ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  caucvgprlem2 GIF version

Theorem caucvgprlem2 7621
Description: Lemma for caucvgpr 7623. Part of showing the putative limit to be a limit. (Contributed by Jim Kingdon, 3-Oct-2020.)
Hypotheses
Ref Expression
caucvgpr.f (𝜑𝐹:NQ)
caucvgpr.cau (𝜑 → ∀𝑛N𝑘N (𝑛 <N 𝑘 → ((𝐹𝑛) <Q ((𝐹𝑘) +Q (*Q‘[⟨𝑛, 1o⟩] ~Q )) ∧ (𝐹𝑘) <Q ((𝐹𝑛) +Q (*Q‘[⟨𝑛, 1o⟩] ~Q )))))
caucvgpr.bnd (𝜑 → ∀𝑗N 𝐴 <Q (𝐹𝑗))
caucvgpr.lim 𝐿 = ⟨{𝑙Q ∣ ∃𝑗N (𝑙 +Q (*Q‘[⟨𝑗, 1o⟩] ~Q )) <Q (𝐹𝑗)}, {𝑢Q ∣ ∃𝑗N ((𝐹𝑗) +Q (*Q‘[⟨𝑗, 1o⟩] ~Q )) <Q 𝑢}⟩
caucvgprlemlim.q (𝜑𝑄Q)
caucvgprlemlim.jk (𝜑𝐽 <N 𝐾)
caucvgprlemlim.jkq (𝜑 → (*Q‘[⟨𝐽, 1o⟩] ~Q ) <Q 𝑄)
Assertion
Ref Expression
caucvgprlem2 (𝜑𝐿<P ⟨{𝑙𝑙 <Q ((𝐹𝐾) +Q 𝑄)}, {𝑢 ∣ ((𝐹𝐾) +Q 𝑄) <Q 𝑢}⟩)
Distinct variable groups:   𝐴,𝑗   𝑗,𝐹,𝑢,𝑙   𝑛,𝐹,𝑘   𝑗,𝐾,𝑢,𝑙   𝑗,𝐿,𝑘   𝑄,𝑙,𝑢   𝑗,𝑙   𝑗,𝑘   𝑘,𝑛
Allowed substitution hints:   𝜑(𝑢,𝑗,𝑘,𝑛,𝑙)   𝐴(𝑢,𝑘,𝑛,𝑙)   𝑄(𝑗,𝑘,𝑛)   𝐽(𝑢,𝑗,𝑘,𝑛,𝑙)   𝐾(𝑘,𝑛)   𝐿(𝑢,𝑛,𝑙)

Proof of Theorem caucvgprlem2
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 caucvgprlemlim.jk . . . . 5 (𝜑𝐽 <N 𝐾)
2 caucvgprlemlim.jkq . . . . 5 (𝜑 → (*Q‘[⟨𝐽, 1o⟩] ~Q ) <Q 𝑄)
31, 2caucvgprlemk 7606 . . . 4 (𝜑 → (*Q‘[⟨𝐾, 1o⟩] ~Q ) <Q 𝑄)
4 caucvgpr.f . . . . 5 (𝜑𝐹:NQ)
5 ltrelpi 7265 . . . . . . . 8 <N ⊆ (N × N)
65brel 4656 . . . . . . 7 (𝐽 <N 𝐾 → (𝐽N𝐾N))
71, 6syl 14 . . . . . 6 (𝜑 → (𝐽N𝐾N))
87simprd 113 . . . . 5 (𝜑𝐾N)
94, 8ffvelrnd 5621 . . . 4 (𝜑 → (𝐹𝐾) ∈ Q)
