Step | Hyp | Ref
| Expression |
1 | | oveq1 5860 |
. . . . . . 7
⊢ (𝑙 = 𝑠 → (𝑙 +Q
(*Q‘[〈𝑗, 1o〉]
~Q )) = (𝑠 +Q
(*Q‘[〈𝑗, 1o〉]
~Q ))) |
2 | 1 | breq1d 3999 |
. . . . . 6
⊢ (𝑙 = 𝑠 → ((𝑙 +Q
(*Q‘[〈𝑗, 1o〉]
~Q )) <Q (𝐹‘𝑗) ↔ (𝑠 +Q
(*Q‘[〈𝑗, 1o〉]
~Q )) <Q (𝐹‘𝑗))) |
3 | 2 | rexbidv 2471 |
. . . . 5
⊢ (𝑙 = 𝑠 → (∃𝑗 ∈ N (𝑙 +Q
(*Q‘[〈𝑗, 1o〉]
~Q )) <Q (𝐹‘𝑗) ↔ ∃𝑗 ∈ N (𝑠 +Q
(*Q‘[〈𝑗, 1o〉]
~Q )) <Q (𝐹‘𝑗))) |
4 | | caucvgpr.lim |
. . . . . . 7
⊢ 𝐿 = 〈{𝑙 ∈ Q ∣ ∃𝑗 ∈ N (𝑙 +Q
(*Q‘[〈𝑗, 1o〉]
~Q )) <Q (𝐹‘𝑗)}, {𝑢 ∈ Q ∣ ∃𝑗 ∈ N ((𝐹‘𝑗) +Q
(*Q‘[〈𝑗, 1o〉]
~Q )) <Q 𝑢}〉 |
5 | 4 | fveq2i 5499 |
. . . . . 6
⊢
(1st ‘𝐿) = (1st ‘〈{𝑙 ∈ Q ∣
∃𝑗 ∈
N (𝑙
+Q (*Q‘[〈𝑗, 1o〉]
~Q )) <Q (𝐹‘𝑗)}, {𝑢 ∈ Q ∣ ∃𝑗 ∈ N ((𝐹‘𝑗) +Q
(*Q‘[〈𝑗, 1o〉]
~Q )) <Q 𝑢}〉) |
6 | | nqex 7325 |
. . . . . . . 8
⊢
Q ∈ V |
7 | 6 | rabex 4133 |
. . . . . . 7
⊢ {𝑙 ∈ Q ∣
∃𝑗 ∈
N (𝑙
+Q (*Q‘[〈𝑗, 1o〉]
~Q )) <Q (𝐹‘𝑗)} ∈ V |
8 | 6 | rabex 4133 |
. . . . . . 7
⊢ {𝑢 ∈ Q ∣
∃𝑗 ∈
N ((𝐹‘𝑗) +Q
(*Q‘[〈𝑗, 1o〉]
~Q )) <Q 𝑢} ∈ V |
9 | 7, 8 | op1st 6125 |
. . . . . 6
⊢
(1st ‘〈{𝑙 ∈ Q ∣ ∃𝑗 ∈ N (𝑙 +Q
(*Q‘[〈𝑗, 1o〉]
~Q )) <Q (𝐹‘𝑗)}, {𝑢 ∈ Q ∣ ∃𝑗 ∈ N ((𝐹‘𝑗) +Q
(*Q‘[〈𝑗, 1o〉]
~Q )) <Q 𝑢}〉) = {𝑙 ∈ Q ∣ ∃𝑗 ∈ N (𝑙 +Q
(*Q‘[〈𝑗, 1o〉]
~Q )) <Q (𝐹‘𝑗)} |
10 | 5, 9 | eqtri 2191 |
. . . . 5
⊢
(1st ‘𝐿) = {𝑙 ∈ Q ∣ ∃𝑗 ∈ N (𝑙 +Q
(*Q‘[〈𝑗, 1o〉]
~Q )) <Q (𝐹‘𝑗)} |
11 | 3, 10 | elrab2 2889 |
. . . 4
⊢ (𝑠 ∈ (1st
‘𝐿) ↔ (𝑠 ∈ Q ∧
∃𝑗 ∈
N (𝑠
+Q (*Q‘[〈𝑗, 1o〉]
~Q )) <Q (𝐹‘𝑗))) |
12 | 11 | simprbi 273 |
. . 3
⊢ (𝑠 ∈ (1st
‘𝐿) →
∃𝑗 ∈
N (𝑠
+Q (*Q‘[〈𝑗, 1o〉]
~Q )) <Q (𝐹‘𝑗)) |
13 | 12 | adantl 275 |
. 2
⊢ ((𝜑 ∧ 𝑠 ∈ (1st ‘𝐿)) → ∃𝑗 ∈ N (𝑠 +Q
(*Q‘[〈𝑗, 1o〉]
