ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  caucvgprlemopl GIF version

Theorem caucvgprlemopl 7470
Description: Lemma for caucvgpr 7483. The lower cut of the putative limit is open. (Contributed by Jim Kingdon, 20-Oct-2020.)
Hypotheses
Ref Expression
caucvgpr.f (𝜑𝐹:NQ)
caucvgpr.cau (𝜑 → ∀𝑛N𝑘N (𝑛 <N 𝑘 → ((𝐹𝑛) <Q ((𝐹𝑘) +Q (*Q‘[⟨𝑛, 1o⟩] ~Q )) ∧ (𝐹𝑘) <Q ((𝐹𝑛) +Q (*Q‘[⟨𝑛, 1o⟩] ~Q )))))
caucvgpr.bnd (𝜑 → ∀𝑗N 𝐴 <Q (𝐹𝑗))
caucvgpr.lim 𝐿 = ⟨{𝑙Q ∣ ∃𝑗N (𝑙 +Q (*Q‘[⟨𝑗, 1o⟩] ~Q )) <Q (𝐹𝑗)}, {𝑢Q ∣ ∃𝑗N ((𝐹𝑗) +Q (*Q‘[⟨𝑗, 1o⟩] ~Q )) <Q 𝑢}⟩
Assertion
Ref Expression
caucvgprlemopl ((𝜑𝑠 ∈ (1st𝐿)) → ∃𝑟Q (𝑠 <Q 𝑟𝑟 ∈ (1st𝐿)))
Distinct variable groups:   𝐴,𝑗   𝐹,𝑙,𝑟,𝑠   𝑢,𝐹   𝑗,𝐿,𝑟,𝑠   𝑗,𝑙,𝑠   𝜑,𝑗,𝑟,𝑠   𝑢,𝑗,𝑟,𝑠
Allowed substitution hints:   𝜑(𝑢,𝑘,𝑛,𝑙)   𝐴(𝑢,𝑘,𝑛,𝑠,𝑟,𝑙)   𝐹(𝑗,𝑘,𝑛)   𝐿(𝑢,𝑘,𝑛,𝑙)

Proof of Theorem caucvgprlemopl
Dummy variable 𝑡 is distinct from all other variables.
StepHypRef Expression
1 oveq1 5774 . . . . . . 7 (𝑙 = 𝑠 → (𝑙 +Q (*Q‘[⟨𝑗, 1o⟩] ~Q )) = (𝑠 +Q (*Q‘[⟨𝑗, 1o⟩] ~Q )))
21breq1d 3934 . . . . . 6 (𝑙 = 𝑠 → ((𝑙 +Q (*Q‘[⟨𝑗, 1o⟩] ~Q )) <Q (𝐹𝑗) ↔ (𝑠 +Q (*Q‘[⟨𝑗, 1o⟩] ~Q )) <Q (𝐹𝑗)))
32rexbidv 2436 . . . . 5 (𝑙 = 𝑠 → (∃𝑗N (𝑙 +Q (*Q‘[⟨𝑗, 1o⟩] ~Q )) <Q (𝐹𝑗) ↔ ∃𝑗N (𝑠 +Q (*Q‘[⟨𝑗, 1o⟩] ~Q )) <Q (𝐹𝑗)))
4 caucvgpr.lim . . . . . . 7 𝐿 = ⟨{𝑙Q ∣ ∃𝑗N (𝑙 +Q (*Q‘[⟨𝑗, 1o⟩] ~Q )) <Q (𝐹𝑗)}, {𝑢Q ∣ ∃𝑗N ((𝐹𝑗) +Q (*Q‘[⟨𝑗, 1o⟩] ~Q )) <Q 𝑢}⟩
54fveq2i 5417 . . . . . 6 (1st𝐿) = (1st ‘⟨{𝑙Q ∣ ∃𝑗N (𝑙 +Q (*Q‘[⟨𝑗, 1o⟩] ~Q )) <Q (𝐹𝑗)}, {𝑢Q ∣ ∃𝑗N ((𝐹𝑗) +Q (*Q‘[⟨𝑗, 1o⟩] ~Q )) <Q 𝑢}⟩)
6 nqex 7164 . . . . . . . 8 Q ∈ V
76rabex 4067 . . . . . . 7 {𝑙Q ∣ ∃𝑗N (𝑙 +Q (*Q‘[⟨𝑗, 1o⟩] ~Q )) <Q (𝐹𝑗)} ∈ V
86rabex 4067 . . . . . . 7 {𝑢Q ∣ ∃𝑗N ((𝐹𝑗) +Q (*Q‘[⟨𝑗, 1o⟩] ~Q )) <Q 𝑢} ∈ V
