ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  caucvgprlem2 GIF version

Theorem caucvgprlem2 7704
Description: Lemma for caucvgpr 7706. Part of showing the putative limit to be a limit. (Contributed by Jim Kingdon, 3-Oct-2020.)
Hypotheses
Ref Expression
caucvgpr.f (𝜑𝐹:NQ)
caucvgpr.cau (𝜑 → ∀𝑛N𝑘N (𝑛 <N 𝑘 → ((𝐹𝑛) <Q ((𝐹𝑘) +Q (*Q‘[⟨𝑛, 1o⟩] ~Q )) ∧ (𝐹𝑘) <Q ((𝐹𝑛) +Q (*Q‘[⟨𝑛, 1o⟩] ~Q )))))
caucvgpr.bnd (𝜑 → ∀𝑗N 𝐴 <Q (𝐹𝑗))
caucvgpr.lim 𝐿 = ⟨{𝑙Q ∣ ∃𝑗N (𝑙 +Q (*Q‘[⟨𝑗, 1o⟩] ~Q )) <Q (𝐹𝑗)}, {𝑢Q ∣ ∃𝑗N ((𝐹𝑗) +Q (*Q‘[⟨𝑗, 1o⟩] ~Q )) <Q 𝑢}⟩
caucvgprlemlim.q (𝜑𝑄Q)
caucvgprlemlim.jk (𝜑𝐽 <N 𝐾)
caucvgprlemlim.jkq (𝜑 → (*Q‘[⟨𝐽, 1o⟩] ~Q ) <Q 𝑄)
Assertion
Ref Expression
caucvgprlem2 (𝜑𝐿<P ⟨{𝑙𝑙 <Q ((𝐹𝐾) +Q 𝑄)}, {𝑢 ∣ ((𝐹𝐾) +Q 𝑄) <Q 𝑢}⟩)
Distinct variable groups:   𝐴,𝑗   𝑗,𝐹,𝑢,𝑙   𝑛,𝐹,𝑘   𝑗,𝐾,𝑢,𝑙   𝑗,𝐿,𝑘   𝑄,𝑙,𝑢   𝑗,𝑙   𝑗,𝑘   𝑘,𝑛
Allowed substitution hints:   𝜑(𝑢,𝑗,𝑘,𝑛,𝑙)   𝐴(𝑢,𝑘,𝑛,𝑙)   𝑄(𝑗,𝑘,𝑛)   𝐽(𝑢,𝑗,𝑘,𝑛,𝑙)   𝐾(𝑘,𝑛)   𝐿(𝑢,𝑛,𝑙)

Proof of Theorem caucvgprlem2
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 caucvgprlemlim.jk . . . . 5 (𝜑𝐽 <N 𝐾)
2 caucvgprlemlim.jkq . . . . 5 (𝜑 → (*Q‘[⟨𝐽, 1o⟩] ~Q ) <Q 𝑄)
31, 2caucvgprlemk 7689 . . . 4 (𝜑 → (*Q‘[⟨𝐾, 1o⟩] ~Q ) <Q 𝑄)
4 caucvgpr.f . . . . 5 (𝜑𝐹:NQ)
5 ltrelpi 7348 . . . . . . . 8 <N ⊆ (N × N)
65brel 4693 . . . . . . 7 (𝐽 <N 𝐾 → (𝐽N𝐾N))
71, 6syl 14 . . . . . 6 (𝜑 → (𝐽N𝐾N))
87simprd 114 . . . . 5 (𝜑𝐾N)
94, 8ffvelcdmd 5669 . . . 4 (𝜑 → (𝐹𝐾) ∈ Q)