~Q )) <Q (𝐹‘𝑗)) |
14 | | simprr 527 |
. . . 4
⊢ (((𝜑 ∧ 𝑠 ∈ (1st ‘𝐿)) ∧ (𝑗 ∈ N ∧ (𝑠 +Q
(*Q‘[〈𝑗, 1o〉]
~Q )) <Q (𝐹‘𝑗))) → (𝑠 +Q
(*Q‘[〈𝑗, 1o〉]
~Q )) <Q (𝐹‘𝑗)) |
15 | | ltbtwnnqq 7377 |
. . . 4
⊢ ((𝑠 +Q
(*Q‘[〈𝑗, 1o〉]
~Q )) <Q (𝐹‘𝑗) ↔ ∃𝑡 ∈ Q ((𝑠 +Q
(*Q‘[〈𝑗, 1o〉]
~Q )) <Q 𝑡 ∧ 𝑡 <Q (𝐹‘𝑗))) |
16 | 14, 15 | sylib 121 |
. . 3
⊢ (((𝜑 ∧ 𝑠 ∈ (1st ‘𝐿)) ∧ (𝑗 ∈ N ∧ (𝑠 +Q
(*Q‘[〈𝑗, 1o〉]
~Q )) <Q (𝐹‘𝑗))) → ∃𝑡 ∈ Q ((𝑠 +Q
(*Q‘[〈𝑗, 1o〉]
~Q )) <Q 𝑡 ∧ 𝑡 <Q (𝐹‘𝑗))) |
17 | | simplrl 530 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ 𝑠 ∈ (1st ‘𝐿)) ∧ (𝑗 ∈ N ∧ (𝑠 +Q
(*Q‘[〈𝑗, 1o〉]
~Q )) <Q (𝐹‘𝑗))) ∧ (𝑡 ∈ Q ∧ ((𝑠 +Q
(*Q‘[〈𝑗, 1o〉]
~Q )) <Q 𝑡 ∧ 𝑡 <Q (𝐹‘𝑗)))) → 𝑗 ∈ N) |
18 | | nnnq 7384 |
. . . . . . . . 9
⊢ (𝑗 ∈ N →
[〈𝑗,
1o〉] ~Q ∈
Q) |
19 | | recclnq 7354 |
. . . . . . . . 9
⊢
([〈𝑗,
1o〉] ~Q ∈ Q →
(*Q‘[〈𝑗, 1o〉]
~Q ) ∈ Q) |
20 | 17, 18, 19 | 3syl 17 |
. . . . . . . 8
⊢ ((((𝜑 ∧ 𝑠 ∈ (1st ‘𝐿)) ∧ (𝑗 ∈ N ∧ (𝑠 +Q
(*Q‘[〈𝑗, 1o〉]
~Q )) <Q (𝐹‘𝑗))) ∧ (𝑡 ∈ Q ∧ ((𝑠 +Q
(*Q‘[〈𝑗, 1o〉]
~Q )) <Q 𝑡 ∧ 𝑡 <Q (𝐹‘𝑗)))) →
(*Q‘[〈𝑗, 1o〉]
~Q ) ∈ Q) |
21 | 11 | simplbi 272 |
. . . . . . . . 9
⊢ (𝑠 ∈ (1st
‘𝐿) → 𝑠 ∈
Q) |
22 | 21 | ad3antlr 490 |
. . . . . . . 8
⊢ ((((𝜑 ∧ 𝑠 ∈ (1st ‘𝐿)) ∧ (𝑗 ∈ N ∧ (𝑠 +Q
(*Q‘[〈𝑗, 1o〉]
~Q )) <Q (𝐹‘𝑗))) ∧ (𝑡 ∈ Q ∧ ((𝑠 +Q
(*Q‘[〈𝑗, 1o〉]
~Q )) <Q 𝑡 ∧ 𝑡 <Q (𝐹‘𝑗)))) → 𝑠 ∈ Q) |
23 | | ltaddnq 7369 |
. . . . . . . 8
⊢
(((*Q‘[〈𝑗, 1o〉]
~Q ) ∈ Q ∧ 𝑠 ∈ Q) →
(*Q‘[〈𝑗, 1o〉]
~Q ) <Q
((*Q‘[〈𝑗, 1o〉]
~Q ) +Q 𝑠)) |
24 | 20, 22, 23 | syl2anc 409 |
. . . . . . 7
⊢ ((((𝜑 ∧ 𝑠 ∈ (1st ‘𝐿)) ∧ (𝑗 ∈ N ∧ (𝑠 +Q
(*Q‘[〈𝑗, 1o〉]
~Q )) <Q (𝐹‘𝑗))) ∧ (𝑡 ∈ Q ∧ ((𝑠 +Q
