| Step | Hyp | Ref
| Expression |
| 1 | | oveq1 5929 |
. . . . . . 7
⊢ (𝑙 = 𝑠 → (𝑙 +Q 𝑞) = (𝑠 +Q 𝑞)) |
| 2 | 1 | breq1d 4043 |
. . . . . 6
⊢ (𝑙 = 𝑠 → ((𝑙 +Q 𝑞) <Q
(𝐹‘𝑞) ↔ (𝑠 +Q 𝑞) <Q
(𝐹‘𝑞))) |
| 3 | 2 | rexbidv 2498 |
. . . . 5
⊢ (𝑙 = 𝑠 → (∃𝑞 ∈ Q (𝑙 +Q 𝑞) <Q
(𝐹‘𝑞) ↔ ∃𝑞 ∈ Q (𝑠 +Q 𝑞) <Q
(𝐹‘𝑞))) |
| 4 | | cauappcvgpr.lim |
. . . . . . 7
⊢ 𝐿 = 〈{𝑙 ∈ Q ∣ ∃𝑞 ∈ Q (𝑙 +Q
𝑞)
<Q (𝐹‘𝑞)}, {𝑢 ∈ Q ∣ ∃𝑞 ∈ Q ((𝐹‘𝑞) +Q 𝑞) <Q
𝑢}〉 |
| 5 | 4 | fveq2i 5561 |
. . . . . 6
⊢
(1st ‘𝐿) = (1st ‘〈{𝑙 ∈ Q ∣
∃𝑞 ∈
Q (𝑙
+Q 𝑞) <Q (𝐹‘𝑞)}, {𝑢 ∈ Q ∣ ∃𝑞 ∈ Q ((𝐹‘𝑞) +Q 𝑞) <Q
𝑢}〉) |
| 6 | | nqex 7430 |
. . . . . . . 8
⊢
Q ∈ V |
| 7 | 6 | rabex 4177 |
. . . . . . 7
⊢ {𝑙 ∈ Q ∣
∃𝑞 ∈
Q (𝑙
+Q 𝑞) <Q (𝐹‘𝑞)} ∈ V |
| 8 | 6 | rabex 4177 |
. . . . . . 7
⊢ {𝑢 ∈ Q ∣
∃𝑞 ∈
Q ((𝐹‘𝑞) +Q 𝑞) <Q
𝑢} ∈
V |
| 9 | 7, 8 | op1st 6204 |
. . . . . 6
⊢
(1st ‘〈{𝑙 ∈ Q ∣ ∃𝑞 ∈ Q (𝑙 +Q
𝑞)
<Q (𝐹‘𝑞)}, {𝑢 ∈ Q ∣ ∃𝑞 ∈ Q ((𝐹‘𝑞) +Q 𝑞) <Q
𝑢}〉) = {𝑙 ∈ Q ∣
∃𝑞 ∈
Q (𝑙
+Q 𝑞) <Q (𝐹‘𝑞)} |
| 10 | 5, 9 | eqtri 2217 |
. . . . 5
⊢
(1st ‘𝐿) = {𝑙 ∈ Q ∣ ∃𝑞 ∈ Q (𝑙 +Q
𝑞)
<Q (𝐹‘𝑞)} |
| 11 | 3, 10 | elrab2 2923 |
. . . 4
⊢ (𝑠 ∈ (1st
‘𝐿) ↔ (𝑠 ∈ Q ∧
∃𝑞 ∈
Q (𝑠
+Q 𝑞) <Q (𝐹‘𝑞))) |
| 12 | 11 | simprbi 275 |
. . 3
⊢ (𝑠 ∈ (1st
‘𝐿) →
∃𝑞 ∈
Q (𝑠
+Q 𝑞) <Q (𝐹‘𝑞)) |
| 13 | 12 | adantl 277 |
. 2
⊢ ((𝜑 ∧ 𝑠 ∈ (1st ‘𝐿)) → ∃𝑞 ∈ Q (𝑠 +Q
𝑞)
<Q (𝐹‘𝑞)) |
| 14 | | simprr 531 |
. . . 4