97, 8op1st 6037 . . . . . 6 (1st ‘⟨{𝑙Q ∣ ∃𝑗N (𝑙 +Q (*Q‘[⟨𝑗, 1o⟩] ~Q )) <Q (𝐹𝑗)}, {𝑢Q ∣ ∃𝑗N ((𝐹𝑗) +Q (*Q‘[⟨𝑗, 1o⟩] ~Q )) <Q 𝑢}⟩) = {𝑙Q ∣ ∃𝑗N (𝑙 +Q (*Q‘[⟨𝑗, 1o⟩] ~Q )) <Q (𝐹𝑗)}
105, 9eqtri 2158 . . . . 5 (1st𝐿) = {𝑙Q ∣ ∃𝑗N (𝑙 +Q (*Q‘[⟨𝑗, 1o⟩] ~Q )) <Q (𝐹𝑗)}
113, 10elrab2 2838 . . . 4 (𝑠 ∈ (1st𝐿) ↔ (𝑠Q ∧ ∃𝑗N (𝑠 +Q (*Q‘[⟨𝑗, 1o⟩] ~Q )) <Q (𝐹𝑗)))
1211simprbi 273 . . 3 (𝑠 ∈ (1st𝐿) → ∃𝑗N (𝑠 +Q (*Q‘[⟨𝑗, 1o⟩] ~Q )) <Q (𝐹𝑗))
1312adantl 275 . 2 ((𝜑𝑠 ∈ (1st𝐿)) → ∃𝑗N (𝑠 +Q (*Q‘[⟨𝑗, 1o⟩] ~Q )) <Q (𝐹𝑗))
14 simprr 521 . . . 4 (((𝜑𝑠 ∈ (1st𝐿)) ∧ (𝑗N ∧ (𝑠 +Q (*Q‘[⟨𝑗, 1o⟩] ~Q )) <Q (𝐹𝑗))) → (𝑠 +Q (*Q‘[⟨𝑗, 1o⟩] ~Q )) <Q (𝐹𝑗))
15 ltbtwnnqq 7216 . . . 4 ((𝑠 +Q (*Q‘[⟨𝑗, 1o⟩] ~Q )) <Q (𝐹𝑗) ↔ ∃𝑡Q ((𝑠 +Q (*Q‘[⟨𝑗, 1o⟩] ~Q )) <Q 𝑡𝑡 <Q (𝐹𝑗)))
1614, 15sylib 121 . . 3 (((𝜑𝑠 ∈ (1st𝐿)) ∧ (𝑗N ∧ (𝑠 +Q (*Q‘[⟨𝑗, 1o⟩] ~Q )) <Q (𝐹𝑗))) → ∃𝑡Q ((𝑠 +Q (*Q‘[⟨𝑗, 1o⟩] ~Q )) <Q 𝑡𝑡 <Q (𝐹𝑗)))
17 simplrl 524 . . . . . . . . 9 ((((𝜑𝑠 ∈ (1st𝐿)) ∧ (𝑗N ∧ (𝑠 +Q (*Q‘[⟨𝑗, 1o⟩] ~Q )) <Q (𝐹𝑗))) ∧ (𝑡Q ∧ ((𝑠 +Q (*Q‘[⟨𝑗, 1o⟩] ~Q )) <Q 𝑡𝑡 <Q (𝐹𝑗)))) → 𝑗N)
18 nnnq 7223 . . . . . . . . 9 (𝑗N → [⟨𝑗, 1o⟩] ~QQ)
19 recclnq 7193 . . . . . . . . 9 ([⟨𝑗, 1o⟩] ~QQ → (*Q‘[⟨𝑗, 1o⟩] ~Q ) ∈ Q)
2017, 18, 193syl 17 . . . . . . . 8 ((((𝜑𝑠 ∈ (1st𝐿)) ∧ (𝑗N ∧ (𝑠 +Q (*Q‘[⟨𝑗, 1o⟩] ~Q )) <Q (𝐹𝑗))) ∧ (𝑡Q ∧ ((𝑠 +Q (*Q‘[⟨𝑗, 1o⟩] ~Q )) <Q 𝑡𝑡 <Q (𝐹𝑗)))) → (*Q‘[⟨𝑗, 1o⟩] ~Q ) ∈ Q)
2111simplbi 272 . . . . . . . . 9 (𝑠 ∈ (1st𝐿) → 𝑠Q)
2221ad3antlr 484 . . . . . . . 8 ((((𝜑𝑠 ∈ (1st𝐿)) ∧ (𝑗N ∧ (𝑠 +Q (*Q‘[⟨𝑗, 1o⟩] ~Q )) <Q (𝐹𝑗))) ∧ (𝑡Q ∧ ((𝑠 +Q (*Q‘[⟨𝑗, 1o⟩] ~Q )) <Q 𝑡𝑡 <Q (𝐹𝑗)))) → 𝑠Q)
23 ltaddnq 7208 . . . . . . . 8 (((*Q‘[⟨𝑗, 1o⟩] ~Q ) ∈ Q𝑠Q) → (*Q‘[⟨𝑗, 1o⟩] ~Q ) <Q ((*Q‘[⟨𝑗, 1o⟩] ~Q ) +Q 𝑠))