(*Q‘[〈𝑗, 1o〉]
~Q )) <Q 𝑡 ∧ 𝑡 <Q (𝐹‘𝑗)))) →
(*Q‘[〈𝑗, 1o〉]
~Q ) <Q
((*Q‘[〈𝑗, 1o〉]
~Q ) +Q 𝑠)) |
25 | | addcomnqg 7343 |
. . . . . . . 8
⊢
(((*Q‘[〈𝑗, 1o〉]
~Q ) ∈ Q ∧ 𝑠 ∈ Q) →
((*Q‘[〈𝑗, 1o〉]
~Q ) +Q 𝑠) = (𝑠 +Q
(*Q‘[〈𝑗, 1o〉]
~Q ))) |
26 | 20, 22, 25 | syl2anc 409 |
. . . . . . 7
⊢ ((((𝜑 ∧ 𝑠 ∈ (1st ‘𝐿)) ∧ (𝑗 ∈ N ∧ (𝑠 +Q
(*Q‘[〈𝑗, 1o〉]
~Q )) <Q (𝐹‘𝑗))) ∧ (𝑡 ∈ Q ∧ ((𝑠 +Q
(*Q‘[〈𝑗, 1o〉]
~Q )) <Q 𝑡 ∧ 𝑡 <Q (𝐹‘𝑗)))) →
((*Q‘[〈𝑗, 1o〉]
~Q ) +Q 𝑠) = (𝑠 +Q
(*Q‘[〈𝑗, 1o〉]
~Q ))) |
27 | 24, 26 | breqtrd 4015 |
. . . . . 6
⊢ ((((𝜑 ∧ 𝑠 ∈ (1st ‘𝐿)) ∧ (𝑗 ∈ N ∧ (𝑠 +Q
(*Q‘[〈𝑗, 1o〉]
~Q )) <Q (𝐹‘𝑗))) ∧ (𝑡 ∈ Q ∧ ((𝑠 +Q
(*Q‘[〈𝑗, 1o〉]
~Q )) <Q 𝑡 ∧ 𝑡 <Q (𝐹‘𝑗)))) →
(*Q‘[〈𝑗, 1o〉]
~Q ) <Q (𝑠 +Q
(*Q‘[〈𝑗, 1o〉]
~Q ))) |
28 | | simprrl 534 |
. . . . . 6
⊢ ((((𝜑 ∧ 𝑠 ∈ (1st ‘𝐿)) ∧ (𝑗 ∈ N ∧ (𝑠 +Q
(*Q‘[〈𝑗, 1o〉]
~Q )) <Q (𝐹‘𝑗))) ∧ (𝑡 ∈ Q ∧ ((𝑠 +Q
(*Q‘[〈𝑗, 1o〉]
~Q )) <Q 𝑡 ∧ 𝑡 <Q (𝐹‘𝑗)))) → (𝑠 +Q
(*Q‘[〈𝑗, 1o〉]
~Q )) <Q 𝑡) |
29 | | ltsonq 7360 |
. . . . . . 7
⊢
<Q Or Q |
30 | | ltrelnq 7327 |
. . . . . . 7
⊢
<Q ⊆ (Q ×
Q) |
31 | 29, 30 | sotri 5006 |
. . . . . 6
⊢
(((*Q‘[〈𝑗, 1o〉]
~Q ) <Q (𝑠 +Q
(*Q‘[〈𝑗, 1o〉]
~Q )) ∧ (𝑠 +Q
(*Q‘[〈𝑗, 1o〉]
~Q )) <Q 𝑡) →
(*Q‘[〈𝑗, 1o〉]
~Q ) <Q 𝑡) |
32 | 27, 28, 31 | syl2anc 409 |
. . . . 5
⊢ ((((𝜑 ∧ 𝑠 ∈ (1st ‘𝐿)) ∧ (𝑗 ∈ N ∧ (𝑠 +Q
(*Q‘[〈𝑗, 1o〉]
~Q )) <Q (𝐹‘𝑗))) ∧ (𝑡 ∈ Q ∧ ((𝑠 +Q
(*Q‘[〈𝑗, 1o〉]
~Q )) <Q 𝑡 ∧ 𝑡 <Q (𝐹‘𝑗)))) →
(*Q‘[〈𝑗, 1o〉]
~Q ) <Q 𝑡) |
33 | | simprl 526 |
. . . . . 6
⊢ ((((𝜑 ∧ 𝑠 ∈ (1st ‘𝐿)) ∧ (𝑗 ∈ N ∧ (𝑠 +Q
(*Q‘[〈𝑗, 1o〉]
~Q )) <Q (𝐹‘𝑗))) ∧ (𝑡 ∈ Q ∧ ((𝑠 +Q
(*Q‘[〈𝑗, 1o〉]
~Q )) <Q 𝑡 ∧ 𝑡 <Q (𝐹‘𝑗)))) → 𝑡 ∈ Q) |
