ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  cauappcvgprlem2 GIF version

Theorem cauappcvgprlem2 7163
Description: Lemma for cauappcvgpr 7165. Part of showing the putative limit to be a limit. (Contributed by Jim Kingdon, 23-Jun-2020.)
Hypotheses
Ref Expression
cauappcvgpr.f (𝜑𝐹:QQ)
cauappcvgpr.app (𝜑 → ∀𝑝Q𝑞Q ((𝐹𝑝) <Q ((𝐹𝑞) +Q (𝑝 +Q 𝑞)) ∧ (𝐹𝑞) <Q ((𝐹𝑝) +Q (𝑝 +Q 𝑞))))
cauappcvgpr.bnd (𝜑 → ∀𝑝Q 𝐴 <Q (𝐹𝑝))
cauappcvgpr.lim 𝐿 = ⟨{𝑙Q ∣ ∃𝑞Q (𝑙 +Q 𝑞) <Q (𝐹𝑞)}, {𝑢Q ∣ ∃𝑞Q ((𝐹𝑞) +Q 𝑞) <Q 𝑢}⟩
cauappcvgprlem.q (𝜑𝑄Q)
cauappcvgprlem.r (𝜑𝑅Q)
Assertion
Ref Expression
cauappcvgprlem2 (𝜑𝐿<P ⟨{𝑙𝑙 <Q ((𝐹𝑄) +Q (𝑄 +Q 𝑅))}, {𝑢 ∣ ((𝐹𝑄) +Q (𝑄 +Q 𝑅)) <Q 𝑢}⟩)
Distinct variable groups:   𝐴,𝑝   𝐿,𝑝,𝑞   𝜑,𝑝,𝑞   𝐹,𝑝,𝑞,𝑙,𝑢   𝑄,𝑝,𝑞,𝑙,𝑢   𝑅,𝑝,𝑞,𝑙,𝑢
Allowed substitution hints:   𝜑(𝑢,𝑙)   𝐴(𝑢,𝑞,𝑙)   𝐿(𝑢,𝑙)

Proof of Theorem cauappcvgprlem2
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 cauappcvgprlem.q . . . . 5 (𝜑𝑄Q)
2 cauappcvgprlem.r . . . . 5 (𝜑𝑅Q)
3 ltaddnq 6910 . . . . 5 ((𝑄Q𝑅Q) → 𝑄 <Q (𝑄 +Q 𝑅))
41, 2, 3syl2anc 403 . . . 4 (𝜑𝑄 <Q (𝑄 +Q 𝑅))
5 cauappcvgpr.f . . . . 5 (𝜑𝐹:QQ)
65, 1ffvelrnd 5398 . . . 4 (𝜑 → (𝐹𝑄) ∈ Q)
7 ltanqi 6905 . . . 4 ((𝑄 <Q (𝑄 +Q 𝑅) ∧ (𝐹𝑄) ∈ Q) → ((𝐹𝑄) +Q 𝑄) <Q ((𝐹𝑄) +Q (𝑄 +Q 𝑅)))
84, 6, 7syl2anc 403 . . 3 (𝜑 → ((𝐹𝑄) +Q 𝑄) <Q ((𝐹𝑄) +Q (𝑄 +Q 𝑅)))
9 ltbtwnnqq 6918 . . 3 (((𝐹𝑄) +Q 𝑄) <Q ((𝐹𝑄) +Q (𝑄 +Q 𝑅)) ↔ ∃𝑥Q (((𝐹𝑄) +Q 𝑄) <Q 𝑥𝑥 <Q ((𝐹𝑄) +Q (𝑄 +Q 𝑅))))
108, 9sylib 120 . 2 (𝜑 → ∃𝑥Q (((𝐹𝑄) +Q 𝑄) <Q 𝑥𝑥 <Q ((𝐹𝑄) +Q (𝑄 +Q 𝑅))))
11 simprl 498 . . . 4 ((𝜑 ∧ (𝑥Q ∧ (((𝐹𝑄) +Q 𝑄) <Q 𝑥𝑥 <Q ((𝐹𝑄) +Q (𝑄 +Q 𝑅))))) → 𝑥Q)
121adantr 270 . . . . . 6 ((𝜑 ∧ (𝑥Q ∧ (((𝐹𝑄) +Q 𝑄) <Q 𝑥𝑥 <Q ((𝐹𝑄) +Q (𝑄 +Q 𝑅))))) → 𝑄Q)
