ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  cauappcvgprlem2 GIF version

Theorem cauappcvgprlem2 7369
Description: Lemma for cauappcvgpr 7371. Part of showing the putative limit to be a limit. (Contributed by Jim Kingdon, 23-Jun-2020.)
Hypotheses
Ref Expression
cauappcvgpr.f (𝜑𝐹:QQ)
cauappcvgpr.app (𝜑 → ∀𝑝Q𝑞Q ((𝐹𝑝) <Q ((𝐹𝑞) +Q (𝑝 +Q 𝑞)) ∧ (𝐹𝑞) <Q ((𝐹𝑝) +Q (𝑝 +Q 𝑞))))
cauappcvgpr.bnd (𝜑 → ∀𝑝Q 𝐴 <Q (𝐹𝑝))
cauappcvgpr.lim 𝐿 = ⟨{𝑙Q ∣ ∃𝑞Q (𝑙 +Q 𝑞) <Q (𝐹𝑞)}, {𝑢Q ∣ ∃𝑞Q ((𝐹𝑞) +Q 𝑞) <Q 𝑢}⟩
cauappcvgprlem.q (𝜑𝑄Q)
cauappcvgprlem.r (𝜑𝑅Q)
Assertion
Ref Expression
cauappcvgprlem2 (𝜑𝐿<P ⟨{𝑙𝑙 <Q ((𝐹𝑄) +Q (𝑄 +Q 𝑅))}, {𝑢 ∣ ((𝐹𝑄) +Q (𝑄 +Q 𝑅)) <Q 𝑢}⟩)
Distinct variable groups:   𝐴,𝑝   𝐿,𝑝,𝑞   𝜑,𝑝,𝑞   𝐹,𝑝,𝑞,𝑙,𝑢   𝑄,𝑝,𝑞,𝑙,𝑢   𝑅,𝑝,𝑞,𝑙,𝑢
Allowed substitution hints:   𝜑(𝑢,𝑙)   𝐴(𝑢,𝑞,𝑙)   𝐿(𝑢,𝑙)

Proof of Theorem cauappcvgprlem2
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 cauappcvgprlem.q . . . . 5 (𝜑𝑄Q)
2 cauappcvgprlem.r . . . . 5 (𝜑𝑅Q)
3 ltaddnq 7116 . . . . 5 ((𝑄Q𝑅Q) → 𝑄 <Q (𝑄 +Q 𝑅))
41, 2, 3syl2anc 406 . . . 4 (𝜑𝑄 <Q (𝑄 +Q 𝑅))
5 cauappcvgpr.f . . . . 5 (𝜑𝐹:QQ)
65, 1ffvelrnd 5488 . . . 4 (𝜑 → (𝐹𝑄) ∈ Q)
7 ltanqi 7111 . . . 4 ((𝑄 <Q (𝑄 +Q 𝑅) ∧ (𝐹𝑄) ∈ Q) → ((𝐹𝑄) +Q 𝑄) <Q ((𝐹𝑄) +Q (𝑄 +Q 𝑅)))
84, 6, 7syl2anc 406 . . 3 (𝜑 → ((𝐹𝑄) +Q 𝑄) <Q ((𝐹𝑄) +Q (𝑄 +Q 𝑅)))
9 ltbtwnnqq 7124 . . 3 (((𝐹𝑄) +Q 𝑄) <Q ((𝐹𝑄) +Q (𝑄 +Q 𝑅)) ↔ ∃𝑥Q (((𝐹𝑄) +Q 𝑄) <Q 𝑥𝑥 <Q ((𝐹𝑄) +Q (𝑄 +Q 𝑅))))
108, 9sylib 121 . 2 (𝜑 → ∃𝑥Q (((𝐹𝑄) +Q 𝑄) <Q 𝑥𝑥 <Q ((𝐹𝑄) +Q (𝑄 +Q 𝑅))))
11 simprl 501 . . . 4 ((𝜑 ∧ (𝑥Q ∧ (((𝐹𝑄) +Q 𝑄) <Q 𝑥𝑥 <Q ((𝐹𝑄) +Q (𝑄 +Q 𝑅))))) → 𝑥Q)
121adantr 272 . . . . . 6 ((𝜑 ∧ (𝑥Q ∧ (((𝐹𝑄) +Q 𝑄) <Q 𝑥𝑥 <Q ((𝐹𝑄) +Q (𝑄 +Q 𝑅))))) → 𝑄Q)
