1nqqs 7313  df-rq 7314  df-ltnqqs 7315
This theorem is referenced by:  cauappcvgprlemrnd  7612
  Copyright terms: Public domain W3C validator