| Step | Hyp | Ref
| Expression |
| 1 | | caucvgprlemlim.jk |
. . . . 5
⊢ (𝜑 → 𝐽 <N 𝐾) |
| 2 | | caucvgprlemlim.jkq |
. . . . 5
⊢ (𝜑 →
(*Q‘[〈𝐽, 1o〉]
~Q ) <Q 𝑄) |
| 3 | 1, 2 | caucvgprlemk 7749 |
. . . 4
⊢ (𝜑 →
(*Q‘[〈𝐾, 1o〉]
~Q ) <Q 𝑄) |
| 4 | | caucvgpr.f |
. . . . 5
⊢ (𝜑 → 𝐹:N⟶Q) |
| 5 | | ltrelpi 7408 |
. . . . . . . 8
⊢
<N ⊆ (N ×
N) |
| 6 | 5 | brel 4716 |
. . . . . . 7
⊢ (𝐽 <N
𝐾 → (𝐽 ∈ N ∧ 𝐾 ∈
N)) |
| 7 | 1, 6 | syl 14 |
. . . . . 6
⊢ (𝜑 → (𝐽 ∈ N ∧ 𝐾 ∈
N)) |
| 8 | 7 | simprd 114 |
. . . . 5
⊢ (𝜑 → 𝐾 ∈ N) |
| 9 | 4, 8 | ffvelcdmd 5701 |
. . . 4
⊢ (𝜑 → (𝐹‘𝐾) ∈ Q) |
| 10 | | ltanqi 7486 |
. . . 4
⊢
(((*Q‘[〈𝐾, 1o〉]
~Q ) <Q 𝑄 ∧ (𝐹‘𝐾) ∈ Q) → ((𝐹‘𝐾) +Q
(*Q‘[〈𝐾, 1o〉]
~Q )) <Q ((𝐹‘𝐾) +Q 𝑄)) |
| 11 | 3, 9, 10 | syl2anc 411 |
. . 3
⊢ (𝜑 → ((𝐹‘𝐾) +Q
(*Q‘[〈𝐾, 1o〉]
~Q )) <Q ((𝐹‘𝐾) +Q 𝑄)) |
| 12 | | ltbtwnnqq 7499 |
. . 3
⊢ (((𝐹‘𝐾) +Q
(*Q‘[〈𝐾, 1o〉]
~Q )) <Q ((𝐹‘𝐾) +Q 𝑄) ↔ ∃𝑥 ∈ Q (((𝐹‘𝐾) +Q
(*Q‘[〈𝐾, 1o〉]
~Q )) <Q 𝑥 ∧ 𝑥 <Q ((𝐹‘𝐾) +Q 𝑄))) |
| 13 | 11, 12 | sylib 122 |
. 2
⊢ (𝜑 → ∃𝑥 ∈ Q (((𝐹‘𝐾) +Q
(*Q‘[〈𝐾, 1o〉]
~Q )) <Q 𝑥 ∧ 𝑥 <Q ((𝐹‘𝐾) +Q 𝑄))) |
| 14 | | simprl 529 |
. . . 4
⊢ ((𝜑 ∧ (𝑥 ∈ Q ∧ (((𝐹‘𝐾) +Q
(*Q‘[〈𝐾, 1o〉]
~Q )) <Q 𝑥 ∧ 𝑥 <Q ((𝐹‘𝐾) +Q 𝑄)))) → 𝑥 ∈ Q) |
| 15 | 8 | adantr 276 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑥 ∈ Q ∧ (((𝐹‘𝐾) +Q
(*Q‘[〈𝐾, 1o〉]
~Q )) <Q 𝑥 ∧ 𝑥 <Q ((𝐹‘𝐾) +Q 𝑄)))) → 𝐾 ∈ N) |
| 16 | | simprrl 539 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑥 ∈ Q ∧ (((𝐹‘𝐾) +Q