⊢ (((𝜑 ∧ 𝑠 ∈ (1st ‘𝐿)) ∧ (𝑞 ∈ Q ∧ (𝑠 +Q
𝑞)
<Q (𝐹‘𝑞))) → (𝑠 +Q 𝑞) <Q
(𝐹‘𝑞)) |
| 15 | | ltbtwnnqq 7482 |
. . . 4
⊢ ((𝑠 +Q
𝑞)
<Q (𝐹‘𝑞) ↔ ∃𝑡 ∈ Q ((𝑠 +Q 𝑞) <Q
𝑡 ∧ 𝑡 <Q (𝐹‘𝑞))) |
| 16 | 14, 15 | sylib 122 |
. . 3
⊢ (((𝜑 ∧ 𝑠 ∈ (1st ‘𝐿)) ∧ (𝑞 ∈ Q ∧ (𝑠 +Q
𝑞)
<Q (𝐹‘𝑞))) → ∃𝑡 ∈ Q ((𝑠 +Q 𝑞) <Q
𝑡 ∧ 𝑡 <Q (𝐹‘𝑞))) |
| 17 | | simplrl 535 |
. . . . . . . 8
⊢ ((((𝜑 ∧ 𝑠 ∈ (1st ‘𝐿)) ∧ (𝑞 ∈ Q ∧ (𝑠 +Q
𝑞)
<Q (𝐹‘𝑞))) ∧ (𝑡 ∈ Q ∧ ((𝑠 +Q
𝑞)
<Q 𝑡 ∧ 𝑡 <Q (𝐹‘𝑞)))) → 𝑞 ∈ Q) |
| 18 | 11 | simplbi 274 |
. . . . . . . . 9
⊢ (𝑠 ∈ (1st
‘𝐿) → 𝑠 ∈
Q) |
| 19 | 18 | ad3antlr 493 |
. . . . . . . 8
⊢ ((((𝜑 ∧ 𝑠 ∈ (1st ‘𝐿)) ∧ (𝑞 ∈ Q ∧ (𝑠 +Q
𝑞)
<Q (𝐹‘𝑞))) ∧ (𝑡 ∈ Q ∧ ((𝑠 +Q
𝑞)
<Q 𝑡 ∧ 𝑡 <Q (𝐹‘𝑞)))) → 𝑠 ∈ Q) |
| 20 | | ltaddnq 7474 |
. . . . . . . 8
⊢ ((𝑞 ∈ Q ∧
𝑠 ∈ Q)
→ 𝑞
<Q (𝑞 +Q 𝑠)) |
| 21 | 17, 19, 20 | syl2anc 411 |
. . . . . . 7
⊢ ((((𝜑 ∧ 𝑠 ∈ (1st ‘𝐿)) ∧ (𝑞 ∈ Q ∧ (𝑠 +Q
𝑞)
<Q (𝐹‘𝑞))) ∧ (𝑡 ∈ Q ∧ ((𝑠 +Q
𝑞)
<Q 𝑡 ∧ 𝑡 <Q (𝐹‘𝑞)))) → 𝑞 <Q (𝑞 +Q
𝑠)) |
| 22 | | addcomnqg 7448 |
. . . . . . . 8
⊢ ((𝑞 ∈ Q ∧
𝑠 ∈ Q)
→ (𝑞
+Q 𝑠) = (𝑠 +Q 𝑞)) |
| 23 | 17, 19, 22 | syl2anc 411 |
. . . . . . 7
⊢ ((((𝜑 ∧ 𝑠 ∈ (1st ‘𝐿)) ∧ (𝑞 ∈ Q ∧ (𝑠 +Q
𝑞)
<Q (𝐹‘𝑞))) ∧ (𝑡 ∈ Q ∧ ((𝑠 +Q
𝑞)
<Q 𝑡 ∧ 𝑡 <Q (𝐹‘𝑞)))) → (𝑞 +Q 𝑠) = (𝑠 +Q 𝑞)) |
| 24 | 21, 23 | breqtrd 4059 |
. . . . . 6
⊢ ((((𝜑 ∧ 𝑠 ∈ (1st ‘𝐿)) ∧ (𝑞 ∈ Q ∧ (𝑠 +Q
𝑞)
<Q (𝐹‘𝑞))) ∧ (𝑡 ∈ Q ∧ ((𝑠 +Q
𝑞)
<Q 𝑡 ∧ 𝑡 <Q (𝐹‘𝑞)))) → 𝑞 <Q (𝑠 +Q
