| Step | Hyp | Ref
 | Expression | 
| 1 |   | oveq1 5929 | 
. . . . . . 7
⊢ (𝑙 = 𝑠 → (𝑙 +Q
(*Q‘[〈𝑗, 1o〉]
~Q )) = (𝑠 +Q
(*Q‘[〈𝑗, 1o〉]
~Q ))) | 
| 2 | 1 | breq1d 4043 | 
. . . . . 6
⊢ (𝑙 = 𝑠 → ((𝑙 +Q
(*Q‘[〈𝑗, 1o〉]
~Q )) <Q (𝐹‘𝑗) ↔ (𝑠 +Q
(*Q‘[〈𝑗, 1o〉]
~Q )) <Q (𝐹‘𝑗))) | 
| 3 | 2 | rexbidv 2498 | 
. . . . 5
⊢ (𝑙 = 𝑠 → (∃𝑗 ∈ N (𝑙 +Q
(*Q‘[〈𝑗, 1o〉]
~Q )) <Q (𝐹‘𝑗) ↔ ∃𝑗 ∈ N (𝑠 +Q
(*Q‘[〈𝑗, 1o〉]
~Q )) <Q (𝐹‘𝑗))) | 
| 4 |   | caucvgpr.lim | 
. . . . . . 7
⊢ 𝐿 = 〈{𝑙 ∈ Q ∣ ∃𝑗 ∈ N (𝑙 +Q
(*Q‘[〈𝑗, 1o〉]
~Q )) <Q (𝐹‘𝑗)}, {𝑢 ∈ Q ∣ ∃𝑗 ∈ N ((𝐹‘𝑗) +Q
(*Q‘[〈𝑗, 1o〉]
~Q )) <Q 𝑢}〉 | 
| 5 | 4 | fveq2i 5561 | 
. . . . . 6
⊢
(1st ‘𝐿) = (1st ‘〈{𝑙 ∈ Q ∣
∃𝑗 ∈
N (𝑙
+Q (*Q‘[〈𝑗, 1o〉]
~Q )) <Q (𝐹‘𝑗)}, {𝑢 ∈ Q ∣ ∃𝑗 ∈ N ((𝐹‘𝑗) +Q
(*Q‘[〈𝑗, 1o〉]
~Q )) <Q 𝑢}〉) | 
| 6 |   | nqex 7430 | 
. . . . . . . 8
⊢
Q ∈ V | 
| 7 | 6 | rabex 4177 | 
. . . . . . 7
⊢ {𝑙 ∈ Q ∣
∃𝑗 ∈
N (𝑙
+Q (*Q‘[〈𝑗, 1o〉]
~Q )) <Q (𝐹‘𝑗)} ∈ V | 
| 8 | 6 | rabex 4177 | 
. . . . . . 7
⊢ {𝑢 ∈ Q ∣
∃𝑗 ∈
N ((𝐹‘𝑗) +Q
(*Q‘[〈𝑗, 1o〉]
~Q )) <Q 𝑢} ∈ V | 
| 9 | 7, 8 | op1st 6204 | 
. . . . . 6
⊢
(1st ‘〈{𝑙 ∈ Q ∣ ∃𝑗 ∈ N (𝑙 +Q
(*Q‘[〈𝑗, 1o〉]
~Q )) <Q (𝐹‘𝑗)}, {𝑢 ∈ Q ∣ ∃𝑗 ∈ N ((𝐹‘𝑗) +Q
(*Q‘[〈𝑗, 1o〉]
~Q )) <Q 𝑢}〉) = {𝑙 ∈ Q ∣ ∃𝑗 ∈ N (𝑙 +Q
(*Q‘[〈𝑗, 1o〉]
~Q )) <Q (𝐹‘𝑗)} | 
| 10 | 5, 9 | eqtri 2217 | 
. . . . 5
⊢
(1st ‘𝐿) = {𝑙 ∈ Q ∣ ∃𝑗 ∈ N (𝑙 +Q
(*Q‘[〈𝑗, 1o〉]
~Q )) <Q (𝐹‘𝑗)} | 
| 11 | 3, 10 | elrab2 2923 | 
. . . 4
⊢ (𝑠 ∈ (1st
‘𝐿) ↔ (𝑠 ∈ Q ∧
∃𝑗 ∈
N (𝑠
+Q (*Q‘[〈𝑗, 1o〉]
~Q )) <Q (𝐹‘𝑗))) | 
| 12 | 11 | simprbi 275 | 
. . 3
⊢ (𝑠 ∈ (1st
‘𝐿) →
∃𝑗 ∈
N (𝑠
+Q (*Q‘[〈𝑗, 1o〉]
~Q )) <Q (𝐹‘𝑗)) | 
| 13 | 12 | adantl 277 | 
. 2
⊢ ((𝜑 ∧ 𝑠 ∈ (1st ‘𝐿)) → ∃𝑗 ∈ N (𝑠 +Q