10 ltanqi 7426 . . . 4 (((*Q‘[⟨𝐾, 1o⟩] ~Q ) <Q 𝑄 ∧ (𝐹𝐾) ∈ Q) → ((𝐹𝐾) +Q (*Q‘[⟨𝐾, 1o⟩] ~Q )) <Q ((𝐹𝐾) +Q 𝑄))
113, 9, 10syl2anc 411 . . 3 (𝜑 → ((𝐹𝐾) +Q (*Q‘[⟨𝐾, 1o⟩] ~Q )) <Q ((𝐹𝐾) +Q 𝑄))
12 ltbtwnnqq 7439 . . 3 (((𝐹𝐾) +Q (*Q‘[⟨𝐾, 1o⟩] ~Q )) <Q ((𝐹𝐾) +Q 𝑄) ↔ ∃𝑥Q (((𝐹𝐾) +Q (*Q‘[⟨𝐾, 1o⟩] ~Q )) <Q 𝑥𝑥 <Q ((𝐹𝐾) +Q 𝑄)))
1311, 12sylib 122 . 2 (𝜑 → ∃𝑥Q (((𝐹𝐾) +Q (*Q‘[⟨𝐾, 1o⟩] ~Q )) <Q 𝑥𝑥 <Q ((𝐹𝐾) +Q 𝑄)))
14 simprl 529 . . . 4 ((𝜑 ∧ (𝑥Q ∧ (((𝐹𝐾) +Q (*Q‘[⟨𝐾, 1o⟩] ~Q )) <Q 𝑥𝑥 <Q ((𝐹𝐾) +Q 𝑄)))) → 𝑥Q)
158adantr 276 . . . . . 6 ((𝜑 ∧ (𝑥Q ∧ (((𝐹𝐾) +Q (*Q‘[⟨𝐾, 1o⟩] ~Q )) <Q 𝑥𝑥 <Q ((𝐹𝐾) +Q 𝑄)))) → 𝐾N)
16 simprrl 539 . . . . . 6 ((𝜑 ∧ (𝑥Q ∧ (((𝐹𝐾) +Q (*Q‘[⟨𝐾, 1o⟩] ~Q )) <Q 𝑥𝑥 <Q ((𝐹𝐾) +Q 𝑄)))) → ((𝐹𝐾) +Q (*Q‘[⟨𝐾, 1o⟩] ~Q )) <Q 𝑥)
17 fveq2 5531 . . . . . . . . 9 (𝑗 = 𝐾 → (𝐹𝑗) = (𝐹𝐾))
18 opeq1 3793 . . . . . . . . . . 11 (𝑗 = 𝐾 → ⟨𝑗, 1o⟩ = ⟨𝐾, 1o⟩)
1918eceq1d 6590 . . . . . . . . . 10 (𝑗 = 𝐾 → [⟨𝑗, 1o⟩] ~Q = [⟨𝐾, 1o⟩] ~Q )
2019fveq2d 5535 . . . . . . . . 9 (𝑗 = 𝐾 → (*Q‘[⟨𝑗, 1o⟩] ~Q ) = (*Q‘[⟨𝐾, 1o⟩] ~Q ))
2117, 20oveq12d 5910 . . . . . . . 8 (𝑗 = 𝐾 → ((𝐹𝑗) +Q (*Q‘[⟨𝑗, 1o⟩] ~Q )) = ((𝐹𝐾) +Q (*Q‘[⟨𝐾, 1o⟩] ~Q )))
2221breq1d 4028 . . . . . . 7 (𝑗 = 𝐾 → (((𝐹𝑗) +Q (*Q‘[⟨𝑗, 1o⟩] ~Q )) <Q 𝑥 ↔ ((𝐹𝐾) +Q (*Q‘[⟨𝐾, 1o⟩] ~Q )) <Q 𝑥))
2322rspcev 2856 . . . . . 6 ((𝐾N ∧ ((𝐹𝐾) +Q (*Q‘[⟨𝐾, 1o⟩] ~Q )) <Q 𝑥) → ∃𝑗N ((𝐹𝑗) +Q (*Q‘[⟨𝑗, 1o⟩] ~Q )) <Q 𝑥)
2415, 16, 23syl2anc 411 . . . . 5 ((𝜑 ∧ (𝑥Q ∧ (((𝐹𝐾) +Q (*Q‘[⟨𝐾, 1o⟩] ~Q )) <Q 𝑥𝑥 <Q ((𝐹𝐾) +Q 𝑄)))) → ∃𝑗N ((𝐹𝑗) +Q (*Q‘[⟨𝑗, 1o⟩] ~Q )) <Q 𝑥)
