ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  caucvgprlemopl GIF version

Theorem caucvgprlemopl 7731
Description: Lemma for caucvgpr 7744. The lower cut of the putative limit is open. (Contributed by Jim Kingdon, 20-Oct-2020.)
Hypotheses
Ref Expression
caucvgpr.f (𝜑𝐹:NQ)
caucvgpr.cau (𝜑 → ∀𝑛N𝑘N (𝑛 <N 𝑘 → ((𝐹𝑛) <Q ((𝐹𝑘) +Q (*Q‘[⟨𝑛, 1o⟩] ~Q )) ∧ (𝐹𝑘) <Q ((𝐹𝑛) +Q (*Q‘[⟨𝑛, 1o⟩] ~Q )))))
caucvgpr.bnd (𝜑 → ∀𝑗N 𝐴 <Q (𝐹𝑗))
caucvgpr.lim 𝐿 = ⟨{𝑙Q ∣ ∃𝑗N (𝑙 +Q (*Q‘[⟨𝑗, 1o⟩] ~Q )) <Q (𝐹𝑗)}, {𝑢Q ∣ ∃𝑗N ((𝐹𝑗) +Q (*Q‘[⟨𝑗, 1o⟩] ~Q )) <Q 𝑢}⟩
Assertion
Ref Expression
caucvgprlemopl ((𝜑𝑠 ∈ (1st𝐿)) → ∃𝑟Q (𝑠 <Q 𝑟𝑟 ∈ (1st𝐿)))
Distinct variable groups:   𝐴,𝑗   𝐹,𝑙,𝑟,𝑠   𝑢,𝐹   𝑗,𝐿,𝑟,𝑠   𝑗,𝑙,𝑠   𝜑,𝑗,𝑟,𝑠   𝑢,𝑗,𝑟,𝑠
Allowed substitution hints:   𝜑(𝑢,𝑘,𝑛,𝑙)   𝐴(𝑢,𝑘,𝑛,𝑠,𝑟,𝑙)   𝐹(𝑗,𝑘,𝑛)   𝐿(𝑢,𝑘,𝑛,𝑙)

Proof of Theorem caucvgprlemopl
Dummy variable 𝑡 is distinct from all other variables.
StepHypRef Expression
1 oveq1 5926 . . . . . . 7 (𝑙 = 𝑠 → (𝑙 +Q (*Q‘[⟨𝑗, 1o⟩] ~Q )) = (𝑠 +Q (*Q‘[⟨𝑗, 1o⟩] ~Q )))
21breq1d 4040 . . . . . 6 (𝑙 = 𝑠 → ((𝑙 +Q (*Q‘[⟨𝑗, 1o⟩] ~Q )) <Q (𝐹𝑗) ↔ (𝑠 +Q (*Q‘[⟨𝑗, 1o⟩] ~Q )) <Q (𝐹𝑗)))
32rexbidv 2495 . . . . 5 (𝑙 = 𝑠 → (∃𝑗N (𝑙 +Q (*Q‘[⟨𝑗, 1o⟩] ~Q )) <Q (𝐹𝑗) ↔ ∃𝑗N (𝑠 +Q (*Q‘[⟨𝑗, 1o⟩] ~Q )) <Q (𝐹𝑗)))
4 caucvgpr.lim . . . . . . 7 𝐿 = ⟨{𝑙Q ∣ ∃𝑗N (𝑙 +Q (*Q‘[⟨𝑗, 1o⟩] ~Q )) <Q (𝐹𝑗)}, {𝑢Q ∣ ∃𝑗N ((𝐹𝑗) +Q (*Q‘[⟨𝑗, 1o⟩] ~Q )) <Q 𝑢}⟩
54fveq2i 5558 . . . . . 6 (1st𝐿) = (1st ‘⟨{𝑙Q ∣ ∃𝑗N (𝑙 +Q (*Q‘[⟨𝑗, 1o⟩] ~Q )) <Q (𝐹𝑗)}, {𝑢Q ∣ ∃𝑗N ((𝐹𝑗) +Q (*Q‘[⟨𝑗, 1o⟩] ~Q )) <Q 𝑢}⟩)
6 nqex 7425 . . . . . . . 8 Q ∈ V
76rabex 4174 . . . . . . 7 {𝑙Q ∣ ∃𝑗N (𝑙 +Q (*Q‘[⟨𝑗, 1o⟩] ~Q )) <Q (𝐹𝑗)} ∈ V