2420, 22, 23syl2anc 408 . . . . . . 7 ((((𝜑𝑠 ∈ (1st𝐿)) ∧ (𝑗N ∧ (𝑠 +Q (*Q‘[⟨𝑗, 1o⟩] ~Q )) <Q (𝐹𝑗))) ∧ (𝑡Q ∧ ((𝑠 +Q (*Q‘[⟨𝑗, 1o⟩] ~Q )) <Q 𝑡𝑡 <Q (𝐹𝑗)))) → (*Q‘[⟨𝑗, 1o⟩] ~Q ) <Q ((*Q‘[⟨𝑗, 1o⟩] ~Q ) +Q 𝑠))
25 addcomnqg 7182 . . . . . . . 8 (((*Q‘[⟨𝑗, 1o⟩] ~Q ) ∈ Q𝑠Q) → ((*Q‘[⟨𝑗, 1o⟩] ~Q ) +Q 𝑠) = (𝑠 +Q (*Q‘[⟨𝑗, 1o⟩] ~Q )))
2620, 22, 25syl2anc 408 . . . . . . 7 ((((𝜑𝑠 ∈ (1st𝐿)) ∧ (𝑗N ∧ (𝑠 +Q (*Q‘[⟨𝑗, 1o⟩] ~Q )) <Q (𝐹𝑗))) ∧ (𝑡Q ∧ ((𝑠 +Q (*Q‘[⟨𝑗, 1o⟩] ~Q )) <Q 𝑡𝑡 <Q (𝐹𝑗)))) → ((*Q‘[⟨𝑗, 1o⟩] ~Q ) +Q 𝑠) = (𝑠 +Q (*Q‘[⟨𝑗, 1o⟩] ~Q )))
2724, 26breqtrd 3949 . . . . . 6 ((((𝜑𝑠 ∈ (1st𝐿)) ∧ (𝑗N ∧ (𝑠 +Q (*Q‘[⟨𝑗, 1o⟩] ~Q )) <Q (𝐹𝑗))) ∧ (𝑡Q ∧ ((𝑠 +Q (*Q‘[⟨𝑗, 1o⟩] ~Q )) <Q 𝑡𝑡 <Q (𝐹𝑗)))) → (*Q‘[⟨𝑗, 1o⟩] ~Q ) <Q (𝑠 +Q (*Q‘[⟨𝑗, 1o⟩] ~Q )))
28 simprrl 528 . . . . . 6 ((((𝜑𝑠 ∈ (1st𝐿)) ∧ (𝑗N ∧ (𝑠 +Q (*Q‘[⟨𝑗, 1o⟩] ~Q )) <Q (𝐹𝑗))) ∧ (𝑡Q ∧ ((𝑠 +Q (*Q‘[⟨𝑗, 1o⟩] ~Q )) <Q 𝑡𝑡 <Q (𝐹𝑗)))) → (𝑠 +Q (*Q‘[⟨𝑗, 1o⟩] ~Q )) <Q 𝑡)
29 ltsonq 7199 . . . . . . 7 <Q Or Q
30 ltrelnq 7166 . . . . . . 7 <Q ⊆ (Q × Q)
3129, 30sotri 4929 . . . . . 6 (((*Q‘[⟨𝑗, 1o⟩] ~Q ) <Q (𝑠 +Q (*Q‘[⟨𝑗, 1o⟩] ~Q )) ∧ (𝑠 +Q (*Q‘[⟨𝑗, 1o⟩] ~Q )) <Q 𝑡) → (*Q‘[⟨𝑗, 1o⟩] ~Q ) <Q 𝑡)
3227, 28, 31syl2anc 408 . . . . 5 ((((𝜑𝑠 ∈ (1st𝐿)) ∧ (𝑗N ∧ (𝑠 +Q (*Q‘[⟨𝑗, 1o⟩] ~Q )) <Q (𝐹𝑗))) ∧ (𝑡Q ∧ ((𝑠 +Q (*Q‘[⟨𝑗, 1o⟩] ~Q )) <Q 𝑡𝑡 <Q (𝐹𝑗)))) → (*Q‘[⟨𝑗, 1o⟩] ~Q ) <Q 𝑡)
33 simprl 520 . . . . . 6 ((((𝜑𝑠 ∈ (1st𝐿)) ∧ (𝑗N ∧ (𝑠 +Q (*Q‘[⟨𝑗, 1o⟩] ~Q )) <Q (𝐹𝑗))) ∧ (𝑡Q ∧ ((𝑠 +Q (*Q‘[⟨𝑗, 1o⟩] ~Q )) <Q 𝑡𝑡 <Q (𝐹𝑗)))) → 𝑡Q)
34 ltexnqq 7209 . . . . . 6 (((*Q‘[⟨𝑗, 1o⟩] ~Q ) ∈ Q𝑡Q) → ((*Q‘[⟨𝑗, 1o⟩] ~Q ) <Q 𝑡 ↔ ∃𝑟Q ((*Q‘[⟨𝑗, 1o⟩] ~Q ) +Q 𝑟) = 𝑡))
3520, 33, 34syl2anc 408 . . . . 5 ((((𝜑𝑠 ∈ (1st𝐿)) ∧ (𝑗N ∧ (𝑠 +Q (*Q‘[⟨𝑗, 1o⟩] ~Q )) <Q (𝐹𝑗))) ∧ (𝑡Q ∧ ((𝑠 +Q (*Q‘[⟨𝑗, 1o⟩] ~Q )) <Q 𝑡𝑡 <Q (𝐹𝑗)))) → ((*Q‘[⟨𝑗, 1o⟩] ~Q ) <Q 𝑡 ↔ ∃𝑟Q ((*Q‘[⟨𝑗, 1o⟩] ~Q ) +Q 𝑟) = 𝑡))