34 | | ltexnqq 7370 |
. . . . . 6
⊢
(((*Q‘[〈𝑗, 1o〉]
~Q ) ∈ Q ∧ 𝑡 ∈ Q) →
((*Q‘[〈𝑗, 1o〉]
~Q ) <Q 𝑡 ↔ ∃𝑟 ∈ Q
((*Q‘[〈𝑗, 1o〉]
~Q ) +Q 𝑟) = 𝑡)) |
35 | 20, 33, 34 | syl2anc 409 |
. . . . 5
⊢ ((((𝜑 ∧ 𝑠 ∈ (1st ‘𝐿)) ∧ (𝑗 ∈ N ∧ (𝑠 +Q
(*Q‘[〈𝑗, 1o〉]
~Q )) <Q (𝐹‘𝑗))) ∧ (𝑡 ∈ Q ∧ ((𝑠 +Q
(*Q‘[〈𝑗, 1o〉]
~Q )) <Q 𝑡 ∧ 𝑡 <Q (𝐹‘𝑗)))) →
((*Q‘[〈𝑗, 1o〉]
~Q ) <Q 𝑡 ↔ ∃𝑟 ∈ Q
((*Q‘[〈𝑗, 1o〉]
~Q ) +Q 𝑟) = 𝑡)) |
36 | 32, 35 | mpbid 146 |
. . . 4
⊢ ((((𝜑 ∧ 𝑠 ∈ (1st ‘𝐿)) ∧ (𝑗 ∈ N ∧ (𝑠 +Q
(*Q‘[〈𝑗, 1o〉]
~Q )) <Q (𝐹‘𝑗))) ∧ (𝑡 ∈ Q ∧ ((𝑠 +Q
(*Q‘[〈𝑗, 1o〉]
~Q )) <Q 𝑡 ∧ 𝑡 <Q (𝐹‘𝑗)))) → ∃𝑟 ∈ Q
((*Q‘[〈𝑗, 1o〉]
~Q ) +Q 𝑟) = 𝑡) |
37 | 22 | ad2antrr 485 |
. . . . . . . . . . 11
⊢
((((((𝜑 ∧ 𝑠 ∈ (1st
‘𝐿)) ∧ (𝑗 ∈ N ∧
(𝑠
+Q (*Q‘[〈𝑗, 1o〉]
~Q )) <Q (𝐹‘𝑗))) ∧ (𝑡 ∈ Q ∧ ((𝑠 +Q
(*Q‘[〈𝑗, 1o〉]
~Q )) <Q 𝑡 ∧ 𝑡 <Q (𝐹‘𝑗)))) ∧ 𝑟 ∈ Q) ∧
((*Q‘[〈𝑗, 1o〉]
~Q ) +Q 𝑟) = 𝑡) → 𝑠 ∈ Q) |
38 | 20 | ad2antrr 485 |
. . . . . . . . . . 11
⊢
((((((𝜑 ∧ 𝑠 ∈ (1st
‘𝐿)) ∧ (𝑗 ∈ N ∧
(𝑠
+Q (*Q‘[〈𝑗, 1o〉]
~Q )) <Q (𝐹‘𝑗))) ∧ (𝑡 ∈ Q ∧ ((𝑠 +Q
(*Q‘[〈𝑗, 1o〉]
~Q )) <Q 𝑡 ∧ 𝑡 <Q (𝐹‘𝑗)))) ∧ 𝑟 ∈ Q) ∧
((*Q‘[〈𝑗, 1o〉]
~Q ) +Q 𝑟) = 𝑡) →
(*Q‘[〈𝑗, 1o〉]
~Q ) ∈ Q) |
39 | | addcomnqg 7343 |
. . . . . . . . . . 11
⊢ ((𝑠 ∈ Q ∧
(*Q‘[〈𝑗, 1o〉]
~Q ) ∈ Q) → (𝑠 +Q
(*Q‘[〈𝑗, 1o〉]
~Q )) =
((*Q‘[〈𝑗, 1o〉]
~Q ) +Q 𝑠)) |
40 | 37, 38, 39 | syl2anc 409 |
. . . . . . . . . 10
⊢
((((((𝜑 ∧ 𝑠 ∈ (1st
‘𝐿)) ∧ (𝑗 ∈ N ∧
(𝑠
+Q (*Q‘[〈𝑗, 1o〉]
~Q )) <Q (𝐹‘𝑗))) ∧ (𝑡 ∈ Q ∧ ((𝑠 +Q
(*Q‘[〈𝑗, 1o〉]
~Q )) <Q 𝑡 ∧ 𝑡 <Q (𝐹‘𝑗)))) ∧ 𝑟 ∈ Q) ∧
((*Q‘[〈𝑗, 1o〉]
~Q ) +Q 𝑟) = 𝑡) → (𝑠 +Q
(*Q‘[〈𝑗, 1o〉]
~Q )) =
((*Q‘[〈𝑗, 1o〉]
~Q ) +Q 𝑠)) |
41 | 28 | ad2antrr 485 |