10 ltanqi 7343 . . . 4 (((*Q‘[⟨𝐾, 1o⟩] ~Q ) <Q 𝑄 ∧ (𝐹𝐾) ∈ Q) → ((𝐹𝐾) +Q (*Q‘[⟨𝐾, 1o⟩] ~Q )) <Q ((𝐹𝐾) +Q 𝑄))
113, 9, 10syl2anc 409 . . 3 (𝜑 → ((𝐹𝐾) +Q (*Q‘[⟨𝐾, 1o⟩] ~Q )) <Q ((𝐹𝐾) +Q 𝑄))
12 ltbtwnnqq 7356 . . 3 (((𝐹𝐾) +Q (*Q‘[⟨𝐾, 1o⟩] ~Q )) <Q ((𝐹𝐾) +Q 𝑄) ↔ ∃𝑥Q (((𝐹𝐾) +Q (*Q‘[⟨𝐾, 1o⟩] ~Q )) <Q 𝑥𝑥 <Q ((𝐹𝐾) +Q 𝑄)))
1311, 12sylib 121 . 2 (𝜑 → ∃𝑥Q (((𝐹𝐾) +Q (*Q‘[⟨𝐾, 1o⟩] ~Q )) <Q 𝑥𝑥 <Q ((𝐹𝐾) +Q 𝑄)))
14 simprl 521 . . . 4 ((𝜑 ∧ (𝑥Q ∧ (((𝐹𝐾) +Q (*Q‘[⟨𝐾, 1o⟩] ~Q )) <Q 𝑥𝑥 <Q ((𝐹𝐾) +Q 𝑄)))) → 𝑥Q)
158adantr 274 . . . . . 6 ((𝜑 ∧ (𝑥Q ∧ (((𝐹𝐾) +Q (*Q‘[⟨𝐾, 1o⟩] ~Q )) <Q 𝑥𝑥 <Q ((𝐹𝐾) +Q 𝑄)))) → 𝐾N)
16 simprrl 529 . . . . . 6 ((𝜑 ∧ (𝑥Q ∧ (((𝐹𝐾) +Q (*Q‘[⟨𝐾, 1o⟩] ~Q )) <Q 𝑥𝑥 <Q ((𝐹𝐾) +Q 𝑄)))) → ((𝐹𝐾) +Q (*Q‘[⟨𝐾, 1o⟩] ~Q )) <Q 𝑥)
17 fveq2 5486 . . . . . . . . 9 (𝑗 = 𝐾 → (𝐹𝑗) = (𝐹𝐾))
18 opeq1 3758 . . . . . . . . . . 11 (𝑗 = 𝐾 → ⟨𝑗, 1o⟩ = ⟨𝐾, 1o⟩)
1918eceq1d 6537 . . . . . . . . . 10 (𝑗 = 𝐾 → [⟨𝑗, 1o⟩] ~Q = [⟨𝐾, 1o⟩] ~Q )
2019fveq2d 5490 . . . . . . . . 9 (𝑗 = 𝐾 → (*Q‘[⟨𝑗, 1o⟩] ~Q ) = (*Q‘[⟨𝐾, 1o⟩] ~Q ))
2117, 20oveq12d 5860 . . . . . . . 8 (𝑗 = 𝐾 → ((𝐹𝑗) +Q (*Q‘[⟨𝑗, 1o⟩] ~Q )) = ((𝐹𝐾) +Q (*Q‘[⟨𝐾, 1o⟩] ~Q )))
2221breq1d 3992 . . . . . . 7 (𝑗 = 𝐾 → (((𝐹𝑗) +Q (*Q‘[⟨𝑗, 1o⟩] ~Q )) <Q 𝑥 ↔ ((𝐹𝐾) +Q (*Q‘[⟨𝐾, 1o⟩] ~Q )) <Q 𝑥))
2322rspcev 2830 . . . . . 6 ((𝐾N ∧ ((𝐹𝐾) +Q (*Q‘[⟨𝐾, 1o⟩] ~Q )) <Q 𝑥) → ∃𝑗N ((𝐹𝑗) +Q (*Q‘[⟨𝑗, 1o⟩] ~Q )) <Q 𝑥)
2415, 16, 23syl2anc 409 . . . . 5 ((𝜑 ∧ (𝑥Q ∧ (((𝐹𝐾) +Q (*Q‘[⟨𝐾, 1o⟩] ~Q )) <Q 𝑥𝑥 <Q ((𝐹𝐾) +Q 𝑄)))) → ∃𝑗N ((𝐹𝑗) +Q (*Q‘[⟨𝑗, 1o⟩] ~Q )) <Q 𝑥)