86rabex 4174 . . . . . . 7 {𝑢Q ∣ ∃𝑗N ((𝐹𝑗) +Q (*Q‘[⟨𝑗, 1o⟩] ~Q )) <Q 𝑢} ∈ V
97, 8op1st 6201 . . . . . 6 (1st ‘⟨{𝑙Q ∣ ∃𝑗N (𝑙 +Q (*Q‘[⟨𝑗, 1o⟩] ~Q )) <Q (𝐹𝑗)}, {𝑢Q ∣ ∃𝑗N ((𝐹𝑗) +Q (*Q‘[⟨𝑗, 1o⟩] ~Q )) <Q 𝑢}⟩) = {𝑙Q ∣ ∃𝑗N (𝑙 +Q (*Q‘[⟨𝑗, 1o⟩] ~Q )) <Q (𝐹𝑗)}
105, 9eqtri 2214 . . . . 5 (1st𝐿) = {𝑙Q ∣ ∃𝑗N (𝑙 +Q (*Q‘[⟨𝑗, 1o⟩] ~Q )) <Q (𝐹𝑗)}
113, 10elrab2 2920 . . . 4 (𝑠 ∈ (1st𝐿) ↔ (𝑠Q ∧ ∃𝑗N (𝑠 +Q (*Q‘[⟨𝑗, 1o⟩] ~Q )) <Q (𝐹𝑗)))
1211simprbi 275 . . 3 (𝑠 ∈ (1st𝐿) → ∃𝑗N (𝑠 +Q (*Q‘[⟨𝑗, 1o⟩] ~Q )) <Q (𝐹𝑗))
1312adantl 277 . 2 ((𝜑𝑠 ∈ (1st𝐿)) → ∃𝑗N (𝑠 +Q (*Q‘[⟨𝑗, 1o⟩] ~Q )) <Q (𝐹𝑗))
14 simprr 531 . . . 4 (((𝜑𝑠 ∈ (1st𝐿)) ∧ (𝑗N ∧ (𝑠 +Q (*Q‘[⟨𝑗, 1o⟩] ~Q )) <Q (𝐹𝑗))) → (𝑠 +Q (*Q‘[⟨𝑗, 1o⟩] ~Q )) <Q (𝐹𝑗))
15 ltbtwnnqq 7477 . . . 4 ((𝑠 +Q (*Q‘[⟨𝑗, 1o⟩] ~Q )) <Q (𝐹𝑗) ↔ ∃𝑡Q ((𝑠 +Q (*Q‘[⟨𝑗, 1o⟩] ~Q )) <Q 𝑡𝑡 <Q (𝐹𝑗)))
1614, 15sylib 122 . . 3 (((𝜑𝑠 ∈ (1st𝐿)) ∧ (𝑗N ∧ (𝑠 +Q (*Q‘[⟨𝑗, 1o⟩] ~Q )) <Q (𝐹𝑗))) → ∃𝑡Q ((𝑠 +Q (*Q‘[⟨𝑗, 1o⟩] ~Q )) <Q 𝑡𝑡 <Q (𝐹𝑗)))
17 simplrl 535 . . . . . . . . 9 ((((𝜑𝑠 ∈ (1st𝐿)) ∧ (𝑗N ∧ (𝑠 +Q (*Q‘[⟨𝑗, 1o⟩] ~Q )) <Q (𝐹𝑗))) ∧ (𝑡Q ∧ ((𝑠 +Q (*Q‘[⟨𝑗, 1o⟩] ~Q )) <Q 𝑡𝑡 <Q (𝐹𝑗)))) → 𝑗N)
18 nnnq 7484 . . . . . . . . 9 (𝑗N → [⟨𝑗, 1o⟩] ~QQ)
19 recclnq 7454 . . . . . . . . 9 ([⟨𝑗, 1o⟩] ~QQ → (*Q‘[⟨𝑗, 1o⟩] ~Q ) ∈ Q)
2017, 18, 193syl 17 . . . . . . . 8 ((((𝜑𝑠 ∈ (1st𝐿)) ∧ (𝑗N ∧ (𝑠 +Q (*Q‘[⟨𝑗, 1o⟩] ~Q )) <Q (𝐹𝑗))) ∧ (𝑡Q ∧ ((𝑠 +Q (*Q‘[⟨𝑗, 1o⟩] ~Q )) <Q 𝑡𝑡 <Q (𝐹𝑗)))) → (*Q‘[⟨𝑗, 1o⟩] ~Q ) ∈ Q)
2111simplbi 274 . . . . . . . . 9 (𝑠 ∈ (1st𝐿) → 𝑠Q)
2221ad3antlr 493 . . . . . . . 8 ((((𝜑𝑠 ∈ (1st𝐿)) ∧ (𝑗N ∧ (𝑠 +Q (*Q‘[⟨𝑗, 1o⟩] ~Q )) <Q (𝐹𝑗))) ∧ (𝑡Q ∧ ((𝑠 +Q (*Q‘[⟨𝑗, 1o⟩] ~Q )) <Q 𝑡𝑡 <Q (𝐹𝑗)))) → 𝑠Q)
23 ltaddnq 7469 . . . . . . . 8 (((*Q‘[⟨𝑗, 1o⟩] ~Q ) ∈ Q𝑠Q) → (*Q‘[⟨𝑗, 1o⟩] ~Q ) <Q ((*Q‘[⟨𝑗, 1o⟩] ~Q ) +Q 𝑠))