(*Q‘[〈𝐾, 1o〉]
~Q )) <Q 𝑥 ∧ 𝑥 <Q ((𝐹‘𝐾) +Q 𝑄)))) → ((𝐹‘𝐾) +Q
(*Q‘[〈𝐾, 1o〉]
~Q )) <Q 𝑥) |
| 17 | | fveq2 5561 |
. . . . . . . . 9
⊢ (𝑗 = 𝐾 → (𝐹‘𝑗) = (𝐹‘𝐾)) |
| 18 | | opeq1 3809 |
. . . . . . . . . . 11
⊢ (𝑗 = 𝐾 → 〈𝑗, 1o〉 = 〈𝐾,
1o〉) |
| 19 | 18 | eceq1d 6637 |
. . . . . . . . . 10
⊢ (𝑗 = 𝐾 → [〈𝑗, 1o〉]
~Q = [〈𝐾, 1o〉]
~Q ) |
| 20 | 19 | fveq2d 5565 |
. . . . . . . . 9
⊢ (𝑗 = 𝐾 →
(*Q‘[〈𝑗, 1o〉]
~Q ) = (*Q‘[〈𝐾, 1o〉]
~Q )) |
| 21 | 17, 20 | oveq12d 5943 |
. . . . . . . 8
⊢ (𝑗 = 𝐾 → ((𝐹‘𝑗) +Q
(*Q‘[〈𝑗, 1o〉]
~Q )) = ((𝐹‘𝐾) +Q
(*Q‘[〈𝐾, 1o〉]
~Q ))) |
| 22 | 21 | breq1d 4044 |
. . . . . . 7
⊢ (𝑗 = 𝐾 → (((𝐹‘𝑗) +Q
(*Q‘[〈𝑗, 1o〉]
~Q )) <Q 𝑥 ↔ ((𝐹‘𝐾) +Q
(*Q‘[〈𝐾, 1o〉]
~Q )) <Q 𝑥)) |
| 23 | 22 | rspcev 2868 |
. . . . . 6
⊢ ((𝐾 ∈ N ∧
((𝐹‘𝐾) +Q
(*Q‘[〈𝐾, 1o〉]
~Q )) <Q 𝑥) → ∃𝑗 ∈ N ((𝐹‘𝑗) +Q
(*Q‘[〈𝑗, 1o〉]
~Q )) <Q 𝑥) |
| 24 | 15, 16, 23 | syl2anc 411 |
. . . . 5
⊢ ((𝜑 ∧ (𝑥 ∈ Q ∧ (((𝐹‘𝐾) +Q
(*Q‘[〈𝐾, 1o〉]
~Q )) <Q 𝑥 ∧ 𝑥 <Q ((𝐹‘𝐾) +Q 𝑄)))) → ∃𝑗 ∈ N ((𝐹‘𝑗) +Q
(*Q‘[〈𝑗, 1o〉]
~Q )) <Q 𝑥) |
| 25 | | breq2 4038 |
. . . . . . 7
⊢ (𝑢 = 𝑥 → (((𝐹‘𝑗) +Q
(*Q‘[〈𝑗, 1o〉]
~Q )) <Q 𝑢 ↔ ((𝐹‘𝑗) +Q
(*Q‘[〈𝑗, 1o〉]
~Q )) <Q 𝑥)) |
| 26 | 25 | rexbidv 2498 |
. . . . . 6
⊢ (𝑢 = 𝑥 → (∃𝑗 ∈ N ((𝐹‘𝑗) +Q
(*Q‘[〈𝑗, 1o〉]
~Q )) <Q 𝑢 ↔ ∃𝑗 ∈ N ((𝐹‘𝑗) +Q
(*Q‘[〈𝑗, 1o〉]
~Q )) <Q 𝑥)) |
| 27 | | caucvgpr.lim |
. . . . . . . 8
⊢ 𝐿 = 〈{𝑙 ∈ Q ∣ ∃𝑗 ∈ N (𝑙 +Q
(*Q‘[〈𝑗, 1o〉]
~Q )) <Q (𝐹‘𝑗)}, {𝑢 ∈ Q ∣ ∃𝑗 ∈ N ((𝐹‘𝑗) +Q
(*Q‘[〈𝑗, 1o〉]
~Q )) <Q 𝑢}〉 |