25 breq2 4022 . . . . . . 7 (𝑢 = 𝑥 → (((𝐹𝑗) +Q (*Q‘[⟨𝑗, 1o⟩] ~Q )) <Q 𝑢 ↔ ((𝐹𝑗) +Q (*Q‘[⟨𝑗, 1o⟩] ~Q )) <Q 𝑥))
2625rexbidv 2491 . . . . . 6 (𝑢 = 𝑥 → (∃𝑗N ((𝐹𝑗) +Q (*Q‘[⟨𝑗, 1o⟩] ~Q )) <Q 𝑢 ↔ ∃𝑗N ((𝐹𝑗) +Q (*Q‘[⟨𝑗, 1o⟩] ~Q )) <Q 𝑥))
27 caucvgpr.lim . . . . . . . 8 𝐿 = ⟨{𝑙Q ∣ ∃𝑗N (𝑙 +Q (*Q‘[⟨𝑗, 1o⟩] ~Q )) <Q (𝐹𝑗)}, {𝑢Q ∣ ∃𝑗N ((𝐹𝑗) +Q (*Q‘[⟨𝑗, 1o⟩] ~Q )) <Q 𝑢}⟩
2827fveq2i 5534 . . . . . . 7 (2nd𝐿) = (2nd ‘⟨{𝑙Q ∣ ∃𝑗N (𝑙 +Q (*Q‘[⟨𝑗, 1o⟩] ~Q )) <Q (𝐹𝑗)}, {𝑢Q ∣ ∃𝑗N ((𝐹𝑗) +Q (*Q‘[⟨𝑗, 1o⟩] ~Q )) <Q 𝑢}⟩)
29 nqex 7387 . . . . . . . . 9 Q ∈ V
3029rabex 4162 . . . . . . . 8 {𝑙Q ∣ ∃𝑗N (𝑙 +Q (*Q‘[⟨𝑗, 1o⟩] ~Q )) <Q (𝐹𝑗)} ∈ V
3129rabex 4162 . . . . . . . 8 {𝑢Q ∣ ∃𝑗N ((𝐹𝑗) +Q (*Q‘[⟨𝑗, 1o⟩] ~Q )) <Q 𝑢} ∈ V
3230, 31op2nd 6167 . . . . . . 7 (2nd ‘⟨{𝑙Q ∣ ∃𝑗N (𝑙 +Q (*Q‘[⟨𝑗, 1o⟩] ~Q )) <Q (𝐹𝑗)}, {𝑢Q ∣ ∃𝑗N ((𝐹𝑗) +Q (*Q‘[⟨𝑗, 1o⟩] ~Q )) <Q 𝑢}⟩) = {𝑢Q ∣ ∃𝑗N ((𝐹𝑗) +Q (*Q‘[⟨𝑗, 1o⟩] ~Q )) <Q 𝑢}
3328, 32eqtri 2210 . . . . . 6 (2nd𝐿) = {𝑢Q ∣ ∃𝑗N ((𝐹𝑗) +Q (*Q‘[⟨𝑗, 1o⟩] ~Q )) <Q 𝑢}
3426, 33elrab2 2911 . . . . 5 (𝑥 ∈ (2nd𝐿) ↔ (𝑥Q ∧ ∃𝑗N ((𝐹𝑗) +Q (*Q‘[⟨𝑗, 1o⟩] ~Q )) <Q 𝑥))
3514, 24, 34sylanbrc 417 . . . 4 ((𝜑 ∧ (𝑥Q ∧ (((𝐹𝐾) +Q (*Q‘[⟨𝐾, 1o⟩] ~Q )) <Q 𝑥𝑥 <Q ((𝐹𝐾) +Q 𝑄)))) → 𝑥 ∈ (2nd𝐿))
36 simprrr 540 . . . . . 6 ((𝜑 ∧ (𝑥Q ∧ (((𝐹𝐾) +Q (*Q‘[⟨𝐾, 1o⟩] ~Q )) <Q 𝑥𝑥 <Q ((𝐹𝐾) +Q 𝑄)))) → 𝑥 <Q ((𝐹𝐾) +Q 𝑄))
37 vex 2755 . . . . . . 7 𝑥 ∈ V