25 breq2 3986 . . . . . . 7 (𝑢 = 𝑥 → (((𝐹𝑗) +Q (*Q‘[⟨𝑗, 1o⟩] ~Q )) <Q 𝑢 ↔ ((𝐹𝑗) +Q (*Q‘[⟨𝑗, 1o⟩] ~Q )) <Q 𝑥))
2625rexbidv 2467 . . . . . 6 (𝑢 = 𝑥 → (∃𝑗N ((𝐹𝑗) +Q (*Q‘[⟨𝑗, 1o⟩] ~Q )) <Q 𝑢 ↔ ∃𝑗N ((𝐹𝑗) +Q (*Q‘[⟨𝑗, 1o⟩] ~Q )) <Q 𝑥))
27 caucvgpr.lim . . . . . . . 8 𝐿 = ⟨{𝑙Q ∣ ∃𝑗N (𝑙 +Q (*Q‘[⟨𝑗, 1o⟩] ~Q )) <Q (𝐹𝑗)}, {𝑢Q ∣ ∃𝑗N ((𝐹𝑗) +Q (*Q‘[⟨𝑗, 1o⟩] ~Q )) <Q 𝑢}⟩
2827fveq2i 5489 . . . . . . 7 (2nd𝐿) = (2nd ‘⟨{𝑙Q ∣ ∃𝑗N (𝑙 +Q (*Q‘[⟨𝑗, 1o⟩] ~Q )) <Q (𝐹𝑗)}, {𝑢Q ∣ ∃𝑗N ((𝐹𝑗) +Q (*Q‘[⟨𝑗, 1o⟩] ~Q )) <Q 𝑢}⟩)
29 nqex 7304 . . . . . . . . 9 Q ∈ V
3029rabex 4126 . . . . . . . 8 {𝑙Q ∣ ∃𝑗N (𝑙 +Q (*Q‘[⟨𝑗, 1o⟩] ~Q )) <Q (𝐹𝑗)} ∈ V
3129rabex 4126 . . . . . . . 8 {𝑢Q ∣ ∃𝑗N ((𝐹𝑗) +Q (*Q‘[⟨𝑗, 1o⟩] ~Q )) <Q 𝑢} ∈ V
3230, 31op2nd 6115 . . . . . . 7 (2nd ‘⟨{𝑙Q ∣ ∃𝑗N (𝑙 +Q (*Q‘[⟨𝑗, 1o⟩] ~Q )) <Q (𝐹𝑗)}, {𝑢Q ∣ ∃𝑗N ((𝐹𝑗) +Q (*Q‘[⟨𝑗, 1o⟩] ~Q )) <Q 𝑢}⟩) = {𝑢Q ∣ ∃𝑗N ((𝐹𝑗) +Q (*Q‘[⟨𝑗, 1o⟩] ~Q )) <Q 𝑢}
3328, 32eqtri 2186 . . . . . 6 (2nd𝐿) = {𝑢Q ∣ ∃𝑗N ((𝐹𝑗) +Q (*Q‘[⟨𝑗, 1o⟩] ~Q )) <Q 𝑢}
3426, 33elrab2 2885 . . . . 5 (𝑥 ∈ (2nd𝐿) ↔ (𝑥Q ∧ ∃𝑗N ((𝐹𝑗) +Q (*Q‘[⟨𝑗, 1o⟩] ~Q )) <Q 𝑥))
3514, 24, 34sylanbrc 414 . . . 4 ((𝜑 ∧ (𝑥Q ∧ (((𝐹𝐾) +Q (*Q‘[⟨𝐾, 1o⟩] ~Q )) <Q 𝑥𝑥 <Q ((𝐹𝐾) +Q 𝑄)))) → 𝑥 ∈ (2nd𝐿))
36 simprrr 530 . . . . . 6 ((𝜑 ∧ (𝑥Q ∧ (((𝐹𝐾) +Q (*Q‘[⟨𝐾, 1o⟩] ~Q )) <Q 𝑥𝑥 <Q ((𝐹𝐾) +Q 𝑄)))) → 𝑥 <Q ((𝐹𝐾) +Q 𝑄))
37 vex 2729 . . . . . . 7 𝑥 ∈ V
38 breq1 3985 . . . . . . 7 (𝑙 = 𝑥 → (𝑙 <Q ((𝐹𝐾) +Q 𝑄) ↔ 𝑥 <Q ((𝐹𝐾) +Q 𝑄)))