| 28 | 27 | fveq2i 5564 |
. . . . . . 7
⊢
(2nd ‘𝐿) = (2nd ‘〈{𝑙 ∈ Q ∣
∃𝑗 ∈
N (𝑙
+Q (*Q‘[〈𝑗, 1o〉]
~Q )) <Q (𝐹‘𝑗)}, {𝑢 ∈ Q ∣ ∃𝑗 ∈ N ((𝐹‘𝑗) +Q
(*Q‘[〈𝑗, 1o〉]
~Q )) <Q 𝑢}〉) |
| 29 | | nqex 7447 |
. . . . . . . . 9
⊢
Q ∈ V |
| 30 | 29 | rabex 4178 |
. . . . . . . 8
⊢ {𝑙 ∈ Q ∣
∃𝑗 ∈
N (𝑙
+Q (*Q‘[〈𝑗, 1o〉]
~Q )) <Q (𝐹‘𝑗)} ∈ V |
| 31 | 29 | rabex 4178 |
. . . . . . . 8
⊢ {𝑢 ∈ Q ∣
∃𝑗 ∈
N ((𝐹‘𝑗) +Q
(*Q‘[〈𝑗, 1o〉]
~Q )) <Q 𝑢} ∈ V |
| 32 | 30, 31 | op2nd 6214 |
. . . . . . 7
⊢
(2nd ‘〈{𝑙 ∈ Q ∣ ∃𝑗 ∈ N (𝑙 +Q
(*Q‘[〈𝑗, 1o〉]
~Q )) <Q (𝐹‘𝑗)}, {𝑢 ∈ Q ∣ ∃𝑗 ∈ N ((𝐹‘𝑗) +Q
(*Q‘[〈𝑗, 1o〉]
~Q )) <Q 𝑢}〉) = {𝑢 ∈ Q ∣ ∃𝑗 ∈ N ((𝐹‘𝑗) +Q
(*Q‘[〈𝑗, 1o〉]
~Q )) <Q 𝑢} |
| 33 | 28, 32 | eqtri 2217 |
. . . . . 6
⊢
(2nd ‘𝐿) = {𝑢 ∈ Q ∣ ∃𝑗 ∈ N ((𝐹‘𝑗) +Q
(*Q‘[〈𝑗, 1o〉]
~Q )) <Q 𝑢} |
| 34 | 26, 33 | elrab2 2923 |
. . . . 5
⊢ (𝑥 ∈ (2nd
‘𝐿) ↔ (𝑥 ∈ Q ∧
∃𝑗 ∈
N ((𝐹‘𝑗) +Q
(*Q‘[〈𝑗, 1o〉]
~Q )) <Q 𝑥)) |
| 35 | 14, 24, 34 | sylanbrc 417 |
. . . 4
⊢ ((𝜑 ∧ (𝑥 ∈ Q ∧ (((𝐹‘𝐾) +Q
(*Q‘[〈𝐾, 1o〉]
~Q )) <Q 𝑥 ∧ 𝑥 <Q ((𝐹‘𝐾) +Q 𝑄)))) → 𝑥 ∈ (2nd ‘𝐿)) |
| 36 | | simprrr 540 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑥 ∈ Q ∧ (((𝐹‘𝐾) +Q
(*Q‘[〈𝐾, 1o〉]
~Q )) <Q 𝑥 ∧ 𝑥 <Q ((𝐹‘𝐾) +Q 𝑄)))) → 𝑥 <Q ((𝐹‘𝐾) +Q 𝑄)) |
| 37 | | vex 2766 |
. . . . . . 7
⊢ 𝑥 ∈ V |
| 38 | | breq1 4037 |
. . . . . . 7
⊢ (𝑙 = 𝑥 → (𝑙 <Q ((𝐹‘𝐾) +Q 𝑄) ↔ 𝑥 <Q ((𝐹‘𝐾) +Q 𝑄))) |
| 39 | 37, 38 | elab 2908 |
. . . . . 6
⊢ (𝑥 ∈ {𝑙 ∣ 𝑙 <Q ((𝐹‘𝐾) +Q 𝑄)} ↔ 𝑥 <Q ((𝐹‘𝐾) +Q 𝑄)) |