13 simprrl 506 . . . . . 6 ((𝜑 ∧ (𝑥Q ∧ (((𝐹𝑄) +Q 𝑄) <Q 𝑥𝑥 <Q ((𝐹𝑄) +Q (𝑄 +Q 𝑅))))) → ((𝐹𝑄) +Q 𝑄) <Q 𝑥)
14 fveq2 5268 . . . . . . . . 9 (𝑞 = 𝑄 → (𝐹𝑞) = (𝐹𝑄))
15 id 19 . . . . . . . . 9 (𝑞 = 𝑄𝑞 = 𝑄)
1614, 15oveq12d 5631 . . . . . . . 8 (𝑞 = 𝑄 → ((𝐹𝑞) +Q 𝑞) = ((𝐹𝑄) +Q 𝑄))
1716breq1d 3830 . . . . . . 7 (𝑞 = 𝑄 → (((𝐹𝑞) +Q 𝑞) <Q 𝑥 ↔ ((𝐹𝑄) +Q 𝑄) <Q 𝑥))
1817rspcev 2715 . . . . . 6 ((𝑄Q ∧ ((𝐹𝑄) +Q 𝑄) <Q 𝑥) → ∃𝑞Q ((𝐹𝑞) +Q 𝑞) <Q 𝑥)
1912, 13, 18syl2anc 403 . . . . 5 ((𝜑 ∧ (𝑥Q ∧ (((𝐹𝑄) +Q 𝑄) <Q 𝑥𝑥 <Q ((𝐹𝑄) +Q (𝑄 +Q 𝑅))))) → ∃𝑞Q ((𝐹𝑞) +Q 𝑞) <Q 𝑥)
20 breq2 3824 . . . . . . 7 (𝑢 = 𝑥 → (((𝐹𝑞) +Q 𝑞) <Q 𝑢 ↔ ((𝐹𝑞) +Q 𝑞) <Q 𝑥))
2120rexbidv 2377 . . . . . 6 (𝑢 = 𝑥 → (∃𝑞Q ((𝐹𝑞) +Q 𝑞) <Q 𝑢 ↔ ∃𝑞Q ((𝐹𝑞) +Q 𝑞) <Q 𝑥))
22 cauappcvgpr.lim . . . . . . . 8 𝐿 = ⟨{𝑙Q ∣ ∃𝑞Q (𝑙 +Q 𝑞) <Q (𝐹𝑞)}, {𝑢Q ∣ ∃𝑞Q ((𝐹𝑞) +Q 𝑞) <Q 𝑢}⟩
2322fveq2i 5271 . . . . . . 7 (2nd𝐿) = (2nd ‘⟨{𝑙Q ∣ ∃𝑞Q (𝑙 +Q 𝑞) <Q (𝐹𝑞)}, {𝑢Q ∣ ∃𝑞Q ((𝐹𝑞) +Q 𝑞) <Q 𝑢}⟩)
24 nqex 6866 . . . . . . . . 9 Q ∈ V
2524rabex 3958 . . . . . . . 8 {𝑙Q ∣ ∃𝑞Q (𝑙 +Q 𝑞) <Q (𝐹𝑞)} ∈ V
2624rabex 3958 . . . . . . . 8 {𝑢Q ∣ ∃𝑞Q ((𝐹𝑞) +Q 𝑞) <Q 𝑢} ∈ V
2725, 26op2nd 5875 . . . . . . 7 (2nd ‘⟨{𝑙Q ∣ ∃𝑞Q (𝑙 +Q 𝑞) <Q (𝐹𝑞)}, {𝑢Q ∣ ∃𝑞Q ((𝐹𝑞) +Q 𝑞) <Q 𝑢}⟩) = {𝑢Q ∣ ∃𝑞Q ((𝐹𝑞) +Q 𝑞) <Q 𝑢}
2823, 27eqtri 2105 . . . . . 6 (2nd𝐿) = {𝑢Q ∣ ∃𝑞Q ((𝐹𝑞) +Q 𝑞) <Q 𝑢}
2921, 28elrab2 2765 . . . . 5 (𝑥 ∈ (2nd𝐿) ↔ (𝑥Q ∧ ∃𝑞Q ((𝐹𝑞) +Q 𝑞) <Q 𝑥))
3011, 19, 29sylanbrc 408 . . . 4 ((𝜑 ∧ (𝑥Q ∧ (((𝐹𝑄) +Q 𝑄) <Q 𝑥𝑥 <Q ((𝐹𝑄) +Q (𝑄 +Q 𝑅))))) → 𝑥 ∈ (2nd𝐿))
31 simprrr 507 . . . . . 6 ((𝜑 ∧ (𝑥Q ∧ (((𝐹𝑄) +Q 𝑄) <Q 𝑥𝑥 <Q ((𝐹𝑄) +Q (𝑄 +Q 𝑅))))) → 𝑥 <Q ((𝐹𝑄) +Q (𝑄 +Q 𝑅)))