(*Q‘[〈𝑗, 1o〉]
~Q )) <Q (𝐹‘𝑗)) | 
| 14 |   | simprr 531 | 
. . . 4
⊢ (((𝜑 ∧ 𝑠 ∈ (1st ‘𝐿)) ∧ (𝑗 ∈ N ∧ (𝑠 +Q
(*Q‘[〈𝑗, 1o〉]
~Q )) <Q (𝐹‘𝑗))) → (𝑠 +Q
(*Q‘[〈𝑗, 1o〉]
~Q )) <Q (𝐹‘𝑗)) | 
| 15 |   | ltbtwnnqq 7482 | 
. . . 4
⊢ ((𝑠 +Q
(*Q‘[〈𝑗, 1o〉]
~Q )) <Q (𝐹‘𝑗) ↔ ∃𝑡 ∈ Q ((𝑠 +Q
(*Q‘[〈𝑗, 1o〉]
~Q )) <Q 𝑡 ∧ 𝑡 <Q (𝐹‘𝑗))) | 
| 16 | 14, 15 | sylib 122 | 
. . 3
⊢ (((𝜑 ∧ 𝑠 ∈ (1st ‘𝐿)) ∧ (𝑗 ∈ N ∧ (𝑠 +Q
(*Q‘[〈𝑗, 1o〉]
~Q )) <Q (𝐹‘𝑗))) → ∃𝑡 ∈ Q ((𝑠 +Q
(*Q‘[〈𝑗, 1o〉]
~Q )) <Q 𝑡 ∧ 𝑡 <Q (𝐹‘𝑗))) | 
| 17 |   | simplrl 535 | 
. . . . . . . . 9
⊢ ((((𝜑 ∧ 𝑠 ∈ (1st ‘𝐿)) ∧ (𝑗 ∈ N ∧ (𝑠 +Q
(*Q‘[〈𝑗, 1o〉]
~Q )) <Q (𝐹‘𝑗))) ∧ (𝑡 ∈ Q ∧ ((𝑠 +Q
(*Q‘[〈𝑗, 1o〉]
~Q )) <Q 𝑡 ∧ 𝑡 <Q (𝐹‘𝑗)))) → 𝑗 ∈ N) | 
| 18 |   | nnnq 7489 | 
. . . . . . . . 9
⊢ (𝑗 ∈ N →
[〈𝑗,
1o〉] ~Q ∈
Q) | 
| 19 |   | recclnq 7459 | 
. . . . . . . . 9
⊢
([〈𝑗,
1o〉] ~Q ∈ Q →
(*Q‘[〈𝑗, 1o〉]
~Q ) ∈ Q) | 
| 20 | 17, 18, 19 | 3syl 17 | 
. . . . . . . 8
⊢ ((((𝜑 ∧ 𝑠 ∈ (1st ‘𝐿)) ∧ (𝑗 ∈ N ∧ (𝑠 +Q
(*Q‘[〈𝑗, 1o〉]
~Q )) <Q (𝐹‘𝑗))) ∧ (𝑡 ∈ Q ∧ ((𝑠 +Q
(*Q‘[〈𝑗, 1o〉]
~Q )) <Q 𝑡 ∧ 𝑡 <Q (𝐹‘𝑗)))) →
(*Q‘[〈𝑗, 1o〉]
~Q ) ∈ Q) | 
| 21 | 11 | simplbi 274 | 
. . . . . . . . 9
⊢ (𝑠 ∈ (1st
‘𝐿) → 𝑠 ∈
Q) | 
| 22 | 21 | ad3antlr 493 | 
. . . . . . . 8
⊢ ((((𝜑 ∧ 𝑠 ∈ (1st ‘𝐿)) ∧ (𝑗 ∈ N ∧ (𝑠 +Q
(*Q‘[〈𝑗, 1o〉]
~Q )) <Q (𝐹‘𝑗))) ∧ (𝑡 ∈ Q ∧ ((𝑠 +Q
(*Q‘[〈𝑗, 1o〉]
~Q )) <Q 𝑡 ∧ 𝑡 <Q (𝐹‘𝑗)))) → 𝑠 ∈ Q) | 
| 23 |   | ltaddnq 7474 | 
. . . . . . . 8
⊢
(((*Q‘[〈𝑗, 1o〉]
~Q ) ∈ Q ∧ 𝑠 ∈ Q) →
(*Q‘[〈𝑗, 1o〉]
~Q ) <Q
((*Q‘[〈𝑗, 1o〉]
~Q ) +Q 𝑠)) | 
| 24 | 20, 22, 23 | syl2anc 411 | 
. . . . . . 7
⊢ ((((𝜑 ∧ 𝑠 ∈ (1st ‘𝐿)) ∧ (𝑗 ∈ N ∧ (𝑠 +Q
(*Q‘[〈𝑗, 1o〉]
~Q )) <Q (𝐹‘𝑗))) ∧ (𝑡 ∈ Q ∧ ((𝑠 +Q