𝑞)) |
| 25 | | simprrl 539 |
. . . . . 6
⊢ ((((𝜑 ∧ 𝑠 ∈ (1st ‘𝐿)) ∧ (𝑞 ∈ Q ∧ (𝑠 +Q
𝑞)
<Q (𝐹‘𝑞))) ∧ (𝑡 ∈ Q ∧ ((𝑠 +Q
𝑞)
<Q 𝑡 ∧ 𝑡 <Q (𝐹‘𝑞)))) → (𝑠 +Q 𝑞) <Q
𝑡) |
| 26 | | ltsonq 7465 |
. . . . . . 7
⊢
<Q Or Q |
| 27 | | ltrelnq 7432 |
. . . . . . 7
⊢
<Q ⊆ (Q ×
Q) |
| 28 | 26, 27 | sotri 5065 |
. . . . . 6
⊢ ((𝑞 <Q
(𝑠
+Q 𝑞) ∧ (𝑠 +Q 𝑞) <Q
𝑡) → 𝑞 <Q
𝑡) |
| 29 | 24, 25, 28 | syl2anc 411 |
. . . . 5
⊢ ((((𝜑 ∧ 𝑠 ∈ (1st ‘𝐿)) ∧ (𝑞 ∈ Q ∧ (𝑠 +Q
𝑞)
<Q (𝐹‘𝑞))) ∧ (𝑡 ∈ Q ∧ ((𝑠 +Q
𝑞)
<Q 𝑡 ∧ 𝑡 <Q (𝐹‘𝑞)))) → 𝑞 <Q 𝑡) |
| 30 | | simprl 529 |
. . . . . 6
⊢ ((((𝜑 ∧ 𝑠 ∈ (1st ‘𝐿)) ∧ (𝑞 ∈ Q ∧ (𝑠 +Q
𝑞)
<Q (𝐹‘𝑞))) ∧ (𝑡 ∈ Q ∧ ((𝑠 +Q
𝑞)
<Q 𝑡 ∧ 𝑡 <Q (𝐹‘𝑞)))) → 𝑡 ∈ Q) |
| 31 | | ltexnqq 7475 |
. . . . . 6
⊢ ((𝑞 ∈ Q ∧
𝑡 ∈ Q)
→ (𝑞
<Q 𝑡 ↔ ∃𝑟 ∈ Q (𝑞 +Q 𝑟) = 𝑡)) |
| 32 | 17, 30, 31 | syl2anc 411 |
. . . . 5
⊢ ((((𝜑 ∧ 𝑠 ∈ (1st ‘𝐿)) ∧ (𝑞 ∈ Q ∧ (𝑠 +Q
𝑞)
<Q (𝐹‘𝑞))) ∧ (𝑡 ∈ Q ∧ ((𝑠 +Q
𝑞)
<Q 𝑡 ∧ 𝑡 <Q (𝐹‘𝑞)))) → (𝑞 <Q 𝑡 ↔ ∃𝑟 ∈ Q (𝑞 +Q
𝑟) = 𝑡)) |
| 33 | 29, 32 | mpbid 147 |
. . . 4
⊢ ((((𝜑 ∧ 𝑠 ∈ (1st ‘𝐿)) ∧ (𝑞 ∈ Q ∧ (𝑠 +Q
𝑞)
<Q (𝐹‘𝑞))) ∧ (𝑡 ∈ Q ∧ ((𝑠 +Q
𝑞)
<Q 𝑡 ∧ 𝑡 <Q (𝐹‘𝑞)))) → ∃𝑟 ∈ Q (𝑞 +Q 𝑟) = 𝑡) |
| 34 | 25 | ad2antrr 488 |
. . . . . . . . . 10
⊢
((((((𝜑 ∧ 𝑠 ∈ (1st
‘𝐿)) ∧ (𝑞 ∈ Q ∧
(𝑠
+Q 𝑞) <Q (𝐹‘𝑞))) ∧ (𝑡 ∈ Q ∧ ((𝑠 +Q
𝑞)
<Q 𝑡 ∧ 𝑡 <Q (𝐹‘𝑞)))) ∧ 𝑟 ∈ Q) ∧ (𝑞 +Q
𝑟) = 𝑡) → (𝑠 +Q 𝑞) <Q
𝑡) |
| 35 | 19 | ad2antrr 488 |