32 vex 2618 . . . . . . 7 𝑥 ∈ V
33 breq1 3823 . . . . . . 7 (𝑙 = 𝑥 → (𝑙 <Q ((𝐹𝑄) +Q (𝑄 +Q 𝑅)) ↔ 𝑥 <Q ((𝐹𝑄) +Q (𝑄 +Q 𝑅))))
3432, 33elab 2751 . . . . . 6 (𝑥 ∈ {𝑙𝑙 <Q ((𝐹𝑄) +Q (𝑄 +Q 𝑅))} ↔ 𝑥 <Q ((𝐹𝑄) +Q (𝑄 +Q 𝑅)))
3531, 34sylibr 132 . . . . 5 ((𝜑 ∧ (𝑥Q ∧ (((𝐹𝑄) +Q 𝑄) <Q 𝑥𝑥 <Q ((𝐹𝑄) +Q (𝑄 +Q 𝑅))))) → 𝑥 ∈ {𝑙𝑙 <Q ((𝐹𝑄) +Q (𝑄 +Q 𝑅))})
36 ltnqex 7052 . . . . . 6 {𝑙𝑙 <Q ((𝐹𝑄) +Q (𝑄 +Q 𝑅))} ∈ V
37 gtnqex 7053 . . . . . 6 {𝑢 ∣ ((𝐹𝑄) +Q (𝑄 +Q 𝑅)) <Q 𝑢} ∈ V
3836, 37op1st 5874 . . . . 5 (1st ‘⟨{𝑙𝑙 <Q ((𝐹𝑄) +Q (𝑄 +Q 𝑅))}, {𝑢 ∣ ((𝐹𝑄) +Q (𝑄 +Q 𝑅)) <Q 𝑢}⟩) = {𝑙𝑙 <Q ((𝐹𝑄) +Q (𝑄 +Q 𝑅))}
3935, 38syl6eleqr 2178 . . . 4 ((𝜑 ∧ (𝑥Q ∧ (((𝐹𝑄) +Q 𝑄) <Q 𝑥𝑥 <Q ((𝐹𝑄) +Q (𝑄 +Q 𝑅))))) → 𝑥 ∈ (1st ‘⟨{𝑙𝑙 <Q ((𝐹𝑄) +Q (𝑄 +Q 𝑅))}, {𝑢 ∣ ((𝐹𝑄) +Q (𝑄 +Q 𝑅)) <Q 𝑢}⟩))
40 rspe 2420 . . . 4 ((𝑥Q ∧ (𝑥 ∈ (2nd𝐿) ∧ 𝑥 ∈ (1st ‘⟨{𝑙𝑙 <Q ((𝐹𝑄) +Q (𝑄 +Q 𝑅))}, {𝑢 ∣ ((𝐹𝑄) +Q (𝑄 +Q 𝑅)) <Q 𝑢}⟩))) → ∃𝑥Q (𝑥 ∈ (2nd𝐿) ∧ 𝑥 ∈ (1st ‘⟨{𝑙𝑙 <Q ((𝐹𝑄) +Q (𝑄 +Q 𝑅))}, {𝑢 ∣ ((𝐹𝑄) +Q (𝑄 +Q 𝑅)) <Q 𝑢}⟩)))
4111, 30, 39, 40syl12anc 1170 . . 3 ((𝜑 ∧ (𝑥Q ∧ (((𝐹𝑄) +Q 𝑄) <Q 𝑥𝑥 <Q ((𝐹𝑄) +Q (𝑄 +Q 𝑅))))) → ∃𝑥Q (𝑥 ∈ (2nd𝐿) ∧ 𝑥 ∈ (1st ‘⟨{𝑙𝑙 <Q ((𝐹𝑄) +Q (𝑄 +Q 𝑅))}, {𝑢 ∣ ((𝐹𝑄) +Q (𝑄 +Q 𝑅)) <Q 𝑢}⟩)))
42 cauappcvgpr.app . . . . . 6 (𝜑 → ∀𝑝Q𝑞Q ((𝐹𝑝) <Q ((𝐹𝑞) +Q (𝑝 +Q 𝑞)) ∧ (𝐹𝑞) <Q ((𝐹𝑝) +Q (𝑝 +Q 𝑞))))
43 cauappcvgpr.bnd . . . . . 6 (𝜑 → ∀𝑝Q 𝐴 <Q (𝐹𝑝))
445, 42, 43, 22cauappcvgprlemcl 7156 . . . . 5 (𝜑𝐿P)
4544adantr 270 . . . 4 ((𝜑 ∧ (𝑥Q ∧ (((𝐹𝑄) +Q 𝑄) <Q 𝑥𝑥 <Q ((𝐹𝑄) +Q (𝑄 +Q 𝑅))))) → 𝐿P)
46 addclnq 6878 . . . . . . . 8 ((𝑄Q𝑅Q) → (𝑄 +Q 𝑅) ∈ Q)
471, 2, 46syl2anc 403 . . . . . . 7 (𝜑 → (𝑄 +Q 𝑅) ∈ Q)
48 addclnq 6878 . . . . . . 7 (((𝐹𝑄) ∈ Q ∧ (𝑄 +Q 𝑅) ∈ Q) → ((𝐹𝑄) +Q (𝑄 +Q 𝑅)) ∈ Q)