(*Q‘[〈𝑗, 1o〉]
~Q )) <Q 𝑡 ∧ 𝑡 <Q (𝐹‘𝑗)))) →
(*Q‘[〈𝑗, 1o〉]
~Q ) <Q
((*Q‘[〈𝑗, 1o〉]
~Q ) +Q 𝑠)) | 
| 25 |   | addcomnqg 7448 | 
. . . . . . . 8
⊢
(((*Q‘[〈𝑗, 1o〉]
~Q ) ∈ Q ∧ 𝑠 ∈ Q) →
((*Q‘[〈𝑗, 1o〉]
~Q ) +Q 𝑠) = (𝑠 +Q
(*Q‘[〈𝑗, 1o〉]
~Q ))) | 
| 26 | 20, 22, 25 | syl2anc 411 | 
. . . . . . 7
⊢ ((((𝜑 ∧ 𝑠 ∈ (1st ‘𝐿)) ∧ (𝑗 ∈ N ∧ (𝑠 +Q
(*Q‘[〈𝑗, 1o〉]
~Q )) <Q (𝐹‘𝑗))) ∧ (𝑡 ∈ Q ∧ ((𝑠 +Q
(*Q‘[〈𝑗, 1o〉]
~Q )) <Q 𝑡 ∧ 𝑡 <Q (𝐹‘𝑗)))) →
((*Q‘[〈𝑗, 1o〉]
~Q ) +Q 𝑠) = (𝑠 +Q
(*Q‘[〈𝑗, 1o〉]
~Q ))) | 
| 27 | 24, 26 | breqtrd 4059 | 
. . . . . 6
⊢ ((((𝜑 ∧ 𝑠 ∈ (1st ‘𝐿)) ∧ (𝑗 ∈ N ∧ (𝑠 +Q
(*Q‘[〈𝑗, 1o〉]
~Q )) <Q (𝐹‘𝑗))) ∧ (𝑡 ∈ Q ∧ ((𝑠 +Q
(*Q‘[〈𝑗, 1o〉]
~Q )) <Q 𝑡 ∧ 𝑡 <Q (𝐹‘𝑗)))) →
(*Q‘[〈𝑗, 1o〉]
~Q ) <Q (𝑠 +Q
(*Q‘[〈𝑗, 1o〉]
~Q ))) | 
| 28 |   | simprrl 539 | 
. . . . . 6
⊢ ((((𝜑 ∧ 𝑠 ∈ (1st ‘𝐿)) ∧ (𝑗 ∈ N ∧ (𝑠 +Q
(*Q‘[〈𝑗, 1o〉]
~Q )) <Q (𝐹‘𝑗))) ∧ (𝑡 ∈ Q ∧ ((𝑠 +Q
(*Q‘[〈𝑗, 1o〉]
~Q )) <Q 𝑡 ∧ 𝑡 <Q (𝐹‘𝑗)))) → (𝑠 +Q
(*Q‘[〈𝑗, 1o〉]
~Q )) <Q 𝑡) | 
| 29 |   | ltsonq 7465 | 
. . . . . . 7
⊢ 
<Q Or Q | 
| 30 |   | ltrelnq 7432 | 
. . . . . . 7
⊢ 
<Q ⊆ (Q ×
Q) | 
| 31 | 29, 30 | sotri 5065 | 
. . . . . 6
⊢
(((*Q‘[〈𝑗, 1o〉]
~Q ) <Q (𝑠 +Q
(*Q‘[〈𝑗, 1o〉]
~Q )) ∧ (𝑠 +Q
(*Q‘[〈𝑗, 1o〉]
~Q )) <Q 𝑡) →
(*Q‘[〈𝑗, 1o〉]
~Q ) <Q 𝑡) | 
| 32 | 27, 28, 31 | syl2anc 411 | 
. . . . 5
⊢ ((((𝜑 ∧ 𝑠 ∈ (1st ‘𝐿)) ∧ (𝑗 ∈ N ∧ (𝑠 +Q
(*Q‘[〈𝑗, 1o〉]
~Q )) <Q (𝐹‘𝑗))) ∧ (𝑡 ∈ Q ∧ ((𝑠 +Q
(*Q‘[〈𝑗, 1o〉]
~Q )) <Q 𝑡 ∧ 𝑡 <Q (𝐹‘𝑗)))) →
(*Q‘[〈𝑗, 1o〉]
~Q ) <Q 𝑡) | 
| 33 |   | simprl 529 | 
. . . . . 6
⊢ ((((𝜑 ∧ 𝑠 ∈ (1st ‘𝐿)) ∧ (𝑗 ∈ N ∧ (𝑠 +Q
(*Q‘[〈𝑗, 1o〉]
~Q )) <Q (𝐹‘𝑗))) ∧ (𝑡 ∈ Q ∧ ((𝑠 +Q
(*Q‘[〈𝑗, 1o〉]