. . . . . . . . . . . 12
⊢
((((((𝜑 ∧ 𝑠 ∈ (1st
‘𝐿)) ∧ (𝑞 ∈ Q ∧
(𝑠
+Q 𝑞) <Q (𝐹‘𝑞))) ∧ (𝑡 ∈ Q ∧ ((𝑠 +Q
𝑞)
<Q 𝑡 ∧ 𝑡 <Q (𝐹‘𝑞)))) ∧ 𝑟 ∈ Q) ∧ (𝑞 +Q
𝑟) = 𝑡) → 𝑠 ∈ Q) |
| 36 | 17 | ad2antrr 488 |
. . . . . . . . . . . 12
⊢
((((((𝜑 ∧ 𝑠 ∈ (1st
‘𝐿)) ∧ (𝑞 ∈ Q ∧
(𝑠
+Q 𝑞) <Q (𝐹‘𝑞))) ∧ (𝑡 ∈ Q ∧ ((𝑠 +Q
𝑞)
<Q 𝑡 ∧ 𝑡 <Q (𝐹‘𝑞)))) ∧ 𝑟 ∈ Q) ∧ (𝑞 +Q
𝑟) = 𝑡) → 𝑞 ∈ Q) |
| 37 | | addcomnqg 7448 |
. . . . . . . . . . . 12
⊢ ((𝑠 ∈ Q ∧
𝑞 ∈ Q)
→ (𝑠
+Q 𝑞) = (𝑞 +Q 𝑠)) |
| 38 | 35, 36, 37 | syl2anc 411 |
. . . . . . . . . . 11
⊢
((((((𝜑 ∧ 𝑠 ∈ (1st
‘𝐿)) ∧ (𝑞 ∈ Q ∧
(𝑠
+Q 𝑞) <Q (𝐹‘𝑞))) ∧ (𝑡 ∈ Q ∧ ((𝑠 +Q
𝑞)
<Q 𝑡 ∧ 𝑡 <Q (𝐹‘𝑞)))) ∧ 𝑟 ∈ Q) ∧ (𝑞 +Q
𝑟) = 𝑡) → (𝑠 +Q 𝑞) = (𝑞 +Q 𝑠)) |
| 39 | 38 | breq1d 4043 |
. . . . . . . . . 10
⊢
((((((𝜑 ∧ 𝑠 ∈ (1st
‘𝐿)) ∧ (𝑞 ∈ Q ∧
(𝑠
+Q 𝑞) <Q (𝐹‘𝑞))) ∧ (𝑡 ∈ Q ∧ ((𝑠 +Q
𝑞)
<Q 𝑡 ∧ 𝑡 <Q (𝐹‘𝑞)))) ∧ 𝑟 ∈ Q) ∧ (𝑞 +Q
𝑟) = 𝑡) → ((𝑠 +Q 𝑞) <Q
𝑡 ↔ (𝑞 +Q
𝑠)
<Q 𝑡)) |
| 40 | 34, 39 | mpbid 147 |
. . . . . . . . 9
⊢
((((((𝜑 ∧ 𝑠 ∈ (1st
‘𝐿)) ∧ (𝑞 ∈ Q ∧
(𝑠
+Q 𝑞) <Q (𝐹‘𝑞))) ∧ (𝑡 ∈ Q ∧ ((𝑠 +Q
𝑞)
<Q 𝑡 ∧ 𝑡 <Q (𝐹‘𝑞)))) ∧ 𝑟 ∈ Q) ∧ (𝑞 +Q
𝑟) = 𝑡) → (𝑞 +Q 𝑠) <Q
𝑡) |
| 41 | | simpr 110 |
. . . . . . . . 9
⊢
((((((𝜑 ∧ 𝑠 ∈ (1st
‘𝐿)) ∧ (𝑞 ∈ Q ∧
(𝑠
+Q 𝑞) <Q (𝐹‘𝑞))) ∧ (𝑡 ∈ Q ∧ ((𝑠 +Q
𝑞)
<Q 𝑡 ∧ 𝑡 <Q (𝐹‘𝑞)))) ∧ 𝑟 ∈ Q) ∧ (𝑞 +Q
𝑟) = 𝑡) → (𝑞 +Q 𝑟) = 𝑡) |
| 42 | 40, 41 | breqtrrd 4061 |
. . . . . . . 8
⊢
((((((𝜑 ∧ 𝑠 ∈ (1st