496, 47, 48syl2anc 403 . . . . . 6 (𝜑 → ((𝐹𝑄) +Q (𝑄 +Q 𝑅)) ∈ Q)
50 nqprlu 7050 . . . . . 6 (((𝐹𝑄) +Q (𝑄 +Q 𝑅)) ∈ Q → ⟨{𝑙𝑙 <Q ((𝐹𝑄) +Q (𝑄 +Q 𝑅))}, {𝑢 ∣ ((𝐹𝑄) +Q (𝑄 +Q 𝑅)) <Q 𝑢}⟩ ∈ P)
5149, 50syl 14 . . . . 5 (𝜑 → ⟨{𝑙𝑙 <Q ((𝐹𝑄) +Q (𝑄 +Q 𝑅))}, {𝑢 ∣ ((𝐹𝑄) +Q (𝑄 +Q 𝑅)) <Q 𝑢}⟩ ∈ P)
5251adantr 270 . . . 4 ((𝜑 ∧ (𝑥Q ∧ (((𝐹𝑄) +Q 𝑄) <Q 𝑥𝑥 <Q ((𝐹𝑄) +Q (𝑄 +Q 𝑅))))) → ⟨{𝑙𝑙 <Q ((𝐹𝑄) +Q (𝑄 +Q 𝑅))}, {𝑢 ∣ ((𝐹𝑄) +Q (𝑄 +Q 𝑅)) <Q 𝑢}⟩ ∈ P)
53 ltdfpr 7009 . . . 4 ((𝐿P ∧ ⟨{𝑙𝑙 <Q ((𝐹𝑄) +Q (𝑄 +Q 𝑅))}, {𝑢 ∣ ((𝐹𝑄) +Q (𝑄 +Q 𝑅)) <Q 𝑢}⟩ ∈ P) → (𝐿<P ⟨{𝑙𝑙 <Q ((𝐹𝑄) +Q (𝑄 +Q 𝑅))}, {𝑢 ∣ ((𝐹𝑄) +Q (𝑄 +Q 𝑅)) <Q 𝑢}⟩ ↔ ∃𝑥Q (𝑥 ∈ (2nd𝐿) ∧ 𝑥 ∈ (1st ‘⟨{𝑙𝑙 <Q ((𝐹𝑄) +Q (𝑄 +Q 𝑅))}, {𝑢 ∣ ((𝐹𝑄) +Q (𝑄 +Q 𝑅)) <Q 𝑢}⟩))))
5445, 52, 53syl2anc 403 . . 3 ((𝜑 ∧ (𝑥Q ∧ (((𝐹𝑄) +Q 𝑄) <Q 𝑥𝑥 <Q ((𝐹𝑄) +Q (𝑄 +Q 𝑅))))) → (𝐿<P ⟨{𝑙𝑙 <Q ((𝐹𝑄) +Q (𝑄 +Q 𝑅))}, {𝑢 ∣ ((𝐹𝑄) +Q (𝑄 +Q 𝑅)) <Q 𝑢}⟩ ↔ ∃𝑥Q (𝑥 ∈ (2nd𝐿) ∧ 𝑥 ∈ (1st ‘⟨{𝑙𝑙 <Q ((𝐹𝑄) +Q (𝑄 +Q 𝑅))}, {𝑢 ∣ ((𝐹𝑄) +Q (𝑄 +Q 𝑅)) <Q 𝑢}⟩))))
5541, 54mpbird 165 . 2 ((𝜑 ∧ (𝑥Q ∧ (((𝐹𝑄) +Q 𝑄) <Q 𝑥𝑥 <Q ((𝐹𝑄) +Q (𝑄 +Q 𝑅))))) → 𝐿<P ⟨{𝑙𝑙 <Q ((𝐹𝑄) +Q (𝑄 +Q 𝑅))}, {𝑢 ∣ ((𝐹𝑄) +Q (𝑄 +Q 𝑅)) <Q 𝑢}⟩)
5610, 55rexlimddv 2489 1 (𝜑𝐿<P ⟨{𝑙𝑙 <Q ((𝐹𝑄) +Q (𝑄 +Q 𝑅))}, {𝑢 ∣ ((𝐹𝑄) +Q (𝑄 +Q 𝑅)) <Q 𝑢}⟩)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 102  wb 103   = wceq 1287  wcel 1436  {cab 2071  wral 2355  wrex 2356  {crab 2359  cop 3434   class class class wbr 3820  wf 4977  cfv 4981  (class class class)co 5613  1st c1st 5866  2nd c2nd 5867  Qcnq 6783   +Q cplq 6785   <Q cltq 6788  Pcnp 6794  <P cltp 6798