2420, 22, 23syl2anc 411 . . . . . . 7 ((((𝜑𝑠 ∈ (1st𝐿)) ∧ (𝑗N ∧ (𝑠 +Q (*Q‘[⟨𝑗, 1o⟩] ~Q )) <Q (𝐹𝑗))) ∧ (𝑡Q ∧ ((𝑠 +Q (*Q‘[⟨𝑗, 1o⟩] ~Q )) <Q 𝑡𝑡 <Q (𝐹𝑗)))) → (*Q‘[⟨𝑗, 1o⟩] ~Q ) <Q ((*Q‘[⟨𝑗, 1o⟩] ~Q ) +Q 𝑠))
25 addcomnqg 7443 . . . . . . . 8 (((*Q‘[⟨𝑗, 1o⟩] ~Q ) ∈ Q𝑠Q) → ((*Q‘[⟨𝑗, 1o⟩] ~Q ) +Q 𝑠) = (𝑠 +Q (*Q‘[⟨𝑗, 1o⟩] ~Q )))
2620, 22, 25syl2anc 411 . . . . . . 7 ((((𝜑𝑠 ∈ (1st𝐿)) ∧ (𝑗N ∧ (𝑠 +Q (*Q‘[⟨𝑗, 1o⟩] ~Q )) <Q (𝐹𝑗))) ∧ (𝑡Q ∧ ((𝑠 +Q (*Q‘[⟨𝑗, 1o⟩] ~Q )) <Q 𝑡𝑡 <Q (𝐹𝑗)))) → ((*Q‘[⟨𝑗, 1o⟩] ~Q ) +Q 𝑠) = (𝑠 +Q (*Q‘[⟨𝑗, 1o⟩] ~Q )))
2724, 26breqtrd 4056 . . . . . 6 ((((𝜑𝑠 ∈ (1st𝐿)) ∧ (𝑗N ∧ (𝑠 +Q (*Q‘[⟨𝑗, 1o⟩] ~Q )) <Q (𝐹𝑗))) ∧ (𝑡Q ∧ ((𝑠 +Q (*Q‘[⟨𝑗, 1o⟩] ~Q )) <Q 𝑡𝑡 <Q (𝐹𝑗)))) → (*Q‘[⟨𝑗, 1o⟩] ~Q ) <Q (𝑠 +Q (*Q‘[⟨𝑗, 1o⟩] ~Q )))
28 simprrl 539 . . . . . 6 ((((𝜑𝑠 ∈ (1st𝐿)) ∧ (𝑗N ∧ (𝑠 +Q (*Q‘[⟨𝑗, 1o⟩] ~Q )) <Q (𝐹𝑗))) ∧ (𝑡Q ∧ ((𝑠 +Q (*Q‘[⟨𝑗, 1o⟩] ~Q )) <Q 𝑡𝑡 <Q (𝐹𝑗)))) → (𝑠 +Q (*Q‘[⟨𝑗, 1o⟩] ~Q )) <Q 𝑡)
29 ltsonq 7460 . . . . . . 7 <Q Or Q
30 ltrelnq 7427 . . . . . . 7 <Q ⊆ (Q × Q)
3129, 30sotri 5062 . . . . . 6 (((*Q‘[⟨𝑗, 1o⟩] ~Q ) <Q (𝑠 +Q (*Q‘[⟨𝑗, 1o⟩] ~Q )) ∧ (𝑠 +Q (*Q‘[⟨𝑗, 1o⟩] ~Q )) <Q 𝑡) → (*Q‘[⟨𝑗, 1o⟩] ~Q ) <Q 𝑡)
3227, 28, 31syl2anc 411 . . . . 5 ((((𝜑𝑠 ∈ (1st𝐿)) ∧ (𝑗N ∧ (𝑠 +Q (*Q‘[⟨𝑗, 1o⟩] ~Q )) <Q (𝐹𝑗))) ∧ (𝑡Q ∧ ((𝑠 +Q (*Q‘[⟨𝑗, 1o⟩] ~Q )) <Q 𝑡𝑡 <Q (𝐹𝑗)))) → (*Q‘[⟨𝑗, 1o⟩] ~Q ) <Q 𝑡)
33 simprl 529 . . . . . 6 ((((𝜑𝑠 ∈ (1st𝐿)) ∧ (𝑗N ∧ (𝑠 +Q (*Q‘[⟨𝑗, 1o⟩] ~Q )) <Q (𝐹𝑗))) ∧ (𝑡Q ∧ ((𝑠 +Q (*Q‘[⟨𝑗, 1o⟩] ~Q )) <Q 𝑡𝑡 <Q (𝐹𝑗)))) → 𝑡Q)
34 ltexnqq 7470 . . . . . 6 (((*Q‘[⟨𝑗, 1o⟩] ~Q ) ∈ Q𝑡Q) → ((*Q‘[⟨𝑗, 1o⟩] ~Q ) <Q 𝑡 ↔ ∃𝑟Q ((*Q‘[⟨𝑗, 1o⟩] ~Q ) +Q 𝑟) = 𝑡))
