ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  cauappcvgprlem2 GIF version

Theorem cauappcvgprlem2 7592
Description: Lemma for cauappcvgpr 7594. Part of showing the putative limit to be a limit. (Contributed by Jim Kingdon, 23-Jun-2020.)
Hypotheses
Ref Expression
cauappcvgpr.f (𝜑𝐹:QQ)
cauappcvgpr.app (𝜑 → ∀𝑝Q𝑞Q ((𝐹𝑝) <Q ((𝐹𝑞) +Q (𝑝 +Q 𝑞)) ∧ (𝐹𝑞) <Q ((𝐹𝑝) +Q (𝑝 +Q 𝑞))))
cauappcvgpr.bnd (𝜑 → ∀𝑝Q 𝐴 <Q (𝐹𝑝))
cauappcvgpr.lim 𝐿 = ⟨{𝑙Q ∣ ∃𝑞Q (𝑙 +Q 𝑞) <Q (𝐹𝑞)}, {𝑢Q ∣ ∃𝑞Q ((𝐹𝑞) +Q 𝑞) <Q 𝑢}⟩
cauappcvgprlem.q (𝜑𝑄Q)
cauappcvgprlem.r (𝜑𝑅Q)
Assertion
Ref Expression
cauappcvgprlem2 (𝜑𝐿<P ⟨{𝑙𝑙 <Q ((𝐹𝑄) +Q (𝑄 +Q 𝑅))}, {𝑢 ∣ ((𝐹𝑄) +Q (𝑄 +Q 𝑅)) <Q 𝑢}⟩)
Distinct variable groups:   𝐴,𝑝   𝐿,𝑝,𝑞   𝜑,𝑝,𝑞   𝐹,𝑝,𝑞,𝑙,𝑢   𝑄,𝑝,𝑞,𝑙,𝑢   𝑅,𝑝,𝑞,𝑙,𝑢
Allowed substitution hints:   𝜑(𝑢,𝑙)   𝐴(𝑢,𝑞,𝑙)   𝐿(𝑢,𝑙)

Proof of Theorem cauappcvgprlem2
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 cauappcvgprlem.q . . . . 5 (𝜑𝑄Q)
2 cauappcvgprlem.r . . . . 5 (𝜑𝑅Q)
3 ltaddnq 7339 . . . . 5 ((𝑄Q𝑅Q) → 𝑄 <Q (𝑄 +Q 𝑅))
41, 2, 3syl2anc 409 . . . 4 (𝜑𝑄 <Q (𝑄 +Q 𝑅))
5 cauappcvgpr.f . . . . 5 (𝜑𝐹:QQ)
65, 1ffvelrnd 5615 . . . 4 (𝜑 → (𝐹𝑄) ∈ Q)
7 ltanqi 7334 . . . 4 ((𝑄 <Q (𝑄 +Q 𝑅) ∧ (𝐹𝑄) ∈ Q) → ((𝐹𝑄) +Q 𝑄) <Q ((𝐹𝑄) +Q (𝑄 +Q 𝑅)))
84, 6, 7syl2anc 409 . . 3 (𝜑 → ((𝐹𝑄) +Q 𝑄) <Q ((𝐹𝑄) +Q (𝑄 +Q 𝑅)))
9 ltbtwnnqq 7347 . . 3 (((𝐹𝑄) +Q 𝑄) <Q ((𝐹𝑄) +Q (𝑄 +Q 𝑅)) ↔ ∃𝑥Q (((𝐹𝑄) +Q 𝑄) <Q 𝑥𝑥 <Q ((𝐹𝑄) +Q (𝑄 +Q 𝑅))))
108, 9sylib 121 . 2 (𝜑 → ∃𝑥Q (((𝐹𝑄) +Q 𝑄) <Q 𝑥𝑥 <Q ((𝐹𝑄) +Q (𝑄 +Q 𝑅))))
11 simprl 521 . . . 4 ((𝜑 ∧ (𝑥Q ∧ (((𝐹𝑄) +Q 𝑄) <Q 𝑥𝑥 <Q ((𝐹𝑄) +Q (𝑄 +Q 𝑅))))) → 𝑥Q)
121adantr 274 . . . . . 6 ((𝜑 ∧ (𝑥Q ∧ (((𝐹𝑄) +Q 𝑄) <Q 𝑥𝑥 <Q ((𝐹𝑄) +Q (𝑄 +Q 𝑅))))) → 𝑄Q)