38 breq1 4021 . . . . . . 7 (𝑙 = 𝑥 → (𝑙 <Q ((𝐹𝐾) +Q 𝑄) ↔ 𝑥 <Q ((𝐹𝐾) +Q 𝑄)))
3937, 38elab 2896 . . . . . 6 (𝑥 ∈ {𝑙𝑙 <Q ((𝐹𝐾) +Q 𝑄)} ↔ 𝑥 <Q ((𝐹𝐾) +Q 𝑄))
4036, 39sylibr 134 . . . . 5 ((𝜑 ∧ (𝑥Q ∧ (((𝐹𝐾) +Q (*Q‘[⟨𝐾, 1o⟩] ~Q )) <Q 𝑥𝑥 <Q ((𝐹𝐾) +Q 𝑄)))) → 𝑥 ∈ {𝑙𝑙 <Q ((𝐹𝐾) +Q 𝑄)})
41 ltnqex 7573 . . . . . 6 {𝑙𝑙 <Q ((𝐹𝐾) +Q 𝑄)} ∈ V
42 gtnqex 7574 . . . . . 6 {𝑢 ∣ ((𝐹𝐾) +Q 𝑄) <Q 𝑢} ∈ V
4341, 42op1st 6166 . . . . 5 (1st ‘⟨{𝑙𝑙 <Q ((𝐹𝐾) +Q 𝑄)}, {𝑢 ∣ ((𝐹𝐾) +Q 𝑄) <Q 𝑢}⟩) = {𝑙𝑙 <Q ((𝐹𝐾) +Q 𝑄)}
4440, 43eleqtrrdi 2283 . . . 4 ((𝜑 ∧ (𝑥Q ∧ (((𝐹𝐾) +Q (*Q‘[⟨𝐾, 1o⟩] ~Q )) <Q 𝑥𝑥 <Q ((𝐹𝐾) +Q 𝑄)))) → 𝑥 ∈ (1st ‘⟨{𝑙𝑙 <Q ((𝐹𝐾) +Q 𝑄)}, {𝑢 ∣ ((𝐹𝐾) +Q 𝑄) <Q 𝑢}⟩))
45 rspe 2539 . . . 4 ((𝑥Q ∧ (𝑥 ∈ (2nd𝐿) ∧ 𝑥 ∈ (1st ‘⟨{𝑙𝑙 <Q ((𝐹𝐾) +Q 𝑄)}, {𝑢 ∣ ((𝐹𝐾) +Q 𝑄) <Q 𝑢}⟩))) → ∃𝑥Q (𝑥 ∈ (2nd𝐿) ∧ 𝑥 ∈ (1st ‘⟨{𝑙𝑙 <Q ((𝐹𝐾) +Q 𝑄)}, {𝑢 ∣ ((𝐹𝐾) +Q 𝑄) <Q 𝑢}⟩)))
4614, 35, 44, 45syl12anc 1247 . . 3 ((𝜑 ∧ (𝑥Q ∧ (((𝐹𝐾) +Q (*Q‘[⟨𝐾, 1o⟩] ~Q )) <Q 𝑥𝑥 <Q ((𝐹𝐾) +Q 𝑄)))) → ∃𝑥Q (𝑥 ∈ (2nd𝐿) ∧ 𝑥 ∈ (1st ‘⟨{𝑙𝑙 <Q ((𝐹𝐾) +Q 𝑄)}, {𝑢 ∣ ((𝐹𝐾) +Q 𝑄) <Q 𝑢}⟩)))
47 caucvgpr.cau . . . . . 6 (𝜑 → ∀𝑛N𝑘N (𝑛 <N 𝑘 → ((𝐹𝑛) <Q ((𝐹𝑘) +Q (*Q‘[⟨𝑛, 1o⟩] ~Q )) ∧ (𝐹𝑘) <Q ((𝐹𝑛) +Q (*Q‘[⟨𝑛, 1o⟩] ~Q )))))
48 caucvgpr.bnd . . . . . 6 (𝜑 → ∀𝑗N 𝐴 <Q (𝐹𝑗))
494, 47, 48, 27caucvgprlemcl 7700 . . . . 5 (𝜑𝐿P)
5049adantr 276 . . . 4 ((𝜑 ∧ (𝑥Q ∧ (((𝐹𝐾) +Q (*Q‘[⟨𝐾, 1o⟩] ~Q )) <Q 𝑥𝑥 <Q ((𝐹𝐾) +Q 𝑄)))) → 𝐿P)
51 caucvgprlemlim.q . . . . . . 7 (𝜑𝑄Q)
52 addclnq 7399 . . . . . . 7 (((𝐹𝐾) ∈ Q𝑄Q) → ((𝐹𝐾) +Q 𝑄) ∈ Q)