13 simprrl 509 . . . . . 6 ((𝜑 ∧ (𝑥Q ∧ (((𝐹𝑄) +Q 𝑄) <Q 𝑥𝑥 <Q ((𝐹𝑄) +Q (𝑄 +Q 𝑅))))) → ((𝐹𝑄) +Q 𝑄) <Q 𝑥)
14 fveq2 5353 . . . . . . . . 9 (𝑞 = 𝑄 → (𝐹𝑞) = (𝐹𝑄))
15 id 19 . . . . . . . . 9 (𝑞 = 𝑄𝑞 = 𝑄)
1614, 15oveq12d 5724 . . . . . . . 8 (𝑞 = 𝑄 → ((𝐹𝑞) +Q 𝑞) = ((𝐹𝑄) +Q 𝑄))
1716breq1d 3885 . . . . . . 7 (𝑞 = 𝑄 → (((𝐹𝑞) +Q 𝑞) <Q 𝑥 ↔ ((𝐹𝑄) +Q 𝑄) <Q 𝑥))
1817rspcev 2744 . . . . . 6 ((𝑄Q ∧ ((𝐹𝑄) +Q 𝑄) <Q 𝑥) → ∃𝑞Q ((𝐹𝑞) +Q 𝑞) <Q 𝑥)
1912, 13, 18syl2anc 406 . . . . 5 ((𝜑 ∧ (𝑥Q ∧ (((𝐹𝑄) +Q 𝑄) <Q 𝑥𝑥 <Q ((𝐹𝑄) +Q (𝑄 +Q 𝑅))))) → ∃𝑞Q ((𝐹𝑞) +Q 𝑞) <Q 𝑥)
20 breq2 3879 . . . . . . 7 (𝑢 = 𝑥 → (((𝐹𝑞) +Q 𝑞) <Q 𝑢 ↔ ((𝐹𝑞) +Q 𝑞) <Q 𝑥))
2120rexbidv 2397 . . . . . 6 (𝑢 = 𝑥 → (∃𝑞Q ((𝐹𝑞) +Q 𝑞) <Q 𝑢 ↔ ∃𝑞Q ((𝐹𝑞) +Q 𝑞) <Q 𝑥))
22 cauappcvgpr.lim . . . . . . . 8 𝐿 = ⟨{𝑙Q ∣ ∃𝑞Q (𝑙 +Q 𝑞) <Q (𝐹𝑞)}, {𝑢Q ∣ ∃𝑞Q ((𝐹𝑞) +Q 𝑞) <Q 𝑢}⟩
2322fveq2i 5356 . . . . . . 7 (2nd𝐿) = (2nd ‘⟨{𝑙Q ∣ ∃𝑞Q (𝑙 +Q 𝑞) <Q (𝐹𝑞)}, {𝑢Q ∣ ∃𝑞Q ((𝐹𝑞) +Q 𝑞) <Q 𝑢}⟩)
24 nqex 7072 . . . . . . . . 9 Q ∈ V
2524rabex 4012 . . . . . . . 8 {𝑙Q ∣ ∃𝑞Q (𝑙 +Q 𝑞) <Q (𝐹𝑞)} ∈ V
2624rabex 4012 . . . . . . . 8 {𝑢Q ∣ ∃𝑞Q ((𝐹𝑞) +Q 𝑞) <Q 𝑢} ∈ V
2725, 26op2nd 5976 . . . . . . 7 (2nd ‘⟨{𝑙Q ∣ ∃𝑞Q (𝑙 +Q 𝑞) <Q (𝐹𝑞)}, {𝑢Q ∣ ∃𝑞Q ((𝐹𝑞) +Q 𝑞) <Q 𝑢}⟩) = {𝑢Q ∣ ∃𝑞Q ((𝐹𝑞) +Q 𝑞) <Q 𝑢}
2823, 27eqtri 2120 . . . . . 6 (2nd𝐿) = {𝑢Q ∣ ∃𝑞Q ((𝐹𝑞) +Q 𝑞) <Q 𝑢}
2921, 28elrab2 2796 . . . . 5 (𝑥 ∈ (2nd𝐿) ↔ (𝑥Q ∧ ∃𝑞Q ((𝐹𝑞) +Q 𝑞) <Q 𝑥))
3011, 19, 29sylanbrc 411 . . . 4 ((𝜑 ∧ (𝑥Q ∧ (((𝐹𝑄) +Q 𝑄) <Q 𝑥𝑥 <Q ((𝐹𝑄) +Q (𝑄 +Q 𝑅))))) → 𝑥 ∈ (2nd𝐿))
31 simprrr 510 . . . . . 6 ((𝜑 ∧ (𝑥Q ∧ (((𝐹𝑄) +Q 𝑄) <Q 𝑥𝑥 <Q ((𝐹𝑄) +Q (𝑄 +Q 𝑅))))) → 𝑥 <Q ((𝐹𝑄) +Q (𝑄 +Q 𝑅)))