3520, 33, 34syl2anc 411 . . . . 5 ((((𝜑𝑠 ∈ (1st𝐿)) ∧ (𝑗N ∧ (𝑠 +Q (*Q‘[⟨𝑗, 1o⟩] ~Q )) <Q (𝐹𝑗))) ∧ (𝑡Q ∧ ((𝑠 +Q (*Q‘[⟨𝑗, 1o⟩] ~Q )) <Q 𝑡𝑡 <Q (𝐹𝑗)))) → ((*Q‘[⟨𝑗, 1o⟩] ~Q ) <Q 𝑡 ↔ ∃𝑟Q ((*Q‘[⟨𝑗, 1o⟩] ~Q ) +Q 𝑟) = 𝑡))
3632, 35mpbid 147 . . . 4 ((((𝜑𝑠 ∈ (1st𝐿)) ∧ (𝑗N ∧ (𝑠 +Q (*Q‘[⟨𝑗, 1o⟩] ~Q )) <Q (𝐹𝑗))) ∧ (𝑡Q ∧ ((𝑠 +Q (*Q‘[⟨𝑗, 1o⟩] ~Q )) <Q 𝑡𝑡 <Q (𝐹𝑗)))) → ∃𝑟Q ((*Q‘[⟨𝑗, 1o⟩] ~Q ) +Q 𝑟) = 𝑡)
3722ad2antrr 488 . . . . . . . . . . 11 ((((((𝜑𝑠 ∈ (1st𝐿)) ∧ (𝑗N ∧ (𝑠 +Q (*Q‘[⟨𝑗, 1o⟩] ~Q )) <Q (𝐹𝑗))) ∧ (𝑡Q ∧ ((𝑠 +Q (*Q‘[⟨𝑗, 1o⟩] ~Q )) <Q 𝑡𝑡 <Q (𝐹𝑗)))) ∧ 𝑟Q) ∧ ((*Q‘[⟨𝑗, 1o⟩] ~Q ) +Q 𝑟) = 𝑡) → 𝑠Q)
3820ad2antrr 488 . . . . . . . . . . 11 ((((((𝜑𝑠 ∈ (1st𝐿)) ∧ (𝑗N ∧ (𝑠 +Q (*Q‘[⟨𝑗, 1o⟩] ~Q )) <Q (𝐹𝑗))) ∧ (𝑡Q ∧ ((𝑠 +Q (*Q‘[⟨𝑗, 1o⟩] ~Q )) <Q 𝑡𝑡 <Q (𝐹𝑗)))) ∧ 𝑟Q) ∧ ((*Q‘[⟨𝑗, 1o⟩] ~Q ) +Q 𝑟) = 𝑡) → (*Q‘[⟨𝑗, 1o⟩] ~Q ) ∈ Q)
39 addcomnqg 7443 . . . . . . . . . . 11 ((𝑠Q ∧ (*Q‘[⟨𝑗, 1o⟩] ~Q ) ∈ Q) → (𝑠 +Q (*Q‘[⟨𝑗, 1o⟩] ~Q )) = ((*Q‘[⟨𝑗, 1o⟩] ~Q ) +Q 𝑠))
4037, 38, 39syl2anc 411 . . . . . . . . . 10 ((((((𝜑𝑠 ∈ (1st𝐿)) ∧ (𝑗N ∧ (𝑠 +Q (*Q‘[⟨𝑗, 1o⟩] ~Q )) <Q (𝐹𝑗))) ∧ (𝑡Q ∧ ((𝑠 +Q (*Q‘[⟨𝑗, 1o⟩] ~Q )) <Q 𝑡𝑡 <Q (𝐹𝑗)))) ∧ 𝑟Q) ∧ ((*Q‘[⟨𝑗, 1o⟩] ~Q ) +Q 𝑟) = 𝑡) → (𝑠 +Q (*Q‘[⟨𝑗, 1o⟩] ~Q )) = ((*Q‘[⟨𝑗, 1o⟩] ~Q ) +Q 𝑠))
4128ad2antrr 488 . . . . . . . . . 10 ((((((𝜑𝑠 ∈ (1st𝐿)) ∧ (𝑗N ∧ (𝑠 +Q (*Q‘[⟨𝑗, 1o⟩] ~Q )) <Q (𝐹𝑗))) ∧ (𝑡Q ∧ ((𝑠 +Q (*Q‘[⟨𝑗, 1o⟩] ~Q )) <Q 𝑡𝑡 <Q (𝐹𝑗)))) ∧ 𝑟Q) ∧ ((*Q‘[⟨𝑗, 1o⟩] ~Q ) +Q 𝑟) = 𝑡) → (𝑠 +Q (*Q‘[⟨𝑗, 1o⟩] ~Q )) <Q 𝑡)
4240, 41eqbrtrrd 4054 . . . . . . . . 9 ((((((𝜑𝑠 ∈ (1st𝐿)) ∧ (𝑗N ∧ (𝑠 +Q (*Q‘[⟨𝑗, 1o⟩] ~Q )) <Q (𝐹𝑗))) ∧ (𝑡Q ∧ ((𝑠 +Q (*Q‘[⟨𝑗, 1o⟩] ~Q )) <Q 𝑡𝑡 <Q (𝐹𝑗)))) ∧ 𝑟Q) ∧ ((*Q‘[⟨𝑗, 1o⟩] ~Q ) +Q 𝑟) = 𝑡) → ((*Q‘[⟨𝑗, 1o⟩] ~Q ) +Q 𝑠) <Q 𝑡)