3632, 35mpbid 146 . . . 4 ((((𝜑𝑠 ∈ (1st𝐿)) ∧ (𝑗N ∧ (𝑠 +Q (*Q‘[⟨𝑗, 1o⟩] ~Q )) <Q (𝐹𝑗))) ∧ (𝑡Q ∧ ((𝑠 +Q (*Q‘[⟨𝑗, 1o⟩] ~Q )) <Q 𝑡𝑡 <Q (𝐹𝑗)))) → ∃𝑟Q ((*Q‘[⟨𝑗, 1o⟩] ~Q ) +Q 𝑟) = 𝑡)
3722ad2antrr 479 . . . . . . . . . . 11 ((((((𝜑𝑠 ∈ (1st𝐿)) ∧ (𝑗N ∧ (𝑠 +Q (*Q‘[⟨𝑗, 1o⟩] ~Q )) <Q (𝐹𝑗))) ∧ (𝑡Q ∧ ((𝑠 +Q (*Q‘[⟨𝑗, 1o⟩] ~Q )) <Q 𝑡𝑡 <Q (𝐹𝑗)))) ∧ 𝑟Q) ∧ ((*Q‘[⟨𝑗, 1o⟩] ~Q ) +Q 𝑟) = 𝑡) → 𝑠Q)
3820ad2antrr 479 . . . . . . . . . . 11 ((((((𝜑𝑠 ∈ (1st𝐿)) ∧ (𝑗N ∧ (𝑠 +Q (*Q‘[⟨𝑗, 1o⟩] ~Q )) <Q (𝐹𝑗))) ∧ (𝑡Q ∧ ((𝑠 +Q (*Q‘[⟨𝑗, 1o⟩] ~Q )) <Q 𝑡𝑡 <Q (𝐹𝑗)))) ∧ 𝑟Q) ∧ ((*Q‘[⟨𝑗, 1o⟩] ~Q ) +Q 𝑟) = 𝑡) → (*Q‘[⟨𝑗, 1o⟩] ~Q ) ∈ Q)
39 addcomnqg 7182 . . . . . . . . . . 11 ((𝑠Q ∧ (*Q‘[⟨𝑗, 1o⟩] ~Q ) ∈ Q) → (𝑠 +Q (*Q‘[⟨𝑗, 1o⟩] ~Q )) = ((*Q‘[⟨𝑗, 1o⟩] ~Q ) +Q 𝑠))
4037, 38, 39syl2anc 408 . . . . . . . . . 10 ((((((𝜑𝑠 ∈ (1st𝐿)) ∧ (𝑗N ∧ (𝑠 +Q (*Q‘[⟨𝑗, 1o⟩] ~Q )) <Q (𝐹𝑗))) ∧ (𝑡Q ∧ ((𝑠 +Q (*Q‘[⟨𝑗, 1o⟩] ~Q )) <Q 𝑡𝑡 <Q (𝐹𝑗)))) ∧ 𝑟Q) ∧ ((*Q‘[⟨𝑗, 1o⟩] ~Q ) +Q 𝑟) = 𝑡) → (𝑠 +Q (*Q‘[⟨𝑗, 1o⟩] ~Q )) = ((*Q‘[⟨𝑗, 1o⟩] ~Q ) +Q 𝑠))
4128ad2antrr 479 . . . . . . . . . 10 ((((((𝜑𝑠 ∈ (1st𝐿)) ∧ (𝑗N ∧ (𝑠 +Q (*Q‘[⟨𝑗, 1o⟩] ~Q )) <Q (𝐹𝑗))) ∧ (𝑡Q ∧ ((𝑠 +Q (*Q‘[⟨𝑗, 1o⟩] ~Q )) <Q 𝑡𝑡 <Q (𝐹𝑗)))) ∧ 𝑟Q) ∧ ((*Q‘[⟨𝑗, 1o⟩] ~Q ) +Q 𝑟) = 𝑡) → (𝑠 +Q (*Q‘[⟨𝑗, 1o⟩] ~Q )) <Q 𝑡)
4240, 41eqbrtrrd 3947 . . . . . . . . 9 ((((((𝜑𝑠 ∈ (1st𝐿)) ∧ (𝑗N ∧ (𝑠 +Q (*Q‘[⟨𝑗, 1o⟩] ~Q )) <Q (𝐹𝑗))) ∧ (𝑡Q ∧ ((𝑠 +Q (*Q‘[⟨𝑗, 1o⟩] ~Q )) <Q 𝑡𝑡 <Q (𝐹𝑗)))) ∧ 𝑟Q) ∧ ((*Q‘[⟨𝑗, 1o⟩] ~Q ) +Q 𝑟) = 𝑡) → ((*Q‘[⟨𝑗, 1o⟩] ~Q ) +Q 𝑠) <Q 𝑡)
43 simpr 109 . . . . . . . . 9 ((((((𝜑𝑠 ∈ (1st𝐿)) ∧ (𝑗N ∧ (𝑠 +Q (*Q‘[⟨𝑗, 1o⟩] ~Q )) <Q (𝐹𝑗))) ∧ (𝑡Q ∧ ((𝑠 +Q (*Q‘[⟨𝑗, 1o⟩] ~Q )) <Q 𝑡𝑡 <Q (𝐹𝑗)))) ∧ 𝑟Q) ∧ ((*Q‘[⟨𝑗, 1o⟩] ~Q ) +Q 𝑟) = 𝑡) → ((*Q‘[⟨𝑗, 1o⟩] ~Q ) +Q 𝑟) = 𝑡)