| 40 | 36, 39 | sylibr 134 |
. . . . 5
⊢ ((𝜑 ∧ (𝑥 ∈ Q ∧ (((𝐹‘𝐾) +Q
(*Q‘[〈𝐾, 1o〉]
~Q )) <Q 𝑥 ∧ 𝑥 <Q ((𝐹‘𝐾) +Q 𝑄)))) → 𝑥 ∈ {𝑙 ∣ 𝑙 <Q ((𝐹‘𝐾) +Q 𝑄)}) |
| 41 | | ltnqex 7633 |
. . . . . 6
⊢ {𝑙 ∣ 𝑙 <Q ((𝐹‘𝐾) +Q 𝑄)} ∈ V |
| 42 | | gtnqex 7634 |
. . . . . 6
⊢ {𝑢 ∣ ((𝐹‘𝐾) +Q 𝑄) <Q
𝑢} ∈
V |
| 43 | 41, 42 | op1st 6213 |
. . . . 5
⊢
(1st ‘〈{𝑙 ∣ 𝑙 <Q ((𝐹‘𝐾) +Q 𝑄)}, {𝑢 ∣ ((𝐹‘𝐾) +Q 𝑄) <Q
𝑢}〉) = {𝑙 ∣ 𝑙 <Q ((𝐹‘𝐾) +Q 𝑄)} |
| 44 | 40, 43 | eleqtrrdi 2290 |
. . . 4
⊢ ((𝜑 ∧ (𝑥 ∈ Q ∧ (((𝐹‘𝐾) +Q
(*Q‘[〈𝐾, 1o〉]
~Q )) <Q 𝑥 ∧ 𝑥 <Q ((𝐹‘𝐾) +Q 𝑄)))) → 𝑥 ∈ (1st ‘〈{𝑙 ∣ 𝑙 <Q ((𝐹‘𝐾) +Q 𝑄)}, {𝑢 ∣ ((𝐹‘𝐾) +Q 𝑄) <Q
𝑢}〉)) |
| 45 | | rspe 2546 |
. . . 4
⊢ ((𝑥 ∈ Q ∧
(𝑥 ∈ (2nd
‘𝐿) ∧ 𝑥 ∈ (1st
‘〈{𝑙 ∣
𝑙
<Q ((𝐹‘𝐾) +Q 𝑄)}, {𝑢 ∣ ((𝐹‘𝐾) +Q 𝑄) <Q
𝑢}〉))) →
∃𝑥 ∈
Q (𝑥 ∈
(2nd ‘𝐿)
∧ 𝑥 ∈
(1st ‘〈{𝑙 ∣ 𝑙 <Q ((𝐹‘𝐾) +Q 𝑄)}, {𝑢 ∣ ((𝐹‘𝐾) +Q 𝑄) <Q
𝑢}〉))) |
| 46 | 14, 35, 44, 45 | syl12anc 1247 |
. . 3
⊢ ((𝜑 ∧ (𝑥 ∈ Q ∧ (((𝐹‘𝐾) +Q
(*Q‘[〈𝐾, 1o〉]
~Q )) <Q 𝑥 ∧ 𝑥 <Q ((𝐹‘𝐾) +Q 𝑄)))) → ∃𝑥 ∈ Q (𝑥 ∈ (2nd
‘𝐿) ∧ 𝑥 ∈ (1st
‘〈{𝑙 ∣
𝑙
<Q ((𝐹‘𝐾) +Q 𝑄)}, {𝑢 ∣ ((𝐹‘𝐾) +Q 𝑄) <Q
𝑢}〉))) |
| 47 | | caucvgpr.cau |
. . . . . 6
⊢ (𝜑 → ∀𝑛 ∈ N ∀𝑘 ∈ N (𝑛 <N
𝑘 → ((𝐹‘𝑛) <Q ((𝐹‘𝑘) +Q
(*Q‘[〈𝑛, 1o〉]
~Q )) ∧ (𝐹‘𝑘) <Q ((𝐹‘𝑛) +Q
(*Q‘[〈𝑛, 1o〉]
~Q ))))) |
| 48 | | caucvgpr.bnd |
. . . . . 6
⊢ (𝜑 → ∀𝑗 ∈ N 𝐴 <Q (𝐹‘𝑗)) |
| 49 | 4, 47, 48, 27 | caucvgprlemcl 7760 |
. . . . 5
⊢ (𝜑 → 𝐿 ∈ P) |
| 50 | 49 | adantr 276 |
. . . 4
⊢ ((𝜑 ∧ (𝑥 ∈ Q ∧ (((𝐹‘𝐾) +Q
(*Q‘[〈𝐾, 1o〉]
~Q )) <Q 𝑥 ∧ 𝑥 <Q ((𝐹‘𝐾) +Q 𝑄)))) → 𝐿 ∈ P) |