43 simpr 110 . . . . . . . . 9 ((((((𝜑𝑠 ∈ (1st𝐿)) ∧ (𝑗N ∧ (𝑠 +Q (*Q‘[⟨𝑗, 1o⟩] ~Q )) <Q (𝐹𝑗))) ∧ (𝑡Q ∧ ((𝑠 +Q (*Q‘[⟨𝑗, 1o⟩] ~Q )) <Q 𝑡𝑡 <Q (𝐹𝑗)))) ∧ 𝑟Q) ∧ ((*Q‘[⟨𝑗, 1o⟩] ~Q ) +Q 𝑟) = 𝑡) → ((*Q‘[⟨𝑗, 1o⟩] ~Q ) +Q 𝑟) = 𝑡)
4442, 43breqtrrd 4058 . . . . . . . 8 ((((((𝜑𝑠 ∈ (1st𝐿)) ∧ (𝑗N ∧ (𝑠 +Q (*Q‘[⟨𝑗, 1o⟩] ~Q )) <Q (𝐹𝑗))) ∧ (𝑡Q ∧ ((𝑠 +Q (*Q‘[⟨𝑗, 1o⟩] ~Q )) <Q 𝑡𝑡 <Q (𝐹𝑗)))) ∧ 𝑟Q) ∧ ((*Q‘[⟨𝑗, 1o⟩] ~Q ) +Q 𝑟) = 𝑡) → ((*Q‘[⟨𝑗, 1o⟩] ~Q ) +Q 𝑠) <Q ((*Q‘[⟨𝑗, 1o⟩] ~Q ) +Q 𝑟))
45 simplr 528 . . . . . . . . 9 ((((((𝜑𝑠 ∈ (1st𝐿)) ∧ (𝑗N ∧ (𝑠 +Q (*Q‘[⟨𝑗, 1o⟩] ~Q )) <Q (𝐹𝑗))) ∧ (𝑡Q ∧ ((𝑠 +Q (*Q‘[⟨𝑗, 1o⟩] ~Q )) <Q 𝑡𝑡 <Q (𝐹𝑗)))) ∧ 𝑟Q) ∧ ((*Q‘[⟨𝑗, 1o⟩] ~Q ) +Q 𝑟) = 𝑡) → 𝑟Q)
46 ltanqg 7462 . . . . . . . . 9 ((𝑠Q𝑟Q ∧ (*Q‘[⟨𝑗, 1o⟩] ~Q ) ∈ Q) → (𝑠 <Q 𝑟 ↔ ((*Q‘[⟨𝑗, 1o⟩] ~Q ) +Q 𝑠) <Q ((*Q‘[⟨𝑗, 1o⟩] ~Q ) +Q 𝑟)))
4737, 45, 38, 46syl3anc 1249 . . . . . . . 8 ((((((𝜑𝑠 ∈ (1st𝐿)) ∧ (𝑗N ∧ (𝑠 +Q (*Q‘[⟨𝑗, 1o⟩] ~Q )) <Q (𝐹𝑗))) ∧ (𝑡Q ∧ ((𝑠 +Q (*Q‘[⟨𝑗, 1o⟩] ~Q )) <Q 𝑡𝑡 <Q (𝐹𝑗)))) ∧ 𝑟Q) ∧ ((*Q‘[⟨𝑗, 1o⟩] ~Q ) +Q 𝑟) = 𝑡) → (𝑠 <Q 𝑟 ↔ ((*Q‘[⟨𝑗, 1o⟩] ~Q ) +Q 𝑠) <Q ((*Q‘[⟨𝑗, 1o⟩] ~Q ) +Q 𝑟)))
4844, 47mpbird 167 . . . . . . 7 ((((((𝜑𝑠 ∈ (1st𝐿)) ∧ (𝑗N ∧ (𝑠 +Q (*Q‘[⟨𝑗, 1o⟩] ~Q )) <Q (𝐹𝑗))) ∧ (𝑡Q ∧ ((𝑠 +Q (*Q‘[⟨𝑗, 1o⟩] ~Q )) <Q 𝑡𝑡 <Q (𝐹𝑗)))) ∧ 𝑟Q) ∧ ((*Q‘[⟨𝑗, 1o⟩] ~Q ) +Q 𝑟) = 𝑡) → 𝑠 <Q 𝑟)
4917ad2antrr 488 . . . . . . . . 9 ((((((𝜑𝑠 ∈ (1st𝐿)) ∧ (𝑗N ∧ (𝑠 +Q (*Q‘[⟨𝑗, 1o⟩] ~Q )) <Q (𝐹𝑗))) ∧ (𝑡Q ∧ ((𝑠 +Q (*Q‘[⟨𝑗, 1o⟩] ~Q )) <Q 𝑡𝑡 <Q (𝐹𝑗)))) ∧ 𝑟Q) ∧ ((*Q‘[⟨𝑗, 1o⟩] ~Q ) +Q 𝑟) = 𝑡) → 𝑗N)
50 simprrr 540 . . . . . . . . . . 11 ((((𝜑𝑠 ∈ (1st𝐿)) ∧ (𝑗N ∧ (𝑠 +Q (*Q‘[⟨𝑗, 1o⟩] ~Q )) <Q (𝐹𝑗))) ∧ (𝑡Q ∧ ((𝑠 +Q (*Q‘[⟨𝑗, 1o⟩] ~Q )) <Q 𝑡𝑡 <Q (𝐹𝑗)))) → 𝑡 <Q (𝐹𝑗))