. . . . . . . . . 10
⊢
((((((𝜑 ∧ 𝑠 ∈ (1st
‘𝐿)) ∧ (𝑗 ∈ N ∧
(𝑠
+Q (*Q‘[〈𝑗, 1o〉]
~Q )) <Q (𝐹‘𝑗))) ∧ (𝑡 ∈ Q ∧ ((𝑠 +Q
(*Q‘[〈𝑗, 1o〉]
~Q )) <Q 𝑡 ∧ 𝑡 <Q (𝐹‘𝑗)))) ∧ 𝑟 ∈ Q) ∧
((*Q‘[〈𝑗, 1o〉]
~Q ) +Q 𝑟) = 𝑡) → (𝑠 +Q
(*Q‘[〈𝑗, 1o〉]
~Q )) <Q 𝑡) |
42 | 40, 41 | eqbrtrrd 4013 |
. . . . . . . . 9
⊢
((((((𝜑 ∧ 𝑠 ∈ (1st
‘𝐿)) ∧ (𝑗 ∈ N ∧
(𝑠
+Q (*Q‘[〈𝑗, 1o〉]
~Q )) <Q (𝐹‘𝑗))) ∧ (𝑡 ∈ Q ∧ ((𝑠 +Q
(*Q‘[〈𝑗, 1o〉]
~Q )) <Q 𝑡 ∧ 𝑡 <Q (𝐹‘𝑗)))) ∧ 𝑟 ∈ Q) ∧
((*Q‘[〈𝑗, 1o〉]
~Q ) +Q 𝑟) = 𝑡) →
((*Q‘[〈𝑗, 1o〉]
~Q ) +Q 𝑠) <Q 𝑡) |
43 | | simpr 109 |
. . . . . . . . 9
⊢
((((((𝜑 ∧ 𝑠 ∈ (1st
‘𝐿)) ∧ (𝑗 ∈ N ∧
(𝑠
+Q (*Q‘[〈𝑗, 1o〉]
~Q )) <Q (𝐹‘𝑗))) ∧ (𝑡 ∈ Q ∧ ((𝑠 +Q
(*Q‘[〈𝑗, 1o〉]
~Q )) <Q 𝑡 ∧ 𝑡 <Q (𝐹‘𝑗)))) ∧ 𝑟 ∈ Q) ∧
((*Q‘[〈𝑗, 1o〉]
~Q ) +Q 𝑟) = 𝑡) →
((*Q‘[〈𝑗, 1o〉]
~Q ) +Q 𝑟) = 𝑡) |
44 | 42, 43 | breqtrrd 4017 |
. . . . . . . 8
⊢
((((((𝜑 ∧ 𝑠 ∈ (1st
‘𝐿)) ∧ (𝑗 ∈ N ∧
(𝑠
+Q (*Q‘[〈𝑗, 1o〉]
~Q )) <Q (𝐹‘𝑗))) ∧ (𝑡 ∈ Q ∧ ((𝑠 +Q
(*Q‘[〈𝑗, 1o〉]
~Q )) <Q 𝑡 ∧ 𝑡 <Q (𝐹‘𝑗)))) ∧ 𝑟 ∈ Q) ∧
((*Q‘[〈𝑗, 1o〉]
~Q ) +Q 𝑟) = 𝑡) →
((*Q‘[〈𝑗, 1o〉]
~Q ) +Q 𝑠) <Q
((*Q‘[〈𝑗, 1o〉]
~Q ) +Q 𝑟)) |
45 | | simplr 525 |
. . . . . . . . 9
⊢
((((((𝜑 ∧ 𝑠 ∈ (1st
‘𝐿)) ∧ (𝑗 ∈ N ∧
(𝑠
+Q (*Q‘[〈𝑗, 1o〉]
~Q )) <Q (𝐹‘𝑗))) ∧ (𝑡 ∈ Q ∧ ((𝑠 +Q
(*Q‘[〈𝑗, 1o〉]
~Q )) <Q 𝑡 ∧ 𝑡 <Q (𝐹‘𝑗)))) ∧ 𝑟 ∈ Q) ∧
((*Q‘[〈𝑗, 1o〉]
~Q ) +Q 𝑟) = 𝑡) → 𝑟 ∈ Q) |
46 | | ltanqg 7362 |
. . . . . . . . 9
⊢ ((𝑠 ∈ Q ∧
𝑟 ∈ Q
∧ (*Q‘[〈𝑗, 1o〉]
~Q ) ∈ Q) → (𝑠 <Q
𝑟 ↔
((*Q‘[〈𝑗, 1o〉]
~Q ) +Q 𝑠) <Q
((*Q‘[〈𝑗, 1o〉]
~Q ) +Q 𝑟))) |
47 | 37, 45, 38, 46 | syl3anc 1233 |
. . . . . . . 8
⊢
((((((𝜑 ∧ 𝑠 ∈ (1st
‘𝐿)) ∧ (𝑗 ∈ N ∧
(𝑠
+Q (*Q‘[〈𝑗, 1o〉]
~Q )) <Q (𝐹‘𝑗))) ∧ (𝑡 ∈ Q ∧ ((𝑠 +Q