~Q )) <Q 𝑡 ∧ 𝑡 <Q (𝐹‘𝑗)))) → 𝑡 ∈ Q) | 
| 34 |   | ltexnqq 7475 | 
. . . . . 6
⊢
(((*Q‘[〈𝑗, 1o〉]
~Q ) ∈ Q ∧ 𝑡 ∈ Q) →
((*Q‘[〈𝑗, 1o〉]
~Q ) <Q 𝑡 ↔ ∃𝑟 ∈ Q
((*Q‘[〈𝑗, 1o〉]
~Q ) +Q 𝑟) = 𝑡)) | 
| 35 | 20, 33, 34 | syl2anc 411 | 
. . . . 5
⊢ ((((𝜑 ∧ 𝑠 ∈ (1st ‘𝐿)) ∧ (𝑗 ∈ N ∧ (𝑠 +Q
(*Q‘[〈𝑗, 1o〉]
~Q )) <Q (𝐹‘𝑗))) ∧ (𝑡 ∈ Q ∧ ((𝑠 +Q
(*Q‘[〈𝑗, 1o〉]
~Q )) <Q 𝑡 ∧ 𝑡 <Q (𝐹‘𝑗)))) →
((*Q‘[〈𝑗, 1o〉]
~Q ) <Q 𝑡 ↔ ∃𝑟 ∈ Q
((*Q‘[〈𝑗, 1o〉]
~Q ) +Q 𝑟) = 𝑡)) | 
| 36 | 32, 35 | mpbid 147 | 
. . . 4
⊢ ((((𝜑 ∧ 𝑠 ∈ (1st ‘𝐿)) ∧ (𝑗 ∈ N ∧ (𝑠 +Q
(*Q‘[〈𝑗, 1o〉]
~Q )) <Q (𝐹‘𝑗))) ∧ (𝑡 ∈ Q ∧ ((𝑠 +Q
(*Q‘[〈𝑗, 1o〉]
~Q )) <Q 𝑡 ∧ 𝑡 <Q (𝐹‘𝑗)))) → ∃𝑟 ∈ Q
((*Q‘[〈𝑗, 1o〉]
~Q ) +Q 𝑟) = 𝑡) | 
| 37 | 22 | ad2antrr 488 | 
. . . . . . . . . . 11
⊢
((((((𝜑 ∧ 𝑠 ∈ (1st
‘𝐿)) ∧ (𝑗 ∈ N ∧
(𝑠
+Q (*Q‘[〈𝑗, 1o〉]
~Q )) <Q (𝐹‘𝑗))) ∧ (𝑡 ∈ Q ∧ ((𝑠 +Q
(*Q‘[〈𝑗, 1o〉]
~Q )) <Q 𝑡 ∧ 𝑡 <Q (𝐹‘𝑗)))) ∧ 𝑟 ∈ Q) ∧
((*Q‘[〈𝑗, 1o〉]
~Q ) +Q 𝑟) = 𝑡) → 𝑠 ∈ Q) | 
| 38 | 20 | ad2antrr 488 | 
. . . . . . . . . . 11
⊢
((((((𝜑 ∧ 𝑠 ∈ (1st
‘𝐿)) ∧ (𝑗 ∈ N ∧
(𝑠
+Q (*Q‘[〈𝑗, 1o〉]
~Q )) <Q (𝐹‘𝑗))) ∧ (𝑡 ∈ Q ∧ ((𝑠 +Q
(*Q‘[〈𝑗, 1o〉]
~Q )) <Q 𝑡 ∧ 𝑡 <Q (𝐹‘𝑗)))) ∧ 𝑟 ∈ Q) ∧
((*Q‘[〈𝑗, 1o〉]
~Q ) +Q 𝑟) = 𝑡) →
(*Q‘[〈𝑗, 1o〉]
~Q ) ∈ Q) | 
| 39 |   | addcomnqg 7448 | 
. . . . . . . . . . 11
⊢ ((𝑠 ∈ Q ∧
(*Q‘[〈𝑗, 1o〉]
~Q ) ∈ Q) → (𝑠 +Q
(*Q‘[〈𝑗, 1o〉]
~Q )) =
((*Q‘[〈𝑗, 1o〉]
~Q ) +Q 𝑠)) | 
| 40 | 37, 38, 39 | syl2anc 411 | 
. . . . . . . . . 10
⊢
((((((𝜑 ∧ 𝑠 ∈ (1st
‘𝐿)) ∧ (𝑗 ∈ N ∧
(𝑠
+Q (*Q‘[〈𝑗, 1o〉]
~Q )) <Q (𝐹‘𝑗))) ∧ (𝑡 ∈ Q ∧ ((𝑠 +Q
(*Q‘[〈𝑗, 1o〉]
~Q )) <Q 𝑡 ∧ 𝑡 <Q (𝐹‘𝑗)))) ∧ 𝑟 ∈ Q) ∧
((*Q‘[〈𝑗, 1o〉]
~Q ) +Q 𝑟) = 𝑡) → (𝑠 +Q
(*Q‘[〈𝑗, 1o〉]
~Q )) =
((*Q‘[〈𝑗, 1o〉]
~Q ) +Q 𝑠)) | 