5150ad2antrr 488 . . . . . . . . . 10 ((((((𝜑𝑠 ∈ (1st𝐿)) ∧ (𝑗N ∧ (𝑠 +Q (*Q‘[⟨𝑗, 1o⟩] ~Q )) <Q (𝐹𝑗))) ∧ (𝑡Q ∧ ((𝑠 +Q (*Q‘[⟨𝑗, 1o⟩] ~Q )) <Q 𝑡𝑡 <Q (𝐹𝑗)))) ∧ 𝑟Q) ∧ ((*Q‘[⟨𝑗, 1o⟩] ~Q ) +Q 𝑟) = 𝑡) → 𝑡 <Q (𝐹𝑗))
52 addcomnqg 7443 . . . . . . . . . . . . 13 (((*Q‘[⟨𝑗, 1o⟩] ~Q ) ∈ Q𝑟Q) → ((*Q‘[⟨𝑗, 1o⟩] ~Q ) +Q 𝑟) = (𝑟 +Q (*Q‘[⟨𝑗, 1o⟩] ~Q )))
5338, 45, 52syl2anc 411 . . . . . . . . . . . 12 ((((((𝜑𝑠 ∈ (1st𝐿)) ∧ (𝑗N ∧ (𝑠 +Q (*Q‘[⟨𝑗, 1o⟩] ~Q )) <Q (𝐹𝑗))) ∧ (𝑡Q ∧ ((𝑠 +Q (*Q‘[⟨𝑗, 1o⟩] ~Q )) <Q 𝑡𝑡 <Q (𝐹𝑗)))) ∧ 𝑟Q) ∧ ((*Q‘[⟨𝑗, 1o⟩] ~Q ) +Q 𝑟) = 𝑡) → ((*Q‘[⟨𝑗, 1o⟩] ~Q ) +Q 𝑟) = (𝑟 +Q (*Q‘[⟨𝑗, 1o⟩] ~Q )))
5453, 43eqtr3d 2228 . . . . . . . . . . 11 ((((((𝜑𝑠 ∈ (1st𝐿)) ∧ (𝑗N ∧ (𝑠 +Q (*Q‘[⟨𝑗, 1o⟩] ~Q )) <Q (𝐹𝑗))) ∧ (𝑡Q ∧ ((𝑠 +Q (*Q‘[⟨𝑗, 1o⟩] ~Q )) <Q 𝑡𝑡 <Q (𝐹𝑗)))) ∧ 𝑟Q) ∧ ((*Q‘[⟨𝑗, 1o⟩] ~Q ) +Q 𝑟) = 𝑡) → (𝑟 +Q (*Q‘[⟨𝑗, 1o⟩] ~Q )) = 𝑡)
5554breq1d 4040 . . . . . . . . . 10 ((((((𝜑𝑠 ∈ (1st𝐿)) ∧ (𝑗N ∧ (𝑠 +Q (*Q‘[⟨𝑗, 1o⟩] ~Q )) <Q (𝐹𝑗))) ∧ (𝑡Q ∧ ((𝑠 +Q (*Q‘[⟨𝑗, 1o⟩] ~Q )) <Q 𝑡𝑡 <Q (𝐹𝑗)))) ∧ 𝑟Q) ∧ ((*Q‘[⟨𝑗, 1o⟩] ~Q ) +Q 𝑟) = 𝑡) → ((𝑟 +Q (*Q‘[⟨𝑗, 1o⟩] ~Q )) <Q (𝐹𝑗) ↔ 𝑡 <Q (𝐹𝑗)))
5651, 55mpbird 167 . . . . . . . . 9 ((((((𝜑𝑠 ∈ (1st𝐿)) ∧ (𝑗N ∧ (𝑠 +Q (*Q‘[⟨𝑗, 1o⟩] ~Q )) <Q (𝐹𝑗))) ∧ (𝑡Q ∧ ((𝑠 +Q (*Q‘[⟨𝑗, 1o⟩] ~Q )) <Q 𝑡𝑡 <Q (𝐹𝑗)))) ∧ 𝑟Q) ∧ ((*Q‘[⟨𝑗, 1o⟩] ~Q ) +Q 𝑟) = 𝑡) → (𝑟 +Q (*Q‘[⟨𝑗, 1o⟩] ~Q )) <Q (𝐹𝑗))
57 rspe 2543 . . . . . . . . 9 ((𝑗N ∧ (𝑟 +Q (*Q‘[⟨𝑗, 1o⟩] ~Q )) <Q (𝐹𝑗)) → ∃𝑗N (𝑟 +Q (*Q‘[⟨𝑗, 1o⟩] ~Q )) <Q (𝐹𝑗))
5849, 56, 57syl2anc 411 . . . . . . . 8 ((((((𝜑𝑠 ∈ (1st𝐿)) ∧ (𝑗N ∧ (𝑠 +Q (*Q‘[⟨𝑗, 1o⟩] ~Q )) <Q (𝐹𝑗))) ∧ (𝑡Q ∧ ((𝑠 +Q (*Q‘[⟨𝑗, 1o⟩] ~Q )) <Q 𝑡𝑡 <Q (𝐹𝑗)))) ∧ 𝑟Q) ∧ ((*Q‘[⟨𝑗, 1o⟩] ~Q ) +Q 𝑟) = 𝑡) → ∃𝑗N (𝑟 +Q (*Q‘[⟨𝑗, 1o⟩] ~Q )) <Q (𝐹𝑗))