13 simprrl 529 . . . . . 6 ((𝜑 ∧ (𝑥Q ∧ (((𝐹𝑄) +Q 𝑄) <Q 𝑥𝑥 <Q ((𝐹𝑄) +Q (𝑄 +Q 𝑅))))) → ((𝐹𝑄) +Q 𝑄) <Q 𝑥)
14 fveq2 5480 . . . . . . . . 9 (𝑞 = 𝑄 → (𝐹𝑞) = (𝐹𝑄))
15 id 19 . . . . . . . . 9 (𝑞 = 𝑄𝑞 = 𝑄)
1614, 15oveq12d 5854 . . . . . . . 8 (𝑞 = 𝑄 → ((𝐹𝑞) +Q 𝑞) = ((𝐹𝑄) +Q 𝑄))
1716breq1d 3986 . . . . . . 7 (𝑞 = 𝑄 → (((𝐹𝑞) +Q 𝑞) <Q 𝑥 ↔ ((𝐹𝑄) +Q 𝑄) <Q 𝑥))
1817rspcev 2825 . . . . . 6 ((𝑄Q ∧ ((𝐹𝑄) +Q 𝑄) <Q 𝑥) → ∃𝑞Q ((𝐹𝑞) +Q 𝑞) <Q 𝑥)
1912, 13, 18syl2anc 409 . . . . 5 ((𝜑 ∧ (𝑥Q ∧ (((𝐹𝑄) +Q 𝑄) <Q 𝑥𝑥 <Q ((𝐹𝑄) +Q (𝑄 +Q 𝑅))))) → ∃𝑞Q ((𝐹𝑞) +Q 𝑞) <Q 𝑥)
20 breq2 3980 . . . . . . 7 (𝑢 = 𝑥 → (((𝐹𝑞) +Q 𝑞) <Q 𝑢 ↔ ((𝐹𝑞) +Q 𝑞) <Q 𝑥))
2120rexbidv 2465 . . . . . 6 (𝑢 = 𝑥 → (∃𝑞Q ((𝐹𝑞) +Q 𝑞) <Q 𝑢 ↔ ∃𝑞Q ((𝐹𝑞) +Q 𝑞) <Q 𝑥))
22 cauappcvgpr.lim . . . . . . . 8 𝐿 = ⟨{𝑙Q ∣ ∃𝑞Q (𝑙 +Q 𝑞) <Q (𝐹𝑞)}, {𝑢Q ∣ ∃𝑞Q ((𝐹𝑞) +Q 𝑞) <Q 𝑢}⟩
2322fveq2i 5483 . . . . . . 7 (2nd𝐿) = (2nd ‘⟨{𝑙Q ∣ ∃𝑞Q (𝑙 +Q 𝑞) <Q (𝐹𝑞)}, {𝑢Q ∣ ∃𝑞Q ((𝐹𝑞) +Q 𝑞) <Q 𝑢}⟩)
24 nqex 7295 . . . . . . . . 9 Q ∈ V
2524rabex 4120 . . . . . . . 8 {𝑙Q ∣ ∃𝑞Q (𝑙 +Q 𝑞) <Q (𝐹𝑞)} ∈ V
2624rabex 4120 . . . . . . . 8 {𝑢Q ∣ ∃𝑞Q ((𝐹𝑞) +Q 𝑞) <Q 𝑢} ∈ V
2725, 26op2nd 6107 . . . . . . 7 (2nd ‘⟨{𝑙Q ∣ ∃𝑞Q (𝑙 +Q 𝑞) <Q (𝐹𝑞)}, {𝑢Q ∣ ∃𝑞Q ((𝐹𝑞) +Q 𝑞) <Q 𝑢}⟩) = {𝑢Q ∣ ∃𝑞Q ((𝐹𝑞) +Q 𝑞) <Q 𝑢}
2823, 27eqtri 2185 . . . . . 6 (2nd𝐿) = {𝑢Q ∣ ∃𝑞Q ((𝐹𝑞) +Q 𝑞) <Q 𝑢}
2921, 28elrab2 2880 . . . . 5 (𝑥 ∈ (2nd𝐿) ↔ (𝑥Q ∧ ∃𝑞Q ((𝐹𝑞) +Q 𝑞) <Q 𝑥))
3011, 19, 29sylanbrc 414 . . . 4 ((𝜑 ∧ (𝑥Q ∧ (((𝐹𝑄) +Q 𝑄) <Q 𝑥𝑥 <Q ((𝐹𝑄) +Q (𝑄 +Q 𝑅))))) → 𝑥 ∈ (2nd𝐿))
31 simprrr 530 . . . . . 6 ((𝜑 ∧ (𝑥Q ∧ (((𝐹𝑄) +Q 𝑄) <Q 𝑥𝑥 <Q ((𝐹𝑄) +Q (𝑄 +Q 𝑅))))) → 𝑥 <Q ((𝐹𝑄) +Q (𝑄 +Q 𝑅)))