(*Q‘[〈𝑗, 1o〉]
~Q )) <Q 𝑡 ∧ 𝑡 <Q (𝐹‘𝑗)))) ∧ 𝑟 ∈ Q) ∧
((*Q‘[〈𝑗, 1o〉]
~Q ) +Q 𝑟) = 𝑡) → (𝑠 <Q 𝑟 ↔
((*Q‘[〈𝑗, 1o〉]
~Q ) +Q 𝑠) <Q
((*Q‘[〈𝑗, 1o〉]
~Q ) +Q 𝑟))) |
48 | 44, 47 | mpbird 166 |
. . . . . . 7
⊢
((((((𝜑 ∧ 𝑠 ∈ (1st
‘𝐿)) ∧ (𝑗 ∈ N ∧
(𝑠
+Q (*Q‘[〈𝑗, 1o〉]
~Q )) <Q (𝐹‘𝑗))) ∧ (𝑡 ∈ Q ∧ ((𝑠 +Q
(*Q‘[〈𝑗, 1o〉]
~Q )) <Q 𝑡 ∧ 𝑡 <Q (𝐹‘𝑗)))) ∧ 𝑟 ∈ Q) ∧
((*Q‘[〈𝑗, 1o〉]
~Q ) +Q 𝑟) = 𝑡) → 𝑠 <Q 𝑟) |
49 | 17 | ad2antrr 485 |
. . . . . . . . 9
⊢
((((((𝜑 ∧ 𝑠 ∈ (1st
‘𝐿)) ∧ (𝑗 ∈ N ∧
(𝑠
+Q (*Q‘[〈𝑗, 1o〉]
~Q )) <Q (𝐹‘𝑗))) ∧ (𝑡 ∈ Q ∧ ((𝑠 +Q
(*Q‘[〈𝑗, 1o〉]
~Q )) <Q 𝑡 ∧ 𝑡 <Q (𝐹‘𝑗)))) ∧ 𝑟 ∈ Q) ∧
((*Q‘[〈𝑗, 1o〉]
~Q ) +Q 𝑟) = 𝑡) → 𝑗 ∈ N) |
50 | | simprrr 535 |
. . . . . . . . . . 11
⊢ ((((𝜑 ∧ 𝑠 ∈ (1st ‘𝐿)) ∧ (𝑗 ∈ N ∧ (𝑠 +Q
(*Q‘[〈𝑗, 1o〉]
~Q )) <Q (𝐹‘𝑗))) ∧ (𝑡 ∈ Q ∧ ((𝑠 +Q
(*Q‘[〈𝑗, 1o〉]
~Q )) <Q 𝑡 ∧ 𝑡 <Q (𝐹‘𝑗)))) → 𝑡 <Q (𝐹‘𝑗)) |
51 | 50 | ad2antrr 485 |
. . . . . . . . . 10
⊢
((((((𝜑 ∧ 𝑠 ∈ (1st
‘𝐿)) ∧ (𝑗 ∈ N ∧
(𝑠
+Q (*Q‘[〈𝑗, 1o〉]
~Q )) <Q (𝐹‘𝑗))) ∧ (𝑡 ∈ Q ∧ ((𝑠 +Q
(*Q‘[〈𝑗, 1o〉]
~Q )) <Q 𝑡 ∧ 𝑡 <Q (𝐹‘𝑗)))) ∧ 𝑟 ∈ Q) ∧
((*Q‘[〈𝑗, 1o〉]
~Q ) +Q 𝑟) = 𝑡) → 𝑡 <Q (𝐹‘𝑗)) |
52 | | addcomnqg 7343 |
. . . . . . . . . . . . 13
⊢
(((*Q‘[〈𝑗, 1o〉]
~Q ) ∈ Q ∧ 𝑟 ∈ Q) →
((*Q‘[〈𝑗, 1o〉]
~Q ) +Q 𝑟) = (𝑟 +Q
(*Q‘[〈𝑗, 1o〉]
~Q ))) |
53 | 38, 45, 52 | syl2anc 409 |
. . . . . . . . . . . 12
⊢
((((((𝜑 ∧ 𝑠 ∈ (1st
‘𝐿)) ∧ (𝑗 ∈ N ∧
(𝑠
+Q (*Q‘[〈𝑗, 1o〉]
~Q )) <Q (𝐹‘𝑗))) ∧ (𝑡 ∈ Q ∧ ((𝑠 +Q
(*Q‘[〈𝑗, 1o〉]
~Q )) <Q 𝑡 ∧ 𝑡 <Q (𝐹‘𝑗)))) ∧ 𝑟 ∈ Q) ∧
((*Q‘[〈𝑗, 1o〉]
~Q ) +Q 𝑟) = 𝑡) →
((*Q‘[〈𝑗, 1o〉]
~Q ) +Q 𝑟) = (𝑟 +Q
(*Q‘[〈𝑗, 1o〉]
~Q ))) |
54 | 53, 43 | eqtr3d 2205 |