‘𝐿)) ∧ (𝑞 ∈ Q ∧
(𝑠
+Q 𝑞) <Q (𝐹‘𝑞))) ∧ (𝑡 ∈ Q ∧ ((𝑠 +Q
𝑞)
<Q 𝑡 ∧ 𝑡 <Q (𝐹‘𝑞)))) ∧ 𝑟 ∈ Q) ∧ (𝑞 +Q
𝑟) = 𝑡) → (𝑞 +Q 𝑠) <Q
(𝑞
+Q 𝑟)) |
| 43 | | simplr 528 |
. . . . . . . . 9
⊢
((((((𝜑 ∧ 𝑠 ∈ (1st
‘𝐿)) ∧ (𝑞 ∈ Q ∧
(𝑠
+Q 𝑞) <Q (𝐹‘𝑞))) ∧ (𝑡 ∈ Q ∧ ((𝑠 +Q
𝑞)
<Q 𝑡 ∧ 𝑡 <Q (𝐹‘𝑞)))) ∧ 𝑟 ∈ Q) ∧ (𝑞 +Q
𝑟) = 𝑡) → 𝑟 ∈ Q) |
| 44 | | ltanqg 7467 |
. . . . . . . . 9
⊢ ((𝑠 ∈ Q ∧
𝑟 ∈ Q
∧ 𝑞 ∈
Q) → (𝑠
<Q 𝑟 ↔ (𝑞 +Q 𝑠) <Q
(𝑞
+Q 𝑟))) |
| 45 | 35, 43, 36, 44 | syl3anc 1249 |
. . . . . . . 8
⊢
((((((𝜑 ∧ 𝑠 ∈ (1st
‘𝐿)) ∧ (𝑞 ∈ Q ∧
(𝑠
+Q 𝑞) <Q (𝐹‘𝑞))) ∧ (𝑡 ∈ Q ∧ ((𝑠 +Q
𝑞)
<Q 𝑡 ∧ 𝑡 <Q (𝐹‘𝑞)))) ∧ 𝑟 ∈ Q) ∧ (𝑞 +Q
𝑟) = 𝑡) → (𝑠 <Q 𝑟 ↔ (𝑞 +Q 𝑠) <Q
(𝑞
+Q 𝑟))) |
| 46 | 42, 45 | mpbird 167 |
. . . . . . 7
⊢
((((((𝜑 ∧ 𝑠 ∈ (1st
‘𝐿)) ∧ (𝑞 ∈ Q ∧
(𝑠
+Q 𝑞) <Q (𝐹‘𝑞))) ∧ (𝑡 ∈ Q ∧ ((𝑠 +Q
𝑞)
<Q 𝑡 ∧ 𝑡 <Q (𝐹‘𝑞)))) ∧ 𝑟 ∈ Q) ∧ (𝑞 +Q
𝑟) = 𝑡) → 𝑠 <Q 𝑟) |
| 47 | | simprrr 540 |
. . . . . . . . . . 11
⊢ ((((𝜑 ∧ 𝑠 ∈ (1st ‘𝐿)) ∧ (𝑞 ∈ Q ∧ (𝑠 +Q
𝑞)
<Q (𝐹‘𝑞))) ∧ (𝑡 ∈ Q ∧ ((𝑠 +Q
𝑞)
<Q 𝑡 ∧ 𝑡 <Q (𝐹‘𝑞)))) → 𝑡 <Q (𝐹‘𝑞)) |
| 48 | 47 | ad2antrr 488 |
. . . . . . . . . 10
⊢
((((((𝜑 ∧ 𝑠 ∈ (1st
‘𝐿)) ∧ (𝑞 ∈ Q ∧
(𝑠
+Q 𝑞) <Q (𝐹‘𝑞))) ∧ (𝑡 ∈ Q ∧ ((𝑠 +Q
𝑞)
<Q 𝑡 ∧ 𝑡 <Q (𝐹‘𝑞)))) ∧ 𝑟 ∈ Q) ∧ (𝑞 +Q
𝑟) = 𝑡) → 𝑡 <Q (𝐹‘𝑞)) |
| 49 | | addcomnqg 7448 |
. . . . . . . . . . . . 13
⊢ ((𝑞 ∈ Q ∧
𝑟 ∈ Q)
→ (𝑞
+Q 𝑟) = (𝑟 +Q 𝑞)) |
| 50 | 36, 43, 49 | syl2anc 411 |
. . . . . . . . . . . 12