32 vex 2724 . . . . . . 7 𝑥 ∈ V
33 breq1 3979 . . . . . . 7 (𝑙 = 𝑥 → (𝑙 <Q ((𝐹𝑄) +Q (𝑄 +Q 𝑅)) ↔ 𝑥 <Q ((𝐹𝑄) +Q (𝑄 +Q 𝑅))))
3432, 33elab 2865 . . . . . 6 (𝑥 ∈ {𝑙𝑙 <Q ((𝐹𝑄) +Q (𝑄 +Q 𝑅))} ↔ 𝑥 <Q ((𝐹𝑄) +Q (𝑄 +Q 𝑅)))
3531, 34sylibr 133 . . . . 5 ((𝜑 ∧ (𝑥Q ∧ (((𝐹𝑄) +Q 𝑄) <Q 𝑥𝑥 <Q ((𝐹𝑄) +Q (𝑄 +Q 𝑅))))) → 𝑥 ∈ {𝑙𝑙 <Q ((𝐹𝑄) +Q (𝑄 +Q 𝑅))})
36 ltnqex 7481 . . . . . 6 {𝑙𝑙 <Q ((𝐹𝑄) +Q (𝑄 +Q 𝑅))} ∈ V
37 gtnqex 7482 . . . . . 6 {𝑢 ∣ ((𝐹𝑄) +Q (𝑄 +Q 𝑅)) <Q 𝑢} ∈ V
3836, 37op1st 6106 . . . . 5 (1st ‘⟨{𝑙𝑙 <Q ((𝐹𝑄) +Q (𝑄 +Q 𝑅))}, {𝑢 ∣ ((𝐹𝑄) +Q (𝑄 +Q 𝑅)) <Q 𝑢}⟩) = {𝑙𝑙 <Q ((𝐹𝑄) +Q (𝑄 +Q 𝑅))}
3935, 38eleqtrrdi 2258 . . . 4 ((𝜑 ∧ (𝑥Q ∧ (((𝐹𝑄) +Q 𝑄) <Q 𝑥𝑥 <Q ((𝐹𝑄) +Q (𝑄 +Q 𝑅))))) → 𝑥 ∈ (1st ‘⟨{𝑙𝑙 <Q ((𝐹𝑄) +Q (𝑄 +Q 𝑅))}, {𝑢 ∣ ((𝐹𝑄) +Q (𝑄 +Q 𝑅)) <Q 𝑢}⟩))
40 rspe 2513 . . . 4 ((𝑥Q ∧ (𝑥 ∈ (2nd𝐿) ∧ 𝑥 ∈ (1st ‘⟨{𝑙𝑙 <Q ((𝐹𝑄) +Q (𝑄 +Q 𝑅))}, {𝑢 ∣ ((𝐹𝑄) +Q (𝑄 +Q 𝑅)) <Q 𝑢}⟩))) → ∃𝑥Q (𝑥 ∈ (2nd𝐿) ∧ 𝑥 ∈ (1st ‘⟨{𝑙𝑙 <Q ((𝐹𝑄) +Q (𝑄 +Q 𝑅))}, {𝑢 ∣ ((𝐹𝑄) +Q (𝑄 +Q 𝑅)) <Q 𝑢}⟩)))
4111, 30, 39, 40syl12anc 1225 . . 3 ((𝜑 ∧ (𝑥Q ∧ (((𝐹𝑄) +Q 𝑄) <Q 𝑥𝑥 <Q ((𝐹𝑄) +Q (𝑄 +Q 𝑅))))) → ∃𝑥Q (𝑥 ∈ (2nd𝐿) ∧ 𝑥 ∈ (1st ‘⟨{𝑙𝑙 <Q ((𝐹𝑄) +Q (𝑄 +Q 𝑅))}, {𝑢 ∣ ((𝐹𝑄) +Q (𝑄 +Q 𝑅)) <Q 𝑢}⟩)))
42 cauappcvgpr.app . . . . . 6 (𝜑 → ∀𝑝Q𝑞Q ((𝐹𝑝) <Q ((𝐹𝑞) +Q (𝑝 +Q 𝑞)) ∧ (𝐹𝑞) <Q ((𝐹𝑝) +Q (𝑝 +Q 𝑞))))
43 cauappcvgpr.bnd . . . . . 6 (𝜑 → ∀𝑝Q 𝐴 <Q (𝐹𝑝))
445, 42, 43, 22cauappcvgprlemcl 7585 . . . . 5 (𝜑𝐿P)
4544adantr 274 . . . 4 ((𝜑 ∧ (𝑥Q ∧ (((𝐹𝑄) +Q 𝑄) <Q 𝑥𝑥 <Q ((𝐹𝑄) +Q (𝑄 +Q 𝑅))))) → 𝐿P)
46 addclnq 7307 . . . . . . . 8 ((𝑄Q𝑅Q) → (𝑄 +Q 𝑅) ∈ Q)
471, 2, 46syl2anc 409 . . . . . . 7 (𝜑 → (𝑄 +Q 𝑅) ∈ Q)
48 addclnq 7307 . . . . . . 7 (((𝐹𝑄) ∈ Q ∧ (𝑄 +Q 𝑅) ∈ Q) → ((𝐹𝑄) +Q (𝑄 +Q 𝑅)) ∈ Q)