. . . . . . . . . . 11
⊢
((((((𝜑 ∧ 𝑠 ∈ (1st
‘𝐿)) ∧ (𝑗 ∈ N ∧
(𝑠
+Q (*Q‘[〈𝑗, 1o〉]
~Q )) <Q (𝐹‘𝑗))) ∧ (𝑡 ∈ Q ∧ ((𝑠 +Q
(*Q‘[〈𝑗, 1o〉]
~Q )) <Q 𝑡 ∧ 𝑡 <Q (𝐹‘𝑗)))) ∧ 𝑟 ∈ Q) ∧
((*Q‘[〈𝑗, 1o〉]
~Q ) +Q 𝑟) = 𝑡) → (𝑟 +Q
(*Q‘[〈𝑗, 1o〉]
~Q )) = 𝑡) |
55 | 54 | breq1d 3999 |
. . . . . . . . . 10
⊢
((((((𝜑 ∧ 𝑠 ∈ (1st
‘𝐿)) ∧ (𝑗 ∈ N ∧
(𝑠
+Q (*Q‘[〈𝑗, 1o〉]
~Q )) <Q (𝐹‘𝑗))) ∧ (𝑡 ∈ Q ∧ ((𝑠 +Q
(*Q‘[〈𝑗, 1o〉]
~Q )) <Q 𝑡 ∧ 𝑡 <Q (𝐹‘𝑗)))) ∧ 𝑟 ∈ Q) ∧
((*Q‘[〈𝑗, 1o〉]
~Q ) +Q 𝑟) = 𝑡) → ((𝑟 +Q
(*Q‘[〈𝑗, 1o〉]
~Q )) <Q (𝐹‘𝑗) ↔ 𝑡 <Q (𝐹‘𝑗))) |
56 | 51, 55 | mpbird 166 |
. . . . . . . . 9
⊢
((((((𝜑 ∧ 𝑠 ∈ (1st
‘𝐿)) ∧ (𝑗 ∈ N ∧
(𝑠
+Q (*Q‘[〈𝑗, 1o〉]
~Q )) <Q (𝐹‘𝑗))) ∧ (𝑡 ∈ Q ∧ ((𝑠 +Q
(*Q‘[〈𝑗, 1o〉]
~Q )) <Q 𝑡 ∧ 𝑡 <Q (𝐹‘𝑗)))) ∧ 𝑟 ∈ Q) ∧
((*Q‘[〈𝑗, 1o〉]
~Q ) +Q 𝑟) = 𝑡) → (𝑟 +Q
(*Q‘[〈𝑗, 1o〉]
~Q )) <Q (𝐹‘𝑗)) |
57 | | rspe 2519 |
. . . . . . . . 9
⊢ ((𝑗 ∈ N ∧
(𝑟
+Q (*Q‘[〈𝑗, 1o〉]
~Q )) <Q (𝐹‘𝑗)) → ∃𝑗 ∈ N (𝑟 +Q
(*Q‘[〈𝑗, 1o〉]
~Q )) <Q (𝐹‘𝑗)) |
58 | 49, 56, 57 | syl2anc 409 |
. . . . . . . 8
⊢
((((((𝜑 ∧ 𝑠 ∈ (1st
‘𝐿)) ∧ (𝑗 ∈ N ∧
(𝑠
+Q (*Q‘[〈𝑗, 1o〉]
~Q )) <Q (𝐹‘𝑗))) ∧ (𝑡 ∈ Q ∧ ((𝑠 +Q
(*Q‘[〈𝑗, 1o〉]
~Q )) <Q 𝑡 ∧ 𝑡 <Q (𝐹‘𝑗)))) ∧ 𝑟 ∈ Q) ∧
((*Q‘[〈𝑗, 1o〉]
~Q ) +Q 𝑟) = 𝑡) → ∃𝑗 ∈ N (𝑟 +Q
(*Q‘[〈𝑗, 1o〉]
~Q )) <Q (𝐹‘𝑗)) |
59 | | oveq1 5860 |
. . . . . . . . . . 11
⊢ (𝑙 = 𝑟 → (𝑙 +Q
(*Q‘[〈𝑗, 1o〉]
~Q )) = (𝑟 +Q
(*Q‘[〈𝑗, 1o〉]
~Q ))) |
60 | 59 | breq1d 3999 |
. . . . . . . . . 10
⊢ (𝑙 = 𝑟 → ((𝑙 +Q
(*Q‘[〈𝑗, 1o〉]
~Q )) <Q (𝐹‘𝑗) ↔ (𝑟 +Q
(*Q‘[〈𝑗, 1o〉]
~Q )) <Q (𝐹‘𝑗))) |
61 | 60 | rexbidv 2471 |
. . . . . . . . 9
⊢ (𝑙 = 𝑟 → (∃𝑗 ∈ N (𝑙 +Q
(*Q‘[〈𝑗, 1o〉]
~Q )) <Q (𝐹‘𝑗) ↔ ∃𝑗 ∈ N (𝑟 +Q
(*Q‘[〈𝑗, 1o〉]