59 oveq1 5926 . . . . . . . . . . 11 (𝑙 = 𝑟 → (𝑙 +Q (*Q‘[⟨𝑗, 1o⟩] ~Q )) = (𝑟 +Q (*Q‘[⟨𝑗, 1o⟩] ~Q )))
6059breq1d 4040 . . . . . . . . . 10 (𝑙 = 𝑟 → ((𝑙 +Q (*Q‘[⟨𝑗, 1o⟩] ~Q )) <Q (𝐹𝑗) ↔ (𝑟 +Q (*Q‘[⟨𝑗, 1o⟩] ~Q )) <Q (𝐹𝑗)))
6160rexbidv 2495 . . . . . . . . 9 (𝑙 = 𝑟 → (∃𝑗N (𝑙 +Q (*Q‘[⟨𝑗, 1o⟩] ~Q )) <Q (𝐹𝑗) ↔ ∃𝑗N (𝑟 +Q (*Q‘[⟨𝑗, 1o⟩] ~Q )) <Q (𝐹𝑗)))
6261, 10elrab2 2920 . . . . . . . 8 (𝑟 ∈ (1st𝐿) ↔ (𝑟Q ∧ ∃𝑗N (𝑟 +Q (*Q‘[⟨𝑗, 1o⟩] ~Q )) <Q (𝐹𝑗)))
6345, 58, 62sylanbrc 417 . . . . . . 7 ((((((𝜑𝑠 ∈ (1st𝐿)) ∧ (𝑗N ∧ (𝑠 +Q (*Q‘[⟨𝑗, 1o⟩] ~Q )) <Q (𝐹𝑗))) ∧ (𝑡Q ∧ ((𝑠 +Q (*Q‘[⟨𝑗, 1o⟩] ~Q )) <Q 𝑡𝑡 <Q (𝐹𝑗)))) ∧ 𝑟Q) ∧ ((*Q‘[⟨𝑗, 1o⟩] ~Q ) +Q 𝑟) = 𝑡) → 𝑟 ∈ (1st𝐿))
6448, 63jca 306 . . . . . 6 ((((((𝜑𝑠 ∈ (1st𝐿)) ∧ (𝑗N ∧ (𝑠 +Q (*Q‘[⟨𝑗, 1o⟩] ~Q )) <Q (𝐹𝑗))) ∧ (𝑡Q ∧ ((𝑠 +Q (*Q‘[⟨𝑗, 1o⟩] ~Q )) <Q 𝑡𝑡 <Q (𝐹𝑗)))) ∧ 𝑟Q) ∧ ((*Q‘[⟨𝑗, 1o⟩] ~Q ) +Q 𝑟) = 𝑡) → (𝑠 <Q 𝑟𝑟 ∈ (1st𝐿)))
6564ex 115 . . . . 5 (((((𝜑𝑠 ∈ (1st𝐿)) ∧ (𝑗N ∧ (𝑠 +Q (*Q‘[⟨𝑗, 1o⟩] ~Q )) <Q (𝐹𝑗))) ∧ (𝑡Q ∧ ((𝑠 +Q (*Q‘[⟨𝑗, 1o⟩] ~Q )) <Q 𝑡𝑡 <Q (𝐹𝑗)))) ∧ 𝑟Q) → (((*Q‘[⟨𝑗, 1o⟩] ~Q ) +Q 𝑟) = 𝑡 → (𝑠 <Q 𝑟𝑟 ∈ (1st𝐿))))
6665reximdva 2596 . . . 4 ((((𝜑𝑠 ∈ (1st𝐿)) ∧ (𝑗N ∧ (𝑠 +Q (*Q‘[⟨𝑗, 1o⟩] ~Q )) <Q (𝐹𝑗))) ∧ (𝑡Q ∧ ((𝑠 +Q (*Q‘[⟨𝑗, 1o⟩] ~Q )) <Q 𝑡𝑡 <Q (𝐹𝑗)))) → (∃𝑟Q ((*Q‘[⟨𝑗, 1o⟩] ~Q ) +Q 𝑟) = 𝑡 → ∃𝑟Q (𝑠 <Q 𝑟𝑟 ∈ (1st𝐿))))
6736, 66mpd 13 . . 3 ((((𝜑𝑠 ∈ (1st𝐿)) ∧ (𝑗N ∧ (𝑠 +Q (*Q‘[⟨𝑗, 1o⟩] ~Q )) <Q (𝐹𝑗))) ∧ (𝑡Q ∧ ((𝑠 +Q (*Q‘[⟨𝑗, 1o⟩] ~Q )) <Q 𝑡𝑡 <Q (𝐹𝑗)))) → ∃𝑟Q (𝑠 <Q 𝑟𝑟 ∈ (1st𝐿)))
6816, 67rexlimddv 2616 . 2 (((𝜑𝑠 ∈ (1st𝐿)) ∧ (𝑗N ∧ (𝑠 +Q (*Q‘[⟨𝑗, 1o⟩] ~Q )) <Q (𝐹𝑗))) → ∃𝑟Q (𝑠 <Q 𝑟𝑟 ∈ (1st𝐿)))