539, 51, 52syl2anc 411 . . . . . 6 (𝜑 → ((𝐹𝐾) +Q 𝑄) ∈ Q)
54 nqprlu 7571 . . . . . 6 (((𝐹𝐾) +Q 𝑄) ∈ Q → ⟨{𝑙𝑙 <Q ((𝐹𝐾) +Q 𝑄)}, {𝑢 ∣ ((𝐹𝐾) +Q 𝑄) <Q 𝑢}⟩ ∈ P)
5553, 54syl 14 . . . . 5 (𝜑 → ⟨{𝑙𝑙 <Q ((𝐹𝐾) +Q 𝑄)}, {𝑢 ∣ ((𝐹𝐾) +Q 𝑄) <Q 𝑢}⟩ ∈ P)
5655adantr 276 . . . 4 ((𝜑 ∧ (𝑥Q ∧ (((𝐹𝐾) +Q (*Q‘[⟨𝐾, 1o⟩] ~Q )) <Q 𝑥𝑥 <Q ((𝐹𝐾) +Q 𝑄)))) → ⟨{𝑙𝑙 <Q ((𝐹𝐾) +Q 𝑄)}, {𝑢 ∣ ((𝐹𝐾) +Q 𝑄) <Q 𝑢}⟩ ∈ P)
57 ltdfpr 7530 . . . 4 ((𝐿P ∧ ⟨{𝑙𝑙 <Q ((𝐹𝐾) +Q 𝑄)}, {𝑢 ∣ ((𝐹𝐾) +Q 𝑄) <Q 𝑢}⟩ ∈ P) → (𝐿<P ⟨{𝑙𝑙 <Q ((𝐹𝐾) +Q 𝑄)}, {𝑢 ∣ ((𝐹𝐾) +Q 𝑄) <Q 𝑢}⟩ ↔ ∃𝑥Q (𝑥 ∈ (2nd𝐿) ∧ 𝑥 ∈ (1st ‘⟨{𝑙𝑙 <Q ((𝐹𝐾) +Q 𝑄)}, {𝑢 ∣ ((𝐹𝐾) +Q 𝑄) <Q 𝑢}⟩))))
5850, 56, 57syl2anc 411 . . 3 ((𝜑 ∧ (𝑥Q ∧ (((𝐹𝐾) +Q (*Q‘[⟨𝐾, 1o⟩] ~Q )) <Q 𝑥𝑥 <Q ((𝐹𝐾) +Q 𝑄)))) → (𝐿<P ⟨{𝑙𝑙 <Q ((𝐹𝐾) +Q 𝑄)}, {𝑢 ∣ ((𝐹𝐾) +Q 𝑄) <Q 𝑢}⟩ ↔ ∃𝑥Q (𝑥 ∈ (2nd𝐿) ∧ 𝑥 ∈ (1st ‘⟨{𝑙𝑙 <Q ((𝐹𝐾) +Q 𝑄)}, {𝑢 ∣ ((𝐹𝐾) +Q 𝑄) <Q 𝑢}⟩))))
5946, 58mpbird 167 . 2 ((𝜑 ∧ (𝑥Q ∧ (((𝐹𝐾) +Q (*Q‘[⟨𝐾, 1o⟩] ~Q )) <Q 𝑥𝑥 <Q ((𝐹𝐾) +Q 𝑄)))) → 𝐿<P ⟨{𝑙𝑙 <Q ((𝐹𝐾) +Q 𝑄)}, {𝑢 ∣ ((𝐹𝐾) +Q 𝑄) <Q 𝑢}⟩)
6013, 59rexlimddv 2612 1 (𝜑𝐿<P ⟨{𝑙𝑙 <Q ((𝐹𝐾) +Q 𝑄)}, {𝑢 ∣ ((𝐹𝐾) +Q 𝑄) <Q 𝑢}⟩)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105   = wceq 1364  wcel 2160  {cab 2175  wral 2468  wrex 2469  {crab 2472  cop 3610   class class class wbr 4018  wf 5228  cfv 5232  (class class class)co 5892  1st c1st 6158  2nd c2nd 6159  1oc1o 6429  [cec 6552  Ncnpi 7296   <N clti 7299   ~Q ceq 7303  Qcnq 7304   +Q cplq 7306  *Qcrq 7308   <Q cltq 7309  Pcnp 7315  <P cltp 7319