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 577  ax-in2 578  ax-io 663  ax-5 1379  ax-7 1380  ax-gen 1381  ax-ie1 1425  ax-ie2 1426  ax-8 1438  ax-10 1439  ax-11 1440  ax-i12 1441  ax-bndl 1442  ax-4 1443  ax-13 1447  ax-14 1448  ax-17 1462  ax-i9 1466  ax-ial 1470  ax-i5r 1471  ax-ext 2067  ax-coll 3929  ax-sep 3932  ax-nul 3940  ax-pow 3984  ax-pr 4010  ax-un 4234  ax-setind 4326  ax-iinf 4376
This theorem depends on definitions:  df-bi 115  df-dc 779  df-3or 923  df-3an 924  df-tru 1290  df-fal 1293  df-nf 1393  df-sb 1690  df-eu 1948  df-mo 1949  df-clab 2072  df-cleq 2078  df-clel 2081  df-nfc 2214  df-ne 2252  df-ral 2360  df-rex 2361  df-reu 2362  df-rab 2364  df-v 2617  df-sbc 2830  df-csb 2923  df-dif 2990  df-un 2992  df-in 2994  df-ss 3001  df-nul 3276  df-pw 3417  df-sn 3437  df-pr 3438  df-op 3440  df-uni 3637  df-int 3672  df-iun 3715  df-br 3821  df-opab 3875  df-mpt 3876  df-tr 3912  df-eprel 4090  df-id 4094  df-po 4097  df-iso 4098  df-iord 4167  df-on 4169  df-suc 4172  df-iom 4379  df-xp 4417  df-rel 4418  df-cnv 4419  df-co 4420  df-dm 4421  df-rn 4422  df-res 4423  df-ima 4424  df-iota 4946  df-fun 4983  df-fn 4984  df-f 4985  df-f1 4986  df-fo 4987  df-f1o 4988  df-fv 4989  df-ov 5616  df-oprab 5617  df-mpt2 5618  df-1st 5868  df-2nd 5869  df-recs 6024  df-irdg 6089  df-1o 6135  df-oadd 6139  df-omul 6140  df-er 6244  df-ec 6246  df-qs 6250  df-ni 6807  df-pli 6808  df-mi 6809  df-lti 6810  df-plpq 6847  df-mpq 6848  df-enq 6850  df-nqqs 6851  df-plqqs 6852  df-mqqs 6853  df-1nqqs 6854  df-rq 6855  df-ltnqqs 6856  df-inp 6969  df-iltp 6973
This theorem is referenced by:  cauappcvgprlemlim  7164
  Copyright terms: Public domain W3C validator