3937, 38elab 2870 . . . . . 6 (𝑥 ∈ {𝑙𝑙 <Q ((𝐹𝐾) +Q 𝑄)} ↔ 𝑥 <Q ((𝐹𝐾) +Q 𝑄))
4036, 39sylibr 133 . . . . 5 ((𝜑 ∧ (𝑥Q ∧ (((𝐹𝐾) +Q (*Q‘[⟨𝐾, 1o⟩] ~Q )) <Q 𝑥𝑥 <Q ((𝐹𝐾) +Q 𝑄)))) → 𝑥 ∈ {𝑙𝑙 <Q ((𝐹𝐾) +Q 𝑄)})
41 ltnqex 7490 . . . . . 6 {𝑙𝑙 <Q ((𝐹𝐾) +Q 𝑄)} ∈ V
42 gtnqex 7491 . . . . . 6 {𝑢 ∣ ((𝐹𝐾) +Q 𝑄) <Q 𝑢} ∈ V
4341, 42op1st 6114 . . . . 5 (1st ‘⟨{𝑙𝑙 <Q ((𝐹𝐾) +Q 𝑄)}, {𝑢 ∣ ((𝐹𝐾) +Q 𝑄) <Q 𝑢}⟩) = {𝑙𝑙 <Q ((𝐹𝐾) +Q 𝑄)}
4440, 43eleqtrrdi 2260 . . . 4 ((𝜑 ∧ (𝑥Q ∧ (((𝐹𝐾) +Q (*Q‘[⟨𝐾, 1o⟩] ~Q )) <Q 𝑥𝑥 <Q ((𝐹𝐾) +Q 𝑄)))) → 𝑥 ∈ (1st ‘⟨{𝑙𝑙 <Q ((𝐹𝐾) +Q 𝑄)}, {𝑢 ∣ ((𝐹𝐾) +Q 𝑄) <Q 𝑢}⟩))
45 rspe 2515 . . . 4 ((𝑥Q ∧ (𝑥 ∈ (2nd𝐿) ∧ 𝑥 ∈ (1st ‘⟨{𝑙𝑙 <Q ((𝐹𝐾) +Q 𝑄)}, {𝑢 ∣ ((𝐹𝐾) +Q 𝑄) <Q 𝑢}⟩))) → ∃𝑥Q (𝑥 ∈ (2nd𝐿) ∧ 𝑥 ∈ (1st ‘⟨{𝑙𝑙 <Q ((𝐹𝐾) +Q 𝑄)}, {𝑢 ∣ ((𝐹𝐾) +Q 𝑄) <Q 𝑢}⟩)))
4614, 35, 44, 45syl12anc 1226 . . 3 ((𝜑 ∧ (𝑥Q ∧ (((𝐹𝐾) +Q (*Q‘[⟨𝐾, 1o⟩] ~Q )) <Q 𝑥𝑥 <Q ((𝐹𝐾) +Q 𝑄)))) → ∃𝑥Q (𝑥 ∈ (2nd𝐿) ∧ 𝑥 ∈ (1st ‘⟨{𝑙𝑙 <Q ((𝐹𝐾) +Q 𝑄)}, {𝑢 ∣ ((𝐹𝐾) +Q 𝑄) <Q 𝑢}⟩)))
47 caucvgpr.cau . . . . . 6 (𝜑 → ∀𝑛N𝑘N (𝑛 <N 𝑘 → ((𝐹𝑛) <Q ((𝐹𝑘) +Q (*Q‘[⟨𝑛, 1o⟩] ~Q )) ∧ (𝐹𝑘) <Q ((𝐹𝑛) +Q (*Q‘[⟨𝑛, 1o⟩] ~Q )))))
48 caucvgpr.bnd . . . . . 6 (𝜑 → ∀𝑗N 𝐴 <Q (𝐹𝑗))
494, 47, 48, 27caucvgprlemcl 7617 . . . . 5 (𝜑𝐿P)
5049adantr 274 . . . 4 ((𝜑 ∧ (𝑥Q ∧ (((𝐹𝐾) +Q (*Q‘[⟨𝐾, 1o⟩] ~Q )) <Q 𝑥𝑥 <Q ((𝐹𝐾) +Q 𝑄)))) → 𝐿P)
51 caucvgprlemlim.q . . . . . . 7 (𝜑𝑄Q)
52 addclnq 7316 . . . . . . 7 (((𝐹𝐾) ∈ Q𝑄Q) → ((𝐹𝐾) +Q 𝑄) ∈ Q)
539, 51, 52syl2anc 409 . . . . . 6 (𝜑 → ((𝐹𝐾) +Q 𝑄) ∈ Q)