| 41 | 28 | ad2antrr 488 | 
. . . . . . . . . 10
⊢
((((((𝜑 ∧ 𝑠 ∈ (1st
‘𝐿)) ∧ (𝑗 ∈ N ∧
(𝑠
+Q (*Q‘[〈𝑗, 1o〉]
~Q )) <Q (𝐹‘𝑗))) ∧ (𝑡 ∈ Q ∧ ((𝑠 +Q
(*Q‘[〈𝑗, 1o〉]
~Q )) <Q 𝑡 ∧ 𝑡 <Q (𝐹‘𝑗)))) ∧ 𝑟 ∈ Q) ∧
((*Q‘[〈𝑗, 1o〉]
~Q ) +Q 𝑟) = 𝑡) → (𝑠 +Q
(*Q‘[〈𝑗, 1o〉]
~Q )) <Q 𝑡) | 
| 42 | 40, 41 | eqbrtrrd 4057 | 
. . . . . . . . 9
⊢
((((((𝜑 ∧ 𝑠 ∈ (1st
‘𝐿)) ∧ (𝑗 ∈ N ∧
(𝑠
+Q (*Q‘[〈𝑗, 1o〉]
~Q )) <Q (𝐹‘𝑗))) ∧ (𝑡 ∈ Q ∧ ((𝑠 +Q
(*Q‘[〈𝑗, 1o〉]
~Q )) <Q 𝑡 ∧ 𝑡 <Q (𝐹‘𝑗)))) ∧ 𝑟 ∈ Q) ∧
((*Q‘[〈𝑗, 1o〉]
~Q ) +Q 𝑟) = 𝑡) →
((*Q‘[〈𝑗, 1o〉]
~Q ) +Q 𝑠) <Q 𝑡) | 
| 43 |   | simpr 110 | 
. . . . . . . . 9
⊢
((((((𝜑 ∧ 𝑠 ∈ (1st
‘𝐿)) ∧ (𝑗 ∈ N ∧
(𝑠
+Q (*Q‘[〈𝑗, 1o〉]
~Q )) <Q (𝐹‘𝑗))) ∧ (𝑡 ∈ Q ∧ ((𝑠 +Q
(*Q‘[〈𝑗, 1o〉]
~Q )) <Q 𝑡 ∧ 𝑡 <Q (𝐹‘𝑗)))) ∧ 𝑟 ∈ Q) ∧
((*Q‘[〈𝑗, 1o〉]
~Q ) +Q 𝑟) = 𝑡) →
((*Q‘[〈𝑗, 1o〉]
~Q ) +Q 𝑟) = 𝑡) | 
| 44 | 42, 43 | breqtrrd 4061 | 
. . . . . . . 8
⊢
((((((𝜑 ∧ 𝑠 ∈ (1st
‘𝐿)) ∧ (𝑗 ∈ N ∧
(𝑠
+Q (*Q‘[〈𝑗, 1o〉]
~Q )) <Q (𝐹‘𝑗))) ∧ (𝑡 ∈ Q ∧ ((𝑠 +Q
(*Q‘[〈𝑗, 1o〉]
~Q )) <Q 𝑡 ∧ 𝑡 <Q (𝐹‘𝑗)))) ∧ 𝑟 ∈ Q) ∧
((*Q‘[〈𝑗, 1o〉]
~Q ) +Q 𝑟) = 𝑡) →
((*Q‘[〈𝑗, 1o〉]
~Q ) +Q 𝑠) <Q
((*Q‘[〈𝑗, 1o〉]
~Q ) +Q 𝑟)) | 
| 45 |   | simplr 528 | 
. . . . . . . . 9
⊢
((((((𝜑 ∧ 𝑠 ∈ (1st
‘𝐿)) ∧ (𝑗 ∈ N ∧
(𝑠
+Q (*Q‘[〈𝑗, 1o〉]
~Q )) <Q (𝐹‘𝑗))) ∧ (𝑡 ∈ Q ∧ ((𝑠 +Q
(*Q‘[〈𝑗, 1o〉]
~Q )) <Q 𝑡 ∧ 𝑡 <Q (𝐹‘𝑗)))) ∧ 𝑟 ∈ Q) ∧
((*Q‘[〈𝑗, 1o〉]
~Q ) +Q 𝑟) = 𝑡) → 𝑟 ∈ Q) | 
| 46 |   | ltanqg 7467 | 
. . . . . . . . 9
⊢ ((𝑠 ∈ Q ∧
𝑟 ∈ Q
∧ (*Q‘[〈𝑗, 1o〉]
~Q ) ∈ Q) → (𝑠 <Q
𝑟 ↔
((*Q‘[〈𝑗, 1o〉]
~Q ) +Q 𝑠) <Q
((*Q‘[〈𝑗, 1o〉]
~Q ) +Q 𝑟))) | 
| 47 | 37, 45, 38, 46 | syl3anc 1249 | 
. . . . . . . 8
⊢
((((((𝜑 ∧ 𝑠 ∈ (1st
‘𝐿)) ∧ (𝑗 ∈ N ∧
(𝑠
+Q (*Q‘[〈𝑗, 1o〉]