4442, 43breqtrrd 3951 . . . . . . . 8 ((((((𝜑𝑠 ∈ (1st𝐿)) ∧ (𝑗N ∧ (𝑠 +Q (*Q‘[⟨𝑗, 1o⟩] ~Q )) <Q (𝐹𝑗))) ∧ (𝑡Q ∧ ((𝑠 +Q (*Q‘[⟨𝑗, 1o⟩] ~Q )) <Q 𝑡𝑡 <Q (𝐹𝑗)))) ∧ 𝑟Q) ∧ ((*Q‘[⟨𝑗, 1o⟩] ~Q ) +Q 𝑟) = 𝑡) → ((*Q‘[⟨𝑗, 1o⟩] ~Q ) +Q 𝑠) <Q ((*Q‘[⟨𝑗, 1o⟩] ~Q ) +Q 𝑟))
45 simplr 519 . . . . . . . . 9 ((((((𝜑𝑠 ∈ (1st𝐿)) ∧ (𝑗N ∧ (𝑠 +Q (*Q‘[⟨𝑗, 1o⟩] ~Q )) <Q (𝐹𝑗))) ∧ (𝑡Q ∧ ((𝑠 +Q (*Q‘[⟨𝑗, 1o⟩] ~Q )) <Q 𝑡𝑡 <Q (𝐹𝑗)))) ∧ 𝑟Q) ∧ ((*Q‘[⟨𝑗, 1o⟩] ~Q ) +Q 𝑟) = 𝑡) → 𝑟Q)
46 ltanqg 7201 . . . . . . . . 9 ((𝑠Q𝑟Q ∧ (*Q‘[⟨𝑗, 1o⟩] ~Q ) ∈ Q) → (𝑠 <Q 𝑟 ↔ ((*Q‘[⟨𝑗, 1o⟩] ~Q ) +Q 𝑠) <Q ((*Q‘[⟨𝑗, 1o⟩] ~Q ) +Q 𝑟)))
4737, 45, 38, 46syl3anc 1216 . . . . . . . 8 ((((((𝜑𝑠 ∈ (1st𝐿)) ∧ (𝑗N ∧ (𝑠 +Q (*Q‘[⟨𝑗, 1o⟩] ~Q )) <Q (𝐹𝑗))) ∧ (𝑡Q ∧ ((𝑠 +Q (*Q‘[⟨𝑗, 1o⟩] ~Q )) <Q 𝑡𝑡 <Q (𝐹𝑗)))) ∧ 𝑟Q) ∧ ((*Q‘[⟨𝑗, 1o⟩] ~Q ) +Q 𝑟) = 𝑡) → (𝑠 <Q 𝑟 ↔ ((*Q‘[⟨𝑗, 1o⟩] ~Q ) +Q 𝑠) <Q ((*Q‘[⟨𝑗, 1o⟩] ~Q ) +Q 𝑟)))
4844, 47mpbird 166 . . . . . . 7 ((((((𝜑𝑠 ∈ (1st𝐿)) ∧ (𝑗N ∧ (𝑠 +Q (*Q‘[⟨𝑗, 1o⟩] ~Q )) <Q (𝐹𝑗))) ∧ (𝑡Q ∧ ((𝑠 +Q (*Q‘[⟨𝑗, 1o⟩] ~Q )) <Q 𝑡𝑡 <Q (𝐹𝑗)))) ∧ 𝑟Q) ∧ ((*Q‘[⟨𝑗, 1o⟩] ~Q ) +Q 𝑟) = 𝑡) → 𝑠 <Q 𝑟)
4917ad2antrr 479 . . . . . . . . 9 ((((((𝜑𝑠 ∈ (1st𝐿)) ∧ (𝑗N ∧ (𝑠 +Q (*Q‘[⟨𝑗, 1o⟩] ~Q )) <Q (𝐹𝑗))) ∧ (𝑡Q ∧ ((𝑠 +Q (*Q‘[⟨𝑗, 1o⟩] ~Q )) <Q 𝑡𝑡 <Q (𝐹𝑗)))) ∧ 𝑟Q) ∧ ((*Q‘[⟨𝑗, 1o⟩] ~Q ) +Q 𝑟) = 𝑡) → 𝑗N)
50 simprrr 529 . . . . . . . . . . 11 ((((𝜑𝑠 ∈ (1st𝐿)) ∧ (𝑗N ∧ (𝑠 +Q (*Q‘[⟨𝑗, 1o⟩] ~Q )) <Q (𝐹𝑗))) ∧ (𝑡Q ∧ ((𝑠 +Q (*Q‘[⟨𝑗, 1o⟩] ~Q )) <Q 𝑡𝑡 <Q (𝐹𝑗)))) → 𝑡 <Q (𝐹𝑗))
5150ad2antrr 479 . . . . . . . . . 10 ((((((𝜑𝑠 ∈ (1st𝐿)) ∧ (𝑗N ∧ (𝑠 +Q (*Q‘[⟨𝑗, 1o⟩] ~Q )) <Q (𝐹𝑗))) ∧ (𝑡Q ∧ ((𝑠 +Q (*Q‘[⟨𝑗, 1o⟩] ~Q )) <Q 𝑡𝑡 <Q (𝐹𝑗)))) ∧ 𝑟Q) ∧ ((*Q‘[⟨𝑗, 1o⟩] ~Q ) +Q 𝑟) = 𝑡) → 𝑡 <Q (𝐹𝑗))