32 vex 2644 . . . . . . 7 𝑥 ∈ V
33 breq1 3878 . . . . . . 7 (𝑙 = 𝑥 → (𝑙 <Q ((𝐹𝑄) +Q (𝑄 +Q 𝑅)) ↔ 𝑥 <Q ((𝐹𝑄) +Q (𝑄 +Q 𝑅))))
3432, 33elab 2782 . . . . . 6 (𝑥 ∈ {𝑙𝑙 <Q ((𝐹𝑄) +Q (𝑄 +Q 𝑅))} ↔ 𝑥 <Q ((𝐹𝑄) +Q (𝑄 +Q 𝑅)))
3531, 34sylibr 133 . . . . 5 ((𝜑 ∧ (𝑥Q ∧ (((𝐹𝑄) +Q 𝑄) <Q 𝑥𝑥 <Q ((𝐹𝑄) +Q (𝑄 +Q 𝑅))))) → 𝑥 ∈ {𝑙𝑙 <Q ((𝐹𝑄) +Q (𝑄 +Q 𝑅))})
36 ltnqex 7258 . . . . . 6 {𝑙𝑙 <Q ((𝐹𝑄) +Q (𝑄 +Q 𝑅))} ∈ V
37 gtnqex 7259 . . . . . 6 {𝑢 ∣ ((𝐹𝑄) +Q (𝑄 +Q 𝑅)) <Q 𝑢} ∈ V
3836, 37op1st 5975 . . . . 5 (1st ‘⟨{𝑙𝑙 <Q ((𝐹𝑄) +Q (𝑄 +Q 𝑅))}, {𝑢 ∣ ((𝐹𝑄) +Q (𝑄 +Q 𝑅)) <Q 𝑢}⟩) = {𝑙𝑙 <Q ((𝐹𝑄) +Q (𝑄 +Q 𝑅))}
3935, 38syl6eleqr 2193 . . . 4 ((𝜑 ∧ (𝑥Q ∧ (((𝐹𝑄) +Q 𝑄) <Q 𝑥𝑥 <Q ((𝐹𝑄) +Q (𝑄 +Q 𝑅))))) → 𝑥 ∈ (1st ‘⟨{𝑙𝑙 <Q ((𝐹𝑄) +Q (𝑄 +Q 𝑅))}, {𝑢 ∣ ((𝐹𝑄) +Q (𝑄 +Q 𝑅)) <Q 𝑢}⟩))
40 rspe 2440 . . . 4 ((𝑥Q ∧ (𝑥 ∈ (2nd𝐿) ∧ 𝑥 ∈ (1st ‘⟨{𝑙𝑙 <Q ((𝐹𝑄) +Q (𝑄 +Q 𝑅))}, {𝑢 ∣ ((𝐹𝑄) +Q (𝑄 +Q 𝑅)) <Q 𝑢}⟩))) → ∃𝑥Q (𝑥 ∈ (2nd𝐿) ∧ 𝑥 ∈ (1st ‘⟨{𝑙𝑙 <Q ((𝐹𝑄) +Q (𝑄 +Q 𝑅))}, {𝑢 ∣ ((𝐹𝑄) +Q (𝑄 +Q 𝑅)) <Q 𝑢}⟩)))
4111, 30, 39, 40syl12anc 1182 . . 3 ((𝜑 ∧ (𝑥Q ∧ (((𝐹𝑄) +Q 𝑄) <Q 𝑥𝑥 <Q ((𝐹𝑄) +Q (𝑄 +Q 𝑅))))) → ∃𝑥Q (𝑥 ∈ (2nd𝐿) ∧ 𝑥 ∈ (1st ‘⟨{𝑙𝑙 <Q ((𝐹𝑄) +Q (𝑄 +Q 𝑅))}, {𝑢 ∣ ((𝐹𝑄) +Q (𝑄 +Q 𝑅)) <Q 𝑢}⟩)))
42 cauappcvgpr.app . . . . . 6 (𝜑 → ∀𝑝Q𝑞Q ((𝐹𝑝) <Q ((𝐹𝑞) +Q (𝑝 +Q 𝑞)) ∧ (𝐹𝑞) <Q ((𝐹𝑝) +Q (𝑝 +Q 𝑞))))
43 cauappcvgpr.bnd . . . . . 6 (𝜑 → ∀𝑝Q 𝐴 <Q (𝐹𝑝))
445, 42, 43, 22cauappcvgprlemcl 7362 . . . . 5 (𝜑𝐿P)
4544adantr 272 . . . 4 ((𝜑 ∧ (𝑥Q ∧ (((𝐹𝑄) +Q 𝑄) <Q 𝑥𝑥 <Q ((𝐹𝑄) +Q (𝑄 +Q 𝑅))))) → 𝐿P)
46 addclnq 7084 . . . . . . . 8 ((𝑄Q𝑅Q) → (𝑄 +Q 𝑅) ∈ Q)
471, 2, 46syl2anc 406 . . . . . . 7 (𝜑 → (𝑄 +Q 𝑅) ∈ Q)
48 addclnq 7084 . . . . . . 7 (((𝐹𝑄) ∈ Q ∧ (𝑄 +Q 𝑅) ∈ Q) → ((𝐹𝑄) +Q (𝑄 +Q 𝑅)) ∈ Q)