⊢
((((((𝜑 ∧ 𝑠 ∈ (1st
‘𝐿)) ∧ (𝑞 ∈ Q ∧
(𝑠
+Q 𝑞) <Q (𝐹‘𝑞))) ∧ (𝑡 ∈ Q ∧ ((𝑠 +Q
𝑞)
<Q 𝑡 ∧ 𝑡 <Q (𝐹‘𝑞)))) ∧ 𝑟 ∈ Q) ∧ (𝑞 +Q
𝑟) = 𝑡) → (𝑞 +Q 𝑟) = (𝑟 +Q 𝑞)) |
| 51 | 50, 41 | eqtr3d 2231 |
. . . . . . . . . . 11
⊢
((((((𝜑 ∧ 𝑠 ∈ (1st
‘𝐿)) ∧ (𝑞 ∈ Q ∧
(𝑠
+Q 𝑞) <Q (𝐹‘𝑞))) ∧ (𝑡 ∈ Q ∧ ((𝑠 +Q
𝑞)
<Q 𝑡 ∧ 𝑡 <Q (𝐹‘𝑞)))) ∧ 𝑟 ∈ Q) ∧ (𝑞 +Q
𝑟) = 𝑡) → (𝑟 +Q 𝑞) = 𝑡) |
| 52 | 51 | breq1d 4043 |
. . . . . . . . . 10
⊢
((((((𝜑 ∧ 𝑠 ∈ (1st
‘𝐿)) ∧ (𝑞 ∈ Q ∧
(𝑠
+Q 𝑞) <Q (𝐹‘𝑞))) ∧ (𝑡 ∈ Q ∧ ((𝑠 +Q
𝑞)
<Q 𝑡 ∧ 𝑡 <Q (𝐹‘𝑞)))) ∧ 𝑟 ∈ Q) ∧ (𝑞 +Q
𝑟) = 𝑡) → ((𝑟 +Q 𝑞) <Q
(𝐹‘𝑞) ↔ 𝑡 <Q (𝐹‘𝑞))) |
| 53 | 48, 52 | mpbird 167 |
. . . . . . . . 9
⊢
((((((𝜑 ∧ 𝑠 ∈ (1st
‘𝐿)) ∧ (𝑞 ∈ Q ∧
(𝑠
+Q 𝑞) <Q (𝐹‘𝑞))) ∧ (𝑡 ∈ Q ∧ ((𝑠 +Q
𝑞)
<Q 𝑡 ∧ 𝑡 <Q (𝐹‘𝑞)))) ∧ 𝑟 ∈ Q) ∧ (𝑞 +Q
𝑟) = 𝑡) → (𝑟 +Q 𝑞) <Q
(𝐹‘𝑞)) |
| 54 | | rspe 2546 |
. . . . . . . . 9
⊢ ((𝑞 ∈ Q ∧
(𝑟
+Q 𝑞) <Q (𝐹‘𝑞)) → ∃𝑞 ∈ Q (𝑟 +Q 𝑞) <Q
(𝐹‘𝑞)) |
| 55 | 36, 53, 54 | syl2anc 411 |
. . . . . . . 8
⊢
((((((𝜑 ∧ 𝑠 ∈ (1st
‘𝐿)) ∧ (𝑞 ∈ Q ∧
(𝑠
+Q 𝑞) <Q (𝐹‘𝑞))) ∧ (𝑡 ∈ Q ∧ ((𝑠 +Q
𝑞)
<Q 𝑡 ∧ 𝑡 <Q (𝐹‘𝑞)))) ∧ 𝑟 ∈ Q) ∧ (𝑞 +Q
𝑟) = 𝑡) → ∃𝑞 ∈ Q (𝑟 +Q 𝑞) <Q
(𝐹‘𝑞)) |
| 56 | | oveq1 5929 |
. . . . . . . . . . 11
⊢ (𝑙 = 𝑟 → (𝑙 +Q 𝑞) = (𝑟 +Q 𝑞)) |
| 57 | 56 | breq1d 4043 |
. . . . . . . . . 10
⊢ (𝑙 = 𝑟 → ((𝑙 +Q 𝑞) <Q
(𝐹‘𝑞) ↔ (𝑟 +Q 𝑞) <Q
(𝐹‘𝑞))) |
| 58 | 57 | rexbidv 2498 |
. . . . . . . . 9