54 nqprlu 7488 . . . . . 6 (((𝐹𝐾) +Q 𝑄) ∈ Q → ⟨{𝑙𝑙 <Q ((𝐹𝐾) +Q 𝑄)}, {𝑢 ∣ ((𝐹𝐾) +Q 𝑄) <Q 𝑢}⟩ ∈ P)
5553, 54syl 14 . . . . 5 (𝜑 → ⟨{𝑙𝑙 <Q ((𝐹𝐾) +Q 𝑄)}, {𝑢 ∣ ((𝐹𝐾) +Q 𝑄) <Q 𝑢}⟩ ∈ P)
5655adantr 274 . . . 4 ((𝜑 ∧ (𝑥Q ∧ (((𝐹𝐾) +Q (*Q‘[⟨𝐾, 1o⟩] ~Q )) <Q 𝑥𝑥 <Q ((𝐹𝐾) +Q 𝑄)))) → ⟨{𝑙𝑙 <Q ((𝐹𝐾) +Q 𝑄)}, {𝑢 ∣ ((𝐹𝐾) +Q 𝑄) <Q 𝑢}⟩ ∈ P)
57 ltdfpr 7447 . . . 4 ((𝐿P ∧ ⟨{𝑙𝑙 <Q ((𝐹𝐾) +Q 𝑄)}, {𝑢 ∣ ((𝐹𝐾) +Q 𝑄) <Q 𝑢}⟩ ∈ P) → (𝐿<P ⟨{𝑙𝑙 <Q ((𝐹𝐾) +Q 𝑄)}, {𝑢 ∣ ((𝐹𝐾) +Q 𝑄) <Q 𝑢}⟩ ↔ ∃𝑥Q (𝑥 ∈ (2nd𝐿) ∧ 𝑥 ∈ (1st ‘⟨{𝑙𝑙 <Q ((𝐹𝐾) +Q 𝑄)}, {𝑢 ∣ ((𝐹𝐾) +Q 𝑄) <Q 𝑢}⟩))))
5850, 56, 57syl2anc 409 . . 3 ((𝜑 ∧ (𝑥Q ∧ (((𝐹𝐾) +Q (*Q‘[⟨𝐾, 1o⟩] ~Q )) <Q 𝑥𝑥 <Q ((𝐹𝐾) +Q 𝑄)))) → (𝐿<P ⟨{𝑙𝑙 <Q ((𝐹𝐾) +Q 𝑄)}, {𝑢 ∣ ((𝐹𝐾) +Q 𝑄) <Q 𝑢}⟩ ↔ ∃𝑥Q (𝑥 ∈ (2nd𝐿) ∧ 𝑥 ∈ (1st ‘⟨{𝑙𝑙 <Q ((𝐹𝐾) +Q 𝑄)}, {𝑢 ∣ ((𝐹𝐾) +Q 𝑄) <Q 𝑢}⟩))))
5946, 58mpbird 166 . 2 ((𝜑 ∧ (𝑥Q ∧ (((𝐹𝐾) +Q (*Q‘[⟨𝐾, 1o⟩] ~Q )) <Q 𝑥𝑥 <Q ((𝐹𝐾) +Q 𝑄)))) → 𝐿<P ⟨{𝑙𝑙 <Q ((𝐹𝐾) +Q 𝑄)}, {𝑢 ∣ ((𝐹𝐾) +Q 𝑄) <Q 𝑢}⟩)
6013, 59rexlimddv 2588 1 (𝜑𝐿<P ⟨{𝑙𝑙 <Q ((𝐹𝐾) +Q 𝑄)}, {𝑢 ∣ ((𝐹𝐾) +Q 𝑄) <Q 𝑢}⟩)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wb 104   = wceq 1343  wcel 2136  {cab 2151  wral 2444  wrex 2445  {crab 2448  cop 3579   class class class wbr 3982  wf 5184  cfv 5188  (class class class)co 5842  1st c1st 6106  2nd c2nd 6107  1oc1o 6377  [cec 6499  Ncnpi 7213   <N clti 7216   ~Q ceq 7220  Qcnq 7221   +Q cplq 7223  *Qcrq 7225   <Q cltq 7226  Pcnp 7232  <P cltp 7236