496, 47, 48syl2anc 406 . . . . . 6 (𝜑 → ((𝐹𝑄) +Q (𝑄 +Q 𝑅)) ∈ Q)
50 nqprlu 7256 . . . . . 6 (((𝐹𝑄) +Q (𝑄 +Q 𝑅)) ∈ Q → ⟨{𝑙𝑙 <Q ((𝐹𝑄) +Q (𝑄 +Q 𝑅))}, {𝑢 ∣ ((𝐹𝑄) +Q (𝑄 +Q 𝑅)) <Q 𝑢}⟩ ∈ P)
5149, 50syl 14 . . . . 5 (𝜑 → ⟨{𝑙𝑙 <Q ((𝐹𝑄) +Q (𝑄 +Q 𝑅))}, {𝑢 ∣ ((𝐹𝑄) +Q (𝑄 +Q 𝑅)) <Q 𝑢}⟩ ∈ P)
5251adantr 272 . . . 4 ((𝜑 ∧ (𝑥Q ∧ (((𝐹𝑄) +Q 𝑄) <Q 𝑥𝑥 <Q ((𝐹𝑄) +Q (𝑄 +Q 𝑅))))) → ⟨{𝑙𝑙 <Q ((𝐹𝑄) +Q (𝑄 +Q 𝑅))}, {𝑢 ∣ ((𝐹𝑄) +Q (𝑄 +Q 𝑅)) <Q 𝑢}⟩ ∈ P)
53 ltdfpr 7215 . . . 4 ((𝐿P ∧ ⟨{𝑙𝑙 <Q ((𝐹𝑄) +Q (𝑄 +Q 𝑅))}, {𝑢 ∣ ((𝐹𝑄) +Q (𝑄 +Q 𝑅)) <Q 𝑢}⟩ ∈ P) → (𝐿<P ⟨{𝑙𝑙 <Q ((𝐹𝑄) +Q (𝑄 +Q 𝑅))}, {𝑢 ∣ ((𝐹𝑄) +Q (𝑄 +Q 𝑅)) <Q 𝑢}⟩ ↔ ∃𝑥Q (𝑥 ∈ (2nd𝐿) ∧ 𝑥 ∈ (1st ‘⟨{𝑙𝑙 <Q ((𝐹𝑄) +Q (𝑄 +Q 𝑅))}, {𝑢 ∣ ((𝐹𝑄) +Q (𝑄 +Q 𝑅)) <Q 𝑢}⟩))))
5445, 52, 53syl2anc 406 . . 3 ((𝜑 ∧ (𝑥Q ∧ (((𝐹𝑄) +Q 𝑄) <Q 𝑥𝑥 <Q ((𝐹𝑄) +Q (𝑄 +Q 𝑅))))) → (𝐿<P ⟨{𝑙𝑙 <Q ((𝐹𝑄) +Q (𝑄 +Q 𝑅))}, {𝑢 ∣ ((𝐹𝑄) +Q (𝑄 +Q 𝑅)) <Q 𝑢}⟩ ↔ ∃𝑥Q (𝑥 ∈ (2nd𝐿) ∧ 𝑥 ∈ (1st ‘⟨{𝑙𝑙 <Q ((𝐹𝑄) +Q (𝑄 +Q 𝑅))}, {𝑢 ∣ ((𝐹𝑄) +Q (𝑄 +Q 𝑅)) <Q 𝑢}⟩))))
5541, 54mpbird 166 . 2 ((𝜑 ∧ (𝑥Q ∧ (((𝐹𝑄) +Q 𝑄) <Q 𝑥𝑥 <Q ((𝐹𝑄) +Q (𝑄 +Q 𝑅))))) → 𝐿<P ⟨{𝑙𝑙 <Q ((𝐹𝑄) +Q (𝑄 +Q 𝑅))}, {𝑢 ∣ ((𝐹𝑄) +Q (𝑄 +Q 𝑅)) <Q 𝑢}⟩)
5610, 55rexlimddv 2513 1 (𝜑𝐿<P ⟨{𝑙𝑙 <Q ((𝐹𝑄) +Q (𝑄 +Q 𝑅))}, {𝑢 ∣ ((𝐹𝑄) +Q (𝑄 +Q 𝑅)) <Q 𝑢}⟩)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wb 104   = wceq 1299  wcel 1448  {cab 2086  wral 2375  wrex 2376  {crab 2379  cop 3477   class class class wbr 3875  wf 5055  cfv 5059  (class class class)co 5706  1st c1st 5967  2nd c2nd 5968  Qcnq 6989   +Q cplq 6991   <Q cltq 6994  Pcnp 7000  <P cltp 7004