~Q )) <Q (𝐹‘𝑗))) |
62 | 61, 10 | elrab2 2889 |
. . . . . . . 8
⊢ (𝑟 ∈ (1st
‘𝐿) ↔ (𝑟 ∈ Q ∧
∃𝑗 ∈
N (𝑟
+Q (*Q‘[〈𝑗, 1o〉]
~Q )) <Q (𝐹‘𝑗))) |
63 | 45, 58, 62 | sylanbrc 415 |
. . . . . . 7
⊢
((((((𝜑 ∧ 𝑠 ∈ (1st
‘𝐿)) ∧ (𝑗 ∈ N ∧
(𝑠
+Q (*Q‘[〈𝑗, 1o〉]
~Q )) <Q (𝐹‘𝑗))) ∧ (𝑡 ∈ Q ∧ ((𝑠 +Q
(*Q‘[〈𝑗, 1o〉]
~Q )) <Q 𝑡 ∧ 𝑡 <Q (𝐹‘𝑗)))) ∧ 𝑟 ∈ Q) ∧
((*Q‘[〈𝑗, 1o〉]
~Q ) +Q 𝑟) = 𝑡) → 𝑟 ∈ (1st ‘𝐿)) |
64 | 48, 63 | jca 304 |
. . . . . 6
⊢
((((((𝜑 ∧ 𝑠 ∈ (1st
‘𝐿)) ∧ (𝑗 ∈ N ∧
(𝑠
+Q (*Q‘[〈𝑗, 1o〉]
~Q )) <Q (𝐹‘𝑗))) ∧ (𝑡 ∈ Q ∧ ((𝑠 +Q
(*Q‘[〈𝑗, 1o〉]
~Q )) <Q 𝑡 ∧ 𝑡 <Q (𝐹‘𝑗)))) ∧ 𝑟 ∈ Q) ∧
((*Q‘[〈𝑗, 1o〉]
~Q ) +Q 𝑟) = 𝑡) → (𝑠 <Q 𝑟 ∧ 𝑟 ∈ (1st ‘𝐿))) |
65 | 64 | ex 114 |
. . . . 5
⊢
(((((𝜑 ∧ 𝑠 ∈ (1st
‘𝐿)) ∧ (𝑗 ∈ N ∧
(𝑠
+Q (*Q‘[〈𝑗, 1o〉]
~Q )) <Q (𝐹‘𝑗))) ∧ (𝑡 ∈ Q ∧ ((𝑠 +Q
(*Q‘[〈𝑗, 1o〉]
~Q )) <Q 𝑡 ∧ 𝑡 <Q (𝐹‘𝑗)))) ∧ 𝑟 ∈ Q) →
(((*Q‘[〈𝑗, 1o〉]
~Q ) +Q 𝑟) = 𝑡 → (𝑠 <Q 𝑟 ∧ 𝑟 ∈ (1st ‘𝐿)))) |
66 | 65 | reximdva 2572 |
. . . 4
⊢ ((((𝜑 ∧ 𝑠 ∈ (1st ‘𝐿)) ∧ (𝑗 ∈ N ∧ (𝑠 +Q
(*Q‘[〈𝑗, 1o〉]
~Q )) <Q (𝐹‘𝑗))) ∧ (𝑡 ∈ Q ∧ ((𝑠 +Q
(*Q‘[〈𝑗, 1o〉]
~Q )) <Q 𝑡 ∧ 𝑡 <Q (𝐹‘𝑗)))) → (∃𝑟 ∈ Q
((*Q‘[〈𝑗, 1o〉]
~Q ) +Q 𝑟) = 𝑡 → ∃𝑟 ∈ Q (𝑠 <Q 𝑟 ∧ 𝑟 ∈ (1st ‘𝐿)))) |
67 | 36, 66 | mpd 13 |
. . 3
⊢ ((((𝜑 ∧ 𝑠 ∈ (1st ‘𝐿)) ∧ (𝑗 ∈ N ∧ (𝑠 +Q
(*Q‘[〈𝑗, 1o〉]
~Q )) <Q (𝐹‘𝑗))) ∧ (𝑡 ∈ Q ∧ ((𝑠 +Q
(*Q‘[〈𝑗, 1o〉]
~Q )) <Q 𝑡 ∧ 𝑡 <Q (𝐹‘𝑗)))) → ∃𝑟 ∈ Q (𝑠 <Q 𝑟 ∧ 𝑟 ∈ (1st ‘𝐿))) |
68 | 16, 67 | rexlimddv 2592 |
. 2
⊢ (((𝜑 ∧ 𝑠 ∈ (1st ‘𝐿)) ∧ (𝑗 ∈ N ∧ (𝑠 +Q
(*Q‘[〈𝑗, 1o〉]
~Q )) <Q (𝐹‘𝑗))) → ∃𝑟 ∈ Q (𝑠 <Q 𝑟 ∧ 𝑟 ∈ (1st ‘𝐿))) |
69 | 13, 68 | rexlimddv 2592 |
1
⊢ ((𝜑 ∧ 𝑠 ∈ (1st ‘𝐿)) → ∃𝑟 ∈ Q (𝑠 <Q
𝑟 ∧ 𝑟 ∈ (1st ‘𝐿))) |