~Q )) <Q (𝐹‘𝑗))) ∧ (𝑡 ∈ Q ∧ ((𝑠 +Q
(*Q‘[〈𝑗, 1o〉]
~Q )) <Q 𝑡 ∧ 𝑡 <Q (𝐹‘𝑗)))) ∧ 𝑟 ∈ Q) ∧
((*Q‘[〈𝑗, 1o〉]
~Q ) +Q 𝑟) = 𝑡) → (𝑠 <Q 𝑟 ↔
((*Q‘[〈𝑗, 1o〉]
~Q ) +Q 𝑠) <Q
((*Q‘[〈𝑗, 1o〉]
~Q ) +Q 𝑟))) | 
| 48 | 44, 47 | mpbird 167 | 
. . . . . . 7
⊢
((((((𝜑 ∧ 𝑠 ∈ (1st
‘𝐿)) ∧ (𝑗 ∈ N ∧
(𝑠
+Q (*Q‘[〈𝑗, 1o〉]
~Q )) <Q (𝐹‘𝑗))) ∧ (𝑡 ∈ Q ∧ ((𝑠 +Q
(*Q‘[〈𝑗, 1o〉]
~Q )) <Q 𝑡 ∧ 𝑡 <Q (𝐹‘𝑗)))) ∧ 𝑟 ∈ Q) ∧
((*Q‘[〈𝑗, 1o〉]
~Q ) +Q 𝑟) = 𝑡) → 𝑠 <Q 𝑟) | 
| 49 | 17 | ad2antrr 488 | 
. . . . . . . . 9
⊢
((((((𝜑 ∧ 𝑠 ∈ (1st
‘𝐿)) ∧ (𝑗 ∈ N ∧
(𝑠
+Q (*Q‘[〈𝑗, 1o〉]
~Q )) <Q (𝐹‘𝑗))) ∧ (𝑡 ∈ Q ∧ ((𝑠 +Q
(*Q‘[〈𝑗, 1o〉]
~Q )) <Q 𝑡 ∧ 𝑡 <Q (𝐹‘𝑗)))) ∧ 𝑟 ∈ Q) ∧
((*Q‘[〈𝑗, 1o〉]
~Q ) +Q 𝑟) = 𝑡) → 𝑗 ∈ N) | 
| 50 |   | simprrr 540 | 
. . . . . . . . . . 11
⊢ ((((𝜑 ∧ 𝑠 ∈ (1st ‘𝐿)) ∧ (𝑗 ∈ N ∧ (𝑠 +Q
(*Q‘[〈𝑗, 1o〉]
~Q )) <Q (𝐹‘𝑗))) ∧ (𝑡 ∈ Q ∧ ((𝑠 +Q
(*Q‘[〈𝑗, 1o〉]
~Q )) <Q 𝑡 ∧ 𝑡 <Q (𝐹‘𝑗)))) → 𝑡 <Q (𝐹‘𝑗)) | 
| 51 | 50 | ad2antrr 488 | 
. . . . . . . . . 10
⊢
((((((𝜑 ∧ 𝑠 ∈ (1st
‘𝐿)) ∧ (𝑗 ∈ N ∧
(𝑠
+Q (*Q‘[〈𝑗, 1o〉]
~Q )) <Q (𝐹‘𝑗))) ∧ (𝑡 ∈ Q ∧ ((𝑠 +Q
(*Q‘[〈𝑗, 1o〉]
~Q )) <Q 𝑡 ∧ 𝑡 <Q (𝐹‘𝑗)))) ∧ 𝑟 ∈ Q) ∧
((*Q‘[〈𝑗, 1o〉]
~Q ) +Q 𝑟) = 𝑡) → 𝑡 <Q (𝐹‘𝑗)) | 
| 52 |   | addcomnqg 7448 | 
. . . . . . . . . . . . 13
⊢
(((*Q‘[〈𝑗, 1o〉]
~Q ) ∈ Q ∧ 𝑟 ∈ Q) →
((*Q‘[〈𝑗, 1o〉]
~Q ) +Q 𝑟) = (𝑟 +Q
(*Q‘[〈𝑗, 1o〉]
~Q ))) | 
| 53 | 38, 45, 52 | syl2anc 411 | 
. . . . . . . . . . . 12
⊢
((((((𝜑 ∧ 𝑠 ∈ (1st
‘𝐿)) ∧ (𝑗 ∈ N ∧
(𝑠
+Q (*Q‘[〈𝑗, 1o〉]
~Q )) <Q (𝐹‘𝑗))) ∧ (𝑡 ∈ Q ∧ ((𝑠 +Q
(*Q‘[〈𝑗, 1o〉]
~Q )) <Q 𝑡 ∧ 𝑡 <Q (𝐹‘𝑗)))) ∧ 𝑟 ∈ Q) ∧
((*Q‘[〈𝑗, 1o〉]
~Q ) +Q 𝑟) = 𝑡) →
((*Q‘[〈𝑗, 1o〉]
~Q ) +Q 𝑟) = (𝑟 +Q
(*Q‘[〈𝑗, 1o〉]
~Q ))) | 
| 54 | 53, 43 | eqtr3d 2231 | 