496, 47, 48syl2anc 409 . . . . . 6 (𝜑 → ((𝐹𝑄) +Q (𝑄 +Q 𝑅)) ∈ Q)
50 nqprlu 7479 . . . . . 6 (((𝐹𝑄) +Q (𝑄 +Q 𝑅)) ∈ Q → ⟨{𝑙𝑙 <Q ((𝐹𝑄) +Q (𝑄 +Q 𝑅))}, {𝑢 ∣ ((𝐹𝑄) +Q (𝑄 +Q 𝑅)) <Q 𝑢}⟩ ∈ P)
5149, 50syl 14 . . . . 5 (𝜑 → ⟨{𝑙𝑙 <Q ((𝐹𝑄) +Q (𝑄 +Q 𝑅))}, {𝑢 ∣ ((𝐹𝑄) +Q (𝑄 +Q 𝑅)) <Q 𝑢}⟩ ∈ P)
5251adantr 274 . . . 4 ((𝜑 ∧ (𝑥Q ∧ (((𝐹𝑄) +Q 𝑄) <Q 𝑥𝑥 <Q ((𝐹𝑄) +Q (𝑄 +Q 𝑅))))) → ⟨{𝑙𝑙 <Q ((𝐹𝑄) +Q (𝑄 +Q 𝑅))}, {𝑢 ∣ ((𝐹𝑄) +Q (𝑄 +Q 𝑅)) <Q 𝑢}⟩ ∈ P)
53 ltdfpr 7438 . . . 4 ((𝐿P ∧ ⟨{𝑙𝑙 <Q ((𝐹𝑄) +Q (𝑄 +Q 𝑅))}, {𝑢 ∣ ((𝐹𝑄) +Q (𝑄 +Q 𝑅)) <Q 𝑢}⟩ ∈ P) → (𝐿<P ⟨{𝑙𝑙 <Q ((𝐹𝑄) +Q (𝑄 +Q 𝑅))}, {𝑢 ∣ ((𝐹𝑄) +Q (𝑄 +Q 𝑅)) <Q 𝑢}⟩ ↔ ∃𝑥Q (𝑥 ∈ (2nd𝐿) ∧ 𝑥 ∈ (1st ‘⟨{𝑙𝑙 <Q ((𝐹𝑄) +Q (𝑄 +Q 𝑅))}, {𝑢 ∣ ((𝐹𝑄) +Q (𝑄 +Q 𝑅)) <Q 𝑢}⟩))))
5445, 52, 53syl2anc 409 . . 3 ((𝜑 ∧ (𝑥Q ∧ (((𝐹𝑄) +Q 𝑄) <Q 𝑥𝑥 <Q ((𝐹𝑄) +Q (𝑄 +Q 𝑅))))) → (𝐿<P ⟨{𝑙𝑙 <Q ((𝐹𝑄) +Q (𝑄 +Q 𝑅))}, {𝑢 ∣ ((𝐹𝑄) +Q (𝑄 +Q 𝑅)) <Q 𝑢}⟩ ↔ ∃𝑥Q (𝑥 ∈ (2nd𝐿) ∧ 𝑥 ∈ (1st ‘⟨{𝑙𝑙 <Q ((𝐹𝑄) +Q (𝑄 +Q 𝑅))}, {𝑢 ∣ ((𝐹𝑄) +Q (𝑄 +Q 𝑅)) <Q 𝑢}⟩))))
5541, 54mpbird 166 . 2 ((𝜑 ∧ (𝑥Q ∧ (((𝐹𝑄) +Q 𝑄) <Q 𝑥𝑥 <Q ((𝐹𝑄) +Q (𝑄 +Q 𝑅))))) → 𝐿<P ⟨{𝑙𝑙 <Q ((𝐹𝑄) +Q (𝑄 +Q 𝑅))}, {𝑢 ∣ ((𝐹𝑄) +Q (𝑄 +Q 𝑅)) <Q 𝑢}⟩)
5610, 55rexlimddv 2586 1 (𝜑𝐿<P ⟨{𝑙𝑙 <Q ((𝐹𝑄) +Q (𝑄 +Q 𝑅))}, {𝑢 ∣ ((𝐹𝑄) +Q (𝑄 +Q 𝑅)) <Q 𝑢}⟩)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wb 104   = wceq 1342  wcel 2135  {cab 2150  wral 2442  wrex 2443  {crab 2446  cop 3573   class class class wbr 3976  wf 5178  cfv 5182  (class class class)co 5836  1st c1st 6098  2nd c2nd 6099  Qcnq 7212   +Q cplq 7214   <Q cltq 7217  Pcnp 7223  <P cltp 7227