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-13 2138  ax-14 2139  ax-ext 2147  ax-coll 4097  ax-sep 4100  ax-nul 4108  ax-pow 4153  ax-pr 4187  ax-un 4411  ax-setind 4514  ax-iinf 4565
This theorem depends on definitions:  df-bi 116  df-dc 825  df-3or 969  df-3an 970  df-tru 1346  df-fal 1349  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ne 2337  df-ral 2449  df-rex 2450  df-reu 2451  df-rab 2453  df-v 2728  df-sbc 2952  df-csb 3046  df-dif 3118  df-un 3120  df-in 3122  df-ss 3129  df-nul 3410  df-pw 3561  df-sn 3582  df-pr 3583  df-op 3585  df-uni 3790  df-int 3825  df-iun 3868  df-br 3983  df-opab 4044  df-mpt 4045  df-tr 4081  df-eprel 4267  df-id 4271  df-po 4274  df-iso 4275  df-iord 4344  df-on 4346  df-suc 4349  df-iom 4568  df-xp 4610  df-rel 4611  df-cnv 4612  df-co 4613  df-dm 4614  df-rn 4615  df-res 4616  df-ima 4617  df-iota 5153  df-fun 5190  df-fn 5191  df-f 5192  df-f1 5193  df-fo 5194  df-f1o 5195  df-fv 5196  df-ov 5845  df-oprab 5846  df-mpo 5847  df-1st 6108  df-2nd 6109  df-recs 6273  df-irdg 6338  df-1o 6384  df-oadd 6388  df-omul 6389  df-er 6501  df-ec 6503  df-qs 6507  df-ni 7245  df-pli 7246  df-mi 7247  df-lti 7248  df-plpq 7285  df-mpq 7286  df-enq 7288  df-nqqs 7289  df-plqqs 7290  df-mqqs 7291  df-1nqqs 7292  df-rq 7293  df-ltnqqs 7294  df-inp 7407  df-iltp 7411
This theorem is referenced by:  caucvgprlemlim  7622
  Copyright terms: Public domain W3C validator