⊢ (𝑙 = 𝑟 → (∃𝑞 ∈ Q (𝑙 +Q 𝑞) <Q
(𝐹‘𝑞) ↔ ∃𝑞 ∈ Q (𝑟 +Q 𝑞) <Q
(𝐹‘𝑞))) |
| 59 | 58, 10 | elrab2 2923 |
. . . . . . . 8
⊢ (𝑟 ∈ (1st
‘𝐿) ↔ (𝑟 ∈ Q ∧
∃𝑞 ∈
Q (𝑟
+Q 𝑞) <Q (𝐹‘𝑞))) |
| 60 | 43, 55, 59 | sylanbrc 417 |
. . . . . . 7
⊢
((((((𝜑 ∧ 𝑠 ∈ (1st
‘𝐿)) ∧ (𝑞 ∈ Q ∧
(𝑠
+Q 𝑞) <Q (𝐹‘𝑞))) ∧ (𝑡 ∈ Q ∧ ((𝑠 +Q
𝑞)
<Q 𝑡 ∧ 𝑡 <Q (𝐹‘𝑞)))) ∧ 𝑟 ∈ Q) ∧ (𝑞 +Q
𝑟) = 𝑡) → 𝑟 ∈ (1st ‘𝐿)) |
| 61 | 46, 60 | jca 306 |
. . . . . 6
⊢
((((((𝜑 ∧ 𝑠 ∈ (1st
‘𝐿)) ∧ (𝑞 ∈ Q ∧
(𝑠
+Q 𝑞) <Q (𝐹‘𝑞))) ∧ (𝑡 ∈ Q ∧ ((𝑠 +Q
𝑞)
<Q 𝑡 ∧ 𝑡 <Q (𝐹‘𝑞)))) ∧ 𝑟 ∈ Q) ∧ (𝑞 +Q
𝑟) = 𝑡) → (𝑠 <Q 𝑟 ∧ 𝑟 ∈ (1st ‘𝐿))) |
| 62 | 61 | ex 115 |
. . . . 5
⊢
(((((𝜑 ∧ 𝑠 ∈ (1st
‘𝐿)) ∧ (𝑞 ∈ Q ∧
(𝑠
+Q 𝑞) <Q (𝐹‘𝑞))) ∧ (𝑡 ∈ Q ∧ ((𝑠 +Q
𝑞)
<Q 𝑡 ∧ 𝑡 <Q (𝐹‘𝑞)))) ∧ 𝑟 ∈ Q) → ((𝑞 +Q
𝑟) = 𝑡 → (𝑠 <Q 𝑟 ∧ 𝑟 ∈ (1st ‘𝐿)))) |
| 63 | 62 | reximdva 2599 |
. . . 4
⊢ ((((𝜑 ∧ 𝑠 ∈ (1st ‘𝐿)) ∧ (𝑞 ∈ Q ∧ (𝑠 +Q
𝑞)
<Q (𝐹‘𝑞))) ∧ (𝑡 ∈ Q ∧ ((𝑠 +Q
𝑞)
<Q 𝑡 ∧ 𝑡 <Q (𝐹‘𝑞)))) → (∃𝑟 ∈ Q (𝑞 +Q 𝑟) = 𝑡 → ∃𝑟 ∈ Q (𝑠 <Q 𝑟 ∧ 𝑟 ∈ (1st ‘𝐿)))) |
| 64 | 33, 63 | mpd 13 |
. . 3
⊢ ((((𝜑 ∧ 𝑠 ∈ (1st ‘𝐿)) ∧ (𝑞 ∈ Q ∧ (𝑠 +Q
𝑞)
<Q (𝐹‘𝑞))) ∧ (𝑡 ∈ Q ∧ ((𝑠 +Q
𝑞)
<Q 𝑡 ∧ 𝑡 <Q (𝐹‘𝑞)))) → ∃𝑟 ∈ Q (𝑠 <Q 𝑟 ∧ 𝑟 ∈ (1st ‘𝐿))) |
| 65 | 16, 64 | rexlimddv 2619 |
. 2
⊢ (((𝜑 ∧ 𝑠 ∈ (1st ‘𝐿)) ∧ (𝑞 ∈ Q ∧ (𝑠 +Q
𝑞)
<Q (𝐹‘𝑞))) → ∃𝑟 ∈ Q (𝑠 <Q 𝑟 ∧ 𝑟 ∈ (1st ‘𝐿))) |
| 66 | 13, 65 | rexlimddv 2619 |
1
⊢ ((𝜑 ∧ 𝑠 ∈ (1st ‘𝐿)) → ∃𝑟 ∈ Q (𝑠 <Q
𝑟 ∧ 𝑟 ∈ (1st ‘𝐿))) |