6913, 68rexlimddv 2616 1 ((𝜑𝑠 ∈ (1st𝐿)) → ∃𝑟Q (𝑠 <Q 𝑟𝑟 ∈ (1st𝐿)))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105   = wceq 1364  wcel 2164  wral 2472  wrex 2473  {crab 2476  cop 3622   class class class wbr 4030  wf 5251  cfv 5255  (class class class)co 5919  1st c1st 6193  1oc1o 6464  [cec 6587  Ncnpi 7334   <N clti 7337   ~Q ceq 7341  Qcnq 7342   +Q cplq 7344  *Qcrq 7346   <Q cltq 7347
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-coll 4145  ax-sep 4148  ax-nul 4156  ax-pow 4204  ax-pr 4239  ax-un 4465  ax-setind 4570  ax-iinf 4621
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-ral 2477  df-rex 2478  df-reu 2479  df-rab 2481  df-v 2762  df-sbc 2987  df-csb 3082  df-dif 3156  df-un 3158  df-in 3160  df-ss 3167  df-nul 3448  df-pw 3604  df-sn 3625  df-pr 3626  df-op 3628  df-uni 3837  df-int 3872  df-iun 3915  df-br 4031  df-opab 4092  df-mpt 4093  df-tr 4129  df-eprel 4321  df-id 4325  df-po 4328  df-iso 4329  df-iord 4398  df-on 4400  df-suc 4403  df-iom 4624  df-xp 4666  df-rel 4667  df-cnv 4668  df-co 4669  df-dm 4670  df-rn 4671  df-res 4672  df-ima 4673  df-iota 5216  df-fun 5257  df-fn 5258  df-f 5259  df-f1 5260  df-fo 5261  df-f1o 5262  df-fv 5263  df-ov 5922  df-oprab 5923  df-mpo 5924  df-1st 6195  df-2nd 6196  df-recs 6360  df-irdg 6425  df-1o 6471  df-oadd 6475  df-omul 6476  df-er 6589  df-ec 6591  df-qs 6595  df-ni 7366  df-pli 7367  df-mi 7368  df-lti 7369  df-plpq 7406  df-mpq 7407  df-enq 7409  df-nqqs 7410  df-plqqs 7411  df-mqqs 7412  df-1nqqs 7413  df-rq 7414  df-ltnqqs 7415
This theorem is referenced by:  caucvgprlemrnd  7735
  Copyright terms: Public domain W3C validator