| 51 | | caucvgprlemlim.q |
. . . . . . 7
⊢ (𝜑 → 𝑄 ∈ Q) |
| 52 | | addclnq 7459 |
. . . . . . 7
⊢ (((𝐹‘𝐾) ∈ Q ∧ 𝑄 ∈ Q) →
((𝐹‘𝐾) +Q 𝑄) ∈
Q) |
| 53 | 9, 51, 52 | syl2anc 411 |
. . . . . 6
⊢ (𝜑 → ((𝐹‘𝐾) +Q 𝑄) ∈
Q) |
| 54 | | nqprlu 7631 |
. . . . . 6
⊢ (((𝐹‘𝐾) +Q 𝑄) ∈ Q →
〈{𝑙 ∣ 𝑙 <Q
((𝐹‘𝐾) +Q 𝑄)}, {𝑢 ∣ ((𝐹‘𝐾) +Q 𝑄) <Q
𝑢}〉 ∈
P) |
| 55 | 53, 54 | syl 14 |
. . . . 5
⊢ (𝜑 → 〈{𝑙 ∣ 𝑙 <Q ((𝐹‘𝐾) +Q 𝑄)}, {𝑢 ∣ ((𝐹‘𝐾) +Q 𝑄) <Q
𝑢}〉 ∈
P) |
| 56 | 55 | adantr 276 |
. . . 4
⊢ ((𝜑 ∧ (𝑥 ∈ Q ∧ (((𝐹‘𝐾) +Q
(*Q‘[〈𝐾, 1o〉]
~Q )) <Q 𝑥 ∧ 𝑥 <Q ((𝐹‘𝐾) +Q 𝑄)))) → 〈{𝑙 ∣ 𝑙 <Q ((𝐹‘𝐾) +Q 𝑄)}, {𝑢 ∣ ((𝐹‘𝐾) +Q 𝑄) <Q
𝑢}〉 ∈
P) |
| 57 | | ltdfpr 7590 |
. . . 4
⊢ ((𝐿 ∈ P ∧
〈{𝑙 ∣ 𝑙 <Q
((𝐹‘𝐾) +Q 𝑄)}, {𝑢 ∣ ((𝐹‘𝐾) +Q 𝑄) <Q
𝑢}〉 ∈
P) → (𝐿<P 〈{𝑙 ∣ 𝑙 <Q ((𝐹‘𝐾) +Q 𝑄)}, {𝑢 ∣ ((𝐹‘𝐾) +Q 𝑄) <Q
𝑢}〉 ↔
∃𝑥 ∈
Q (𝑥 ∈
(2nd ‘𝐿)
∧ 𝑥 ∈
(1st ‘〈{𝑙 ∣ 𝑙 <Q ((𝐹‘𝐾) +Q 𝑄)}, {𝑢 ∣ ((𝐹‘𝐾) +Q 𝑄) <Q
𝑢}〉)))) |
| 58 | 50, 56, 57 | syl2anc 411 |
. . 3
⊢ ((𝜑 ∧ (𝑥 ∈ Q ∧ (((𝐹‘𝐾) +Q
(*Q‘[〈𝐾, 1o〉]
~Q )) <Q 𝑥 ∧ 𝑥 <Q ((𝐹‘𝐾) +Q 𝑄)))) → (𝐿<P 〈{𝑙 ∣ 𝑙 <Q ((𝐹‘𝐾) +Q 𝑄)}, {𝑢 ∣ ((𝐹‘𝐾) +Q 𝑄) <Q
𝑢}〉 ↔
∃𝑥 ∈
Q (𝑥 ∈
(2nd ‘𝐿)
∧ 𝑥 ∈
(1st ‘〈{𝑙 ∣ 𝑙 <Q ((𝐹‘𝐾) +Q 𝑄)}, {𝑢 ∣ ((𝐹‘𝐾) +Q 𝑄) <Q
𝑢}〉)))) |
| 59 | 46, 58 | mpbird 167 |
. 2
⊢ ((𝜑 ∧ (𝑥 ∈ Q ∧ (((𝐹‘𝐾) +Q
(*Q‘[〈𝐾, 1o〉]
~Q )) <Q 𝑥 ∧ 𝑥 <Q ((𝐹‘𝐾) +Q 𝑄)))) → 𝐿<P 〈{𝑙 ∣ 𝑙 <Q ((𝐹‘𝐾) +Q 𝑄)}, {𝑢 ∣ ((𝐹‘𝐾) +Q 𝑄) <Q
𝑢}〉) |
| 60 | 13, 59 | rexlimddv 2619 |
1
⊢ (𝜑 → 𝐿<P 〈{𝑙 ∣ 𝑙 <Q ((𝐹‘𝐾) +Q 𝑄)}, {𝑢 ∣ ((𝐹‘𝐾) +Q 𝑄) <Q
𝑢}〉) |