52 addcomnqg 7182 . . . . . . . . . . . . 13 (((*Q‘[⟨𝑗, 1o⟩] ~Q ) ∈ Q𝑟Q) → ((*Q‘[⟨𝑗, 1o⟩] ~Q ) +Q 𝑟) = (𝑟 +Q (*Q‘[⟨𝑗, 1o⟩] ~Q )))
5338, 45, 52syl2anc 408 . . . . . . . . . . . 12 ((((((𝜑𝑠 ∈ (1st𝐿)) ∧ (𝑗N ∧ (𝑠 +Q (*Q‘[⟨𝑗, 1o⟩] ~Q )) <Q (𝐹𝑗))) ∧ (𝑡Q ∧ ((𝑠 +Q (*Q‘[⟨𝑗, 1o⟩] ~Q )) <Q 𝑡𝑡 <Q (𝐹𝑗)))) ∧ 𝑟Q) ∧ ((*Q‘[⟨𝑗, 1o⟩] ~Q ) +Q 𝑟) = 𝑡) → ((*Q‘[⟨𝑗, 1o⟩] ~Q ) +Q 𝑟) = (𝑟 +Q (*Q‘[⟨𝑗, 1o⟩] ~Q )))
5453, 43eqtr3d 2172 . . . . . . . . . . 11 ((((((𝜑𝑠 ∈ (1st𝐿)) ∧ (𝑗N ∧ (𝑠 +Q (*Q‘[⟨𝑗, 1o⟩] ~Q )) <Q (𝐹𝑗))) ∧ (𝑡Q ∧ ((𝑠 +Q (*Q‘[⟨𝑗, 1o⟩] ~Q )) <Q 𝑡𝑡 <Q (𝐹𝑗)))) ∧ 𝑟Q) ∧ ((*Q‘[⟨𝑗, 1o⟩] ~Q ) +Q 𝑟) = 𝑡) → (𝑟 +Q (*Q‘[⟨𝑗, 1o⟩] ~Q )) = 𝑡)
5554breq1d 3934 . . . . . . . . . 10 ((((((𝜑𝑠 ∈ (1st𝐿)) ∧ (𝑗N ∧ (𝑠 +Q (*Q‘[⟨𝑗, 1o⟩] ~Q )) <Q (𝐹𝑗))) ∧ (𝑡Q ∧ ((𝑠 +Q (*Q‘[⟨𝑗, 1o⟩] ~Q )) <Q 𝑡𝑡 <Q (𝐹𝑗)))) ∧ 𝑟Q) ∧ ((*Q‘[⟨𝑗, 1o⟩] ~Q ) +Q 𝑟) = 𝑡) → ((𝑟 +Q (*Q‘[⟨𝑗, 1o⟩] ~Q )) <Q (𝐹𝑗) ↔ 𝑡 <Q (𝐹𝑗)))
5651, 55mpbird 166 . . . . . . . . 9 ((((((𝜑𝑠 ∈ (1st𝐿)) ∧ (𝑗N ∧ (𝑠 +Q (*Q‘[⟨𝑗, 1o⟩] ~Q )) <Q (𝐹𝑗))) ∧ (𝑡Q ∧ ((𝑠 +Q (*Q‘[⟨𝑗, 1o⟩] ~Q )) <Q 𝑡𝑡 <Q (𝐹𝑗)))) ∧ 𝑟Q) ∧ ((*Q‘[⟨𝑗, 1o⟩] ~Q ) +Q 𝑟) = 𝑡) → (𝑟 +Q (*Q‘[⟨𝑗, 1o⟩] ~Q )) <Q (𝐹𝑗))
57 rspe 2479 . . . . . . . . 9 ((𝑗N ∧ (𝑟 +Q (*Q‘[⟨𝑗, 1o⟩] ~Q )) <Q (𝐹𝑗)) → ∃𝑗N (𝑟 +Q (*Q‘[⟨𝑗, 1o⟩] ~Q )) <Q (𝐹𝑗))
5849, 56, 57syl2anc 408 . . . . . . . 8 ((((((𝜑𝑠 ∈ (1st𝐿)) ∧ (𝑗N ∧ (𝑠 +Q (*Q‘[⟨𝑗, 1o⟩] ~Q )) <Q (𝐹𝑗))) ∧ (𝑡Q ∧ ((𝑠 +Q (*Q‘[⟨𝑗, 1o⟩] ~Q )) <Q 𝑡𝑡 <Q (𝐹𝑗)))) ∧ 𝑟Q) ∧ ((*Q‘[⟨𝑗, 1o⟩] ~Q ) +Q 𝑟) = 𝑡) → ∃𝑗N (𝑟 +Q (*Q‘[⟨𝑗, 1o⟩] ~Q )) <Q (𝐹𝑗))
59 oveq1 5774 . . . . . . . . . . 11 (𝑙 = 𝑟 → (𝑙 +Q (*Q‘[⟨𝑗, 1o⟩] ~Q )) = (𝑟 +Q (*Q‘[⟨𝑗, 1o⟩] ~Q )))
6059breq1d 3934 . . . . . . . . . 10 (𝑙 = 𝑟 → ((𝑙 +Q (*Q‘[⟨𝑗, 1o⟩] ~Q )) <Q (𝐹𝑗) ↔ (𝑟 +Q (*Q‘[⟨𝑗, 1o⟩] ~Q )) <Q (𝐹𝑗)))