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1434  ax-7 1435  ax-gen 1436  ax-ie1 1480  ax-ie2 1481  ax-8 1491  ax-10 1492  ax-11 1493  ax-i12 1494  ax-bndl 1496  ax-4 1497  ax-17 1513  ax-i9 1517  ax-ial 1521  ax-i5r 1522  ax-13 2137  ax-14 2138  ax-ext 2146  ax-coll 4091  ax-sep 4094  ax-nul 4102  ax-pow 4147  ax-pr 4181  ax-un 4405  ax-setind 4508  ax-iinf 4559
This theorem depends on definitions:  df-bi 116  df-dc 825  df-3or 968  df-3an 969  df-tru 1345  df-fal 1348  df-nf 1448  df-sb 1750  df-eu 2016  df-mo 2017  df-clab 2151  df-cleq 2157  df-clel 2160  df-nfc 2295  df-ne 2335  df-ral 2447  df-rex 2448  df-reu 2449  df-rab 2451  df-v 2723  df-sbc 2947  df-csb 3041  df-dif 3113  df-un 3115  df-in 3117  df-ss 3124  df-nul 3405  df-pw 3555  df-sn 3576  df-pr 3577  df-op 3579  df-uni 3784  df-int 3819  df-iun 3862  df-br 3977  df-opab 4038  df-mpt 4039  df-tr 4075  df-eprel 4261  df-id 4265  df-po 4268  df-iso 4269  df-iord 4338  df-on 4340  df-suc 4343  df-iom 4562  df-xp 4604  df-rel 4605  df-cnv 4606  df-co 4607  df-dm 4608  df-rn 4609  df-res 4610  df-ima 4611  df-iota 5147  df-fun 5184  df-fn 5185  df-f 5186  df-f1 5187  df-fo 5188  df-f1o 5189  df-fv 5190  df-ov 5839  df-oprab 5840  df-mpo 5841  df-1st 6100  df-2nd 6101  df-recs 6264  df-irdg 6329  df-1o 6375  df-oadd 6379  df-omul 6380  df-er 6492  df-ec 6494  df-qs 6498  df-ni 7236  df-pli 7237  df-mi 7238  df-lti 7239  df-plpq 7276  df-mpq 7277  df-enq 7279  df-nqqs 7280  df-plqqs 7281  df-mqqs 7282  df-1nqqs 7283  df-rq 7284  df-ltnqqs 7285  df-inp 7398  df-iltp 7402
This theorem is referenced by:  cauappcvgprlemlim  7593
  Copyright terms: Public domain W3C validator