. . . . . . . . . . 11
⊢
((((((𝜑 ∧ 𝑠 ∈ (1st
‘𝐿)) ∧ (𝑗 ∈ N ∧
(𝑠
+Q (*Q‘[〈𝑗, 1o〉]
~Q )) <Q (𝐹‘𝑗))) ∧ (𝑡 ∈ Q ∧ ((𝑠 +Q
(*Q‘[〈𝑗, 1o〉]
~Q )) <Q 𝑡 ∧ 𝑡 <Q (𝐹‘𝑗)))) ∧ 𝑟 ∈ Q) ∧
((*Q‘[〈𝑗, 1o〉]
~Q ) +Q 𝑟) = 𝑡) → (𝑟 +Q
(*Q‘[〈𝑗, 1o〉]
~Q )) = 𝑡) | 
| 55 | 54 | breq1d 4043 | 
. . . . . . . . . 10
⊢
((((((𝜑 ∧ 𝑠 ∈ (1st
‘𝐿)) ∧ (𝑗 ∈ N ∧
(𝑠
+Q (*Q‘[〈𝑗, 1o〉]
~Q )) <Q (𝐹‘𝑗))) ∧ (𝑡 ∈ Q ∧ ((𝑠 +Q
(*Q‘[〈𝑗, 1o〉]
~Q )) <Q 𝑡 ∧ 𝑡 <Q (𝐹‘𝑗)))) ∧ 𝑟 ∈ Q) ∧
((*Q‘[〈𝑗, 1o〉]
~Q ) +Q 𝑟) = 𝑡) → ((𝑟 +Q
(*Q‘[〈𝑗, 1o〉]
~Q )) <Q (𝐹‘𝑗) ↔ 𝑡 <Q (𝐹‘𝑗))) | 
| 56 | 51, 55 | mpbird 167 | 
. . . . . . . . 9
⊢
((((((𝜑 ∧ 𝑠 ∈ (1st
‘𝐿)) ∧ (𝑗 ∈ N ∧
(𝑠
+Q (*Q‘[〈𝑗, 1o〉]
~Q )) <Q (𝐹‘𝑗))) ∧ (𝑡 ∈ Q ∧ ((𝑠 +Q
(*Q‘[〈𝑗, 1o〉]
~Q )) <Q 𝑡 ∧ 𝑡 <Q (𝐹‘𝑗)))) ∧ 𝑟 ∈ Q) ∧
((*Q‘[〈𝑗, 1o〉]
~Q ) +Q 𝑟) = 𝑡) → (𝑟 +Q
(*Q‘[〈𝑗, 1o〉]
~Q )) <Q (𝐹‘𝑗)) | 
| 57 |   | rspe 2546 | 
. . . . . . . . 9
⊢ ((𝑗 ∈ N ∧
(𝑟
+Q (*Q‘[〈𝑗, 1o〉]
~Q )) <Q (𝐹‘𝑗)) → ∃𝑗 ∈ N (𝑟 +Q
(*Q‘[〈𝑗, 1o〉]
~Q )) <Q (𝐹‘𝑗)) | 
| 58 | 49, 56, 57 | syl2anc 411 | 
. . . . . . . 8
⊢
((((((𝜑 ∧ 𝑠 ∈ (1st
‘𝐿)) ∧ (𝑗 ∈ N ∧
(𝑠
+Q (*Q‘[〈𝑗, 1o〉]
~Q )) <Q (𝐹‘𝑗))) ∧ (𝑡 ∈ Q ∧ ((𝑠 +Q
(*Q‘[〈𝑗, 1o〉]
~Q )) <Q 𝑡 ∧ 𝑡 <Q (𝐹‘𝑗)))) ∧ 𝑟 ∈ Q) ∧
((*Q‘[〈𝑗, 1o〉]
~Q ) +Q 𝑟) = 𝑡) → ∃𝑗 ∈ N (𝑟 +Q
(*Q‘[〈𝑗, 1o〉]
~Q )) <Q (𝐹‘𝑗)) | 
| 59 |   | oveq1 5929 | 
. . . . . . . . . . 11
⊢ (𝑙 = 𝑟 → (𝑙 +Q
(*Q‘[〈𝑗, 1o〉]
~Q )) = (𝑟 +Q
(*Q‘[〈𝑗, 1o〉]
~Q ))) | 
| 60 | 59 | breq1d 4043 | 
. . . . . . . . . 10
⊢ (𝑙 = 𝑟 → ((𝑙 +Q
(*Q‘[〈𝑗, 1o〉]
~Q )) <Q (𝐹‘𝑗) ↔ (𝑟 +Q
(*Q‘[〈𝑗, 1o〉]
~Q )) <Q (𝐹‘𝑗))) | 
| 61 | 60 | rexbidv 2498 | 
. . . . . . . . 9
⊢ (𝑙 = 𝑟 → (∃𝑗 ∈ N (𝑙 +Q
(*Q‘[〈𝑗, 1o〉]
~Q )) <Q (𝐹‘𝑗) ↔ ∃𝑗 ∈ N (𝑟 +Q