6160rexbidv 2436 . . . . . . . . 9 (𝑙 = 𝑟 → (∃𝑗N (𝑙 +Q (*Q‘[⟨𝑗, 1o⟩] ~Q )) <Q (𝐹𝑗) ↔ ∃𝑗N (𝑟 +Q (*Q‘[⟨𝑗, 1o⟩] ~Q )) <Q (𝐹𝑗)))
6261, 10elrab2 2838 . . . . . . . 8 (𝑟 ∈ (1st𝐿) ↔ (𝑟Q ∧ ∃𝑗N (𝑟 +Q (*Q‘[⟨𝑗, 1o⟩] ~Q )) <Q (𝐹𝑗)))
6345, 58, 62sylanbrc 413 . . . . . . 7 ((((((𝜑𝑠 ∈ (1st𝐿)) ∧ (𝑗N ∧ (𝑠 +Q (*Q‘[⟨𝑗, 1o⟩] ~Q )) <Q (𝐹𝑗))) ∧ (𝑡Q ∧ ((𝑠 +Q (*Q‘[⟨𝑗, 1o⟩] ~Q )) <Q 𝑡𝑡 <Q (𝐹𝑗)))) ∧ 𝑟Q) ∧ ((*Q‘[⟨𝑗, 1o⟩] ~Q ) +Q 𝑟) = 𝑡) → 𝑟 ∈ (1st𝐿))
6448, 63jca 304 . . . . . 6 ((((((𝜑𝑠 ∈ (1st𝐿)) ∧ (𝑗N ∧ (𝑠 +Q (*Q‘[⟨𝑗, 1o⟩] ~Q )) <Q (𝐹𝑗))) ∧ (𝑡Q ∧ ((𝑠 +Q (*Q‘[⟨𝑗, 1o⟩] ~Q )) <Q 𝑡𝑡 <Q (𝐹𝑗)))) ∧ 𝑟Q) ∧ ((*Q‘[⟨𝑗, 1o⟩] ~Q ) +Q 𝑟) = 𝑡) → (𝑠 <Q 𝑟𝑟 ∈ (1st𝐿)))
6564ex 114 . . . . 5 (((((𝜑𝑠 ∈ (1st𝐿)) ∧ (𝑗N ∧ (𝑠 +Q (*Q‘[⟨𝑗, 1o⟩] ~Q )) <Q (𝐹𝑗))) ∧ (𝑡Q ∧ ((𝑠 +Q (*Q‘[⟨𝑗, 1o⟩] ~Q )) <Q 𝑡𝑡 <Q (𝐹𝑗)))) ∧ 𝑟Q) → (((*Q‘[⟨𝑗, 1o⟩] ~Q ) +Q 𝑟) = 𝑡 → (𝑠 <Q 𝑟𝑟 ∈ (1st𝐿))))
6665reximdva 2532 . . . 4 ((((𝜑𝑠 ∈ (1st𝐿)) ∧ (𝑗N ∧ (𝑠 +Q (*Q‘[⟨𝑗, 1o⟩] ~Q )) <Q (𝐹𝑗))) ∧ (𝑡Q ∧ ((𝑠 +Q (*Q‘[⟨𝑗, 1o⟩] ~Q )) <Q 𝑡𝑡 <Q (𝐹𝑗)))) → (∃𝑟Q ((*Q‘[⟨𝑗, 1o⟩] ~Q ) +Q 𝑟) = 𝑡 → ∃𝑟Q (𝑠 <Q 𝑟𝑟 ∈ (1st𝐿))))
6736, 66mpd 13 . . 3 ((((𝜑𝑠 ∈ (1st𝐿)) ∧ (𝑗N ∧ (𝑠 +Q (*Q‘[⟨𝑗, 1o⟩] ~Q )) <Q (𝐹𝑗))) ∧ (𝑡Q ∧ ((𝑠 +Q (*Q‘[⟨𝑗, 1o⟩] ~Q )) <Q 𝑡𝑡 <Q (𝐹𝑗)))) → ∃𝑟Q (𝑠 <Q 𝑟𝑟 ∈ (1st𝐿)))
6816, 67rexlimddv 2552 . 2 (((𝜑𝑠 ∈ (1st𝐿)) ∧ (𝑗N ∧ (𝑠 +Q (*Q‘[⟨𝑗, 1o⟩] ~Q )) <Q (𝐹𝑗))) → ∃𝑟Q (𝑠 <Q 𝑟𝑟 ∈ (1st𝐿)))
6913, 68rexlimddv 2552 1 ((𝜑𝑠 ∈ (1st𝐿)) → ∃𝑟Q (𝑠 <Q 𝑟𝑟 ∈ (1st𝐿)))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wb 104   = wceq 1331  wcel 1480  wral 2414  wrex 2415  {crab 2418  cop 3525   class class class wbr 3924  wf 5114  cfv 5118  (class class class)co 5767  1st c1st 6029  1oc1o 6299  [cec 6420  Ncnpi 7073   <N clti 7076   ~Q ceq 7080  Qcnq 7081   +Q cplq 7083  *Qcrq 7085   <Q cltq 7086