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2162  ax-14 2163  ax-ext 2171  ax-coll 4133  ax-sep 4136  ax-nul 4144  ax-pow 4189  ax-pr 4224  ax-un 4448  ax-setind 4551  ax-iinf 4602
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2041  df-mo 2042  df-clab 2176  df-cleq 2182  df-clel 2185  df-nfc 2321  df-ne 2361  df-ral 2473  df-rex 2474  df-reu 2475  df-rab 2477  df-v 2754  df-sbc 2978  df-csb 3073  df-dif 3146  df-un 3148  df-in 3150  df-ss 3157  df-nul 3438  df-pw 3592  df-sn 3613  df-pr 3614  df-op 3616  df-uni 3825  df-int 3860  df-iun 3903  df-br 4019  df-opab 4080  df-mpt 4081  df-tr 4117  df-eprel 4304  df-id 4308  df-po 4311  df-iso 4312  df-iord 4381  df-on 4383  df-suc 4386  df-iom 4605  df-xp 4647  df-rel 4648  df-cnv 4649  df-co 4650  df-dm 4651  df-rn 4652  df-res 4653  df-ima 4654  df-iota 5193  df-fun 5234  df-fn 5235  df-f 5236  df-f1 5237  df-fo 5238  df-f1o 5239  df-fv 5240  df-ov 5895  df-oprab 5896  df-mpo 5897  df-1st 6160  df-2nd 6161  df-recs 6325  df-irdg 6390  df-1o 6436  df-oadd 6440  df-omul 6441  df-er 6554  df-ec 6556  df-qs 6560  df-ni 7328  df-pli 7329  df-mi 7330  df-lti 7331  df-plpq 7368  df-mpq 7369  df-enq 7371  df-nqqs 7372  df-plqqs 7373  df-mqqs 7374  df-1nqqs 7375  df-rq 7376  df-ltnqqs 7377  df-inp 7490  df-iltp 7494
This theorem is referenced by:  caucvgprlemlim  7705
  Copyright terms: Public domain W3C validator