(*Q‘[〈𝑗, 1o〉]
~Q )) <Q (𝐹‘𝑗))) | 
| 62 | 61, 10 | elrab2 2923 | 
. . . . . . . 8
⊢ (𝑟 ∈ (1st
‘𝐿) ↔ (𝑟 ∈ Q ∧
∃𝑗 ∈
N (𝑟
+Q (*Q‘[〈𝑗, 1o〉]
~Q )) <Q (𝐹‘𝑗))) | 
| 63 | 45, 58, 62 | sylanbrc 417 | 
. . . . . . 7
⊢
((((((𝜑 ∧ 𝑠 ∈ (1st
‘𝐿)) ∧ (𝑗 ∈ N ∧
(𝑠
+Q (*Q‘[〈𝑗, 1o〉]
~Q )) <Q (𝐹‘𝑗))) ∧ (𝑡 ∈ Q ∧ ((𝑠 +Q
(*Q‘[〈𝑗, 1o〉]
~Q )) <Q 𝑡 ∧ 𝑡 <Q (𝐹‘𝑗)))) ∧ 𝑟 ∈ Q) ∧
((*Q‘[〈𝑗, 1o〉]
~Q ) +Q 𝑟) = 𝑡) → 𝑟 ∈ (1st ‘𝐿)) | 
| 64 | 48, 63 | jca 306 | 
. . . . . 6
⊢
((((((𝜑 ∧ 𝑠 ∈ (1st
‘𝐿)) ∧ (𝑗 ∈ N ∧
(𝑠
+Q (*Q‘[〈𝑗, 1o〉]
~Q )) <Q (𝐹‘𝑗))) ∧ (𝑡 ∈ Q ∧ ((𝑠 +Q
(*Q‘[〈𝑗, 1o〉]
~Q )) <Q 𝑡 ∧ 𝑡 <Q (𝐹‘𝑗)))) ∧ 𝑟 ∈ Q) ∧
((*Q‘[〈𝑗, 1o〉]
~Q ) +Q 𝑟) = 𝑡) → (𝑠 <Q 𝑟 ∧ 𝑟 ∈ (1st ‘𝐿))) | 
| 65 | 64 | ex 115 | 
. . . . 5
⊢
(((((𝜑 ∧ 𝑠 ∈ (1st
‘𝐿)) ∧ (𝑗 ∈ N ∧
(𝑠
+Q (*Q‘[〈𝑗, 1o〉]
~Q )) <Q (𝐹‘𝑗))) ∧ (𝑡 ∈ Q ∧ ((𝑠 +Q
(*Q‘[〈𝑗, 1o〉]
~Q )) <Q 𝑡 ∧ 𝑡 <Q (𝐹‘𝑗)))) ∧ 𝑟 ∈ Q) →
(((*Q‘[〈𝑗, 1o〉]
~Q ) +Q 𝑟) = 𝑡 → (𝑠 <Q 𝑟 ∧ 𝑟 ∈ (1st ‘𝐿)))) | 
| 66 | 65 | reximdva 2599 | 
. . . 4
⊢ ((((𝜑 ∧ 𝑠 ∈ (1st ‘𝐿)) ∧ (𝑗 ∈ N ∧ (𝑠 +Q
(*Q‘[〈𝑗, 1o〉]
~Q )) <Q (𝐹‘𝑗))) ∧ (𝑡 ∈ Q ∧ ((𝑠 +Q
(*Q‘[〈𝑗, 1o〉]
~Q )) <Q 𝑡 ∧ 𝑡 <Q (𝐹‘𝑗)))) → (∃𝑟 ∈ Q
((*Q‘[〈𝑗, 1o〉]
~Q ) +Q 𝑟) = 𝑡 → ∃𝑟 ∈ Q (𝑠 <Q 𝑟 ∧ 𝑟 ∈ (1st ‘𝐿)))) | 
| 67 | 36, 66 | mpd 13 | 
. . 3
⊢ ((((𝜑 ∧ 𝑠 ∈ (1st ‘𝐿)) ∧ (𝑗 ∈ N ∧ (𝑠 +Q
(*Q‘[〈𝑗, 1o〉]
~Q )) <Q (𝐹‘𝑗))) ∧ (𝑡 ∈ Q ∧ ((𝑠 +Q
(*Q‘[〈𝑗, 1o〉]
~Q )) <Q 𝑡 ∧ 𝑡 <Q (𝐹‘𝑗)))) → ∃𝑟 ∈ Q (𝑠 <Q 𝑟 ∧ 𝑟 ∈ (1st ‘𝐿))) | 
| 68 | 16, 67 | rexlimddv 2619 | 
. 2
⊢ (((𝜑 ∧ 𝑠 ∈ (1st ‘𝐿)) ∧ (𝑗 ∈ N ∧ (𝑠 +Q
(*Q‘[〈𝑗, 1o〉]
~Q )) <Q (𝐹‘𝑗))) → ∃𝑟 ∈ Q (𝑠 <Q 𝑟 ∧ 𝑟 ∈ (1st ‘𝐿))) | 
| 69 | 13, 68 | rexlimddv 2619 | 
1
⊢ ((𝜑 ∧ 𝑠 ∈ (1st ‘𝐿)) → ∃𝑟 ∈ Q (𝑠 <Q
𝑟 ∧ 𝑟 ∈ (1st ‘𝐿))) |