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 603  ax-in2 604  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-13 1491  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2119  ax-coll 4038  ax-sep 4041  ax-nul 4049  ax-pow 4093  ax-pr 4126  ax-un 4350  ax-setind 4447  ax-iinf 4497
This theorem depends on definitions:  df-bi 116  df-dc 820  df-3or 963  df-3an 964  df-tru 1334  df-fal 1337  df-nf 1437  df-sb 1736  df-eu 2000  df-mo 2001  df-clab 2124  df-cleq 2130  df-clel 2133  df-nfc 2268  df-ne 2307  df-ral 2419  df-rex 2420  df-reu 2421  df-rab 2423  df-v 2683  df-sbc 2905  df-csb 2999  df-dif 3068  df-un 3070  df-in 3072  df-ss 3079  df-nul 3359  df-pw 3507  df-sn 3528  df-pr 3529  df-op 3531  df-uni 3732  df-int 3767  df-iun 3810  df-br 3925  df-opab 3985  df-mpt 3986  df-tr 4022  df-eprel 4206  df-id 4210  df-po 4213  df-iso 4214  df-iord 4283  df-on 4285  df-suc 4288  df-iom 4500  df-xp 4540  df-rel 4541  df-cnv 4542  df-co 4543  df-dm 4544  df-rn 4545  df-res 4546  df-ima 4547  df-iota 5083  df-fun 5120  df-fn 5121  df-f 5122  df-f1 5123  df-fo 5124  df-f1o 5125  df-fv 5126  df-ov 5770  df-oprab 5771  df-mpo 5772  df-1st 6031  df-2nd 6032  df-recs 6195  df-irdg 6260  df-1o 6306  df-oadd 6310  df-omul 6311  df-er 6422  df-ec 6424  df-qs 6428  df-ni 7105  df-pli 7106  df-mi 7107  df-lti 7108  df-plpq 7145  df-mpq 7146  df-enq 7148  df-nqqs 7149  df-plqqs 7150  df-mqqs 7151  df-1nqqs 7152  df-rq 7153  df-ltnqqs 7154
This theorem is referenced by:  caucvgprlemrnd  7474
  Copyright terms: Public domain W3C validator