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 584  ax-in2 585  ax-io 671  ax-5 1391  ax-7 1392  ax-gen 1393  ax-ie1 1437  ax-ie2 1438  ax-8 1450  ax-10 1451  ax-11 1452  ax-i12 1453  ax-bndl 1454  ax-4 1455  ax-13 1459  ax-14 1460  ax-17 1474  ax-i9 1478  ax-ial 1482  ax-i5r 1483  ax-ext 2082  ax-coll 3983  ax-sep 3986  ax-nul 3994  ax-pow 4038  ax-pr 4069  ax-un 4293  ax-setind 4390  ax-iinf 4440
This theorem depends on definitions:  df-bi 116  df-dc 787  df-3or 931  df-3an 932  df-tru 1302  df-fal 1305  df-nf 1405  df-sb 1704  df-eu 1963  df-mo 1964  df-clab 2087  df-cleq 2093  df-clel 2096  df-nfc 2229  df-ne 2268  df-ral 2380  df-rex 2381  df-reu 2382  df-rab 2384  df-v 2643  df-sbc 2863  df-csb 2956  df-dif 3023  df-un 3025  df-in 3027  df-ss 3034  df-nul 3311  df-pw 3459  df-sn 3480  df-pr 3481  df-op 3483  df-uni 3684  df-int 3719  df-iun 3762  df-br 3876  df-opab 3930  df-mpt 3931  df-tr 3967  df-eprel 4149  df-id 4153  df-po 4156  df-iso 4157  df-iord 4226  df-on 4228  df-suc 4231  df-iom 4443  df-xp 4483  df-rel 4484  df-cnv 4485  df-co 4486  df-dm 4487  df-rn 4488  df-res 4489  df-ima 4490  df-iota 5024  df-fun 5061  df-fn 5062  df-f 5063  df-f1 5064  df-fo 5065  df-f1o 5066  df-fv 5067  df-ov 5709  df-oprab 5710  df-mpo 5711  df-1st 5969  df-2nd 5970  df-recs 6132  df-irdg 6197  df-1o 6243  df-oadd 6247  df-omul 6248  df-er 6359  df-ec 6361  df-qs 6365  df-ni 7013  df-pli 7014  df-mi 7015  df-lti 7016  df-plpq 7053  df-mpq 7054  df-enq 7056  df-nqqs 7057  df-plqqs 7058  df-mqqs 7059  df-1nqqs 7060  df-rq 7061  df-ltnqqs 7062  df-inp 7175  df-iltp 7179
This theorem is referenced by:  cauappcvgprlemlim  7370
  Copyright terms: Public domain W3C validator