ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  caucvgprlem2 GIF version

Theorem caucvgprlem2 7855
Description: Lemma for caucvgpr 7857. Part of showing the putative limit to be a limit. (Contributed by Jim Kingdon, 3-Oct-2020.)
Hypotheses
Ref Expression
caucvgpr.f (𝜑𝐹:NQ)
caucvgpr.cau (𝜑 → ∀𝑛N𝑘N (𝑛 <N 𝑘 → ((𝐹𝑛) <Q ((𝐹𝑘) +Q (*Q‘[⟨𝑛, 1o⟩] ~Q )) ∧ (𝐹𝑘) <Q ((𝐹𝑛) +Q (*Q‘[⟨𝑛, 1o⟩] ~Q )))))
caucvgpr.bnd (𝜑 → ∀𝑗N 𝐴 <Q (𝐹𝑗))
caucvgpr.lim 𝐿 = ⟨{𝑙Q ∣ ∃𝑗N (𝑙 +Q (*Q‘[⟨𝑗, 1o⟩] ~Q )) <Q (𝐹𝑗)}, {𝑢Q ∣ ∃𝑗N ((𝐹𝑗) +Q (*Q‘[⟨𝑗, 1o⟩] ~Q )) <Q 𝑢}⟩
caucvgprlemlim.q (𝜑𝑄Q)
caucvgprlemlim.jk (𝜑𝐽 <N 𝐾)
caucvgprlemlim.jkq (𝜑 → (*Q‘[⟨𝐽, 1o⟩] ~Q ) <Q 𝑄)
Assertion
Ref Expression
caucvgprlem2 (𝜑𝐿<P ⟨{𝑙𝑙 <Q ((𝐹𝐾) +Q 𝑄)}, {𝑢 ∣ ((𝐹𝐾) +Q 𝑄) <Q 𝑢}⟩)
Distinct variable groups:   𝐴,𝑗   𝑗,𝐹,𝑢,𝑙   𝑛,𝐹,𝑘   𝑗,𝐾,𝑢,𝑙   𝑗,𝐿,𝑘   𝑄,𝑙,𝑢   𝑗,𝑙   𝑗,𝑘   𝑘,𝑛
Allowed substitution hints:   𝜑(𝑢,𝑗,𝑘,𝑛,𝑙)   𝐴(𝑢,𝑘,𝑛,𝑙)   𝑄(𝑗,𝑘,𝑛)   𝐽(𝑢,𝑗,𝑘,𝑛,𝑙)   𝐾(𝑘,𝑛)   𝐿(𝑢,𝑛,𝑙)

Proof of Theorem caucvgprlem2
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 caucvgprlemlim.jk . . . . 5 (𝜑𝐽 <N 𝐾)
2 caucvgprlemlim.jkq . . . . 5 (𝜑 → (*Q‘[⟨𝐽, 1o⟩] ~Q ) <Q 𝑄)
31, 2caucvgprlemk 7840 . . . 4 (𝜑 → (*Q‘[⟨𝐾, 1o⟩] ~Q ) <Q 𝑄)
4 caucvgpr.f . . . . 5 (𝜑𝐹:NQ)
5 ltrelpi 7499 . . . . . . . 8 <N ⊆ (N × N)
65brel 4768 . . . . . . 7 (𝐽 <N 𝐾 → (𝐽N𝐾N))
71, 6syl 14 . . . . . 6 (𝜑 → (𝐽N𝐾N))
87simprd 114 . . . . 5 (𝜑𝐾N)
94, 8ffvelcdmd 5764 . . . 4 (𝜑 → (𝐹𝐾) ∈ Q)
10 ltanqi 7577 . . . 4 (((*Q‘[⟨𝐾, 1o⟩] ~Q ) <Q 𝑄 ∧ (𝐹𝐾) ∈ Q) → ((𝐹𝐾) +Q (*Q‘[⟨𝐾, 1o⟩] ~Q )) <Q ((𝐹𝐾) +Q 𝑄))
113, 9, 10syl2anc 411 . . 3 (𝜑 → ((𝐹𝐾) +Q (*Q‘[⟨𝐾, 1o⟩] ~Q )) <Q ((𝐹𝐾) +Q 𝑄))
12 ltbtwnnqq 7590 . . 3 (((𝐹𝐾) +Q (*Q‘[⟨𝐾, 1o⟩] ~Q )) <Q ((𝐹𝐾) +Q 𝑄) ↔ ∃𝑥Q (((𝐹𝐾) +Q (*Q‘[⟨𝐾, 1o⟩] ~Q )) <Q 𝑥𝑥 <Q ((𝐹𝐾) +Q 𝑄)))
1311, 12sylib 122 . 2 (𝜑 → ∃𝑥Q (((𝐹𝐾) +Q (*Q‘[⟨𝐾, 1o⟩] ~Q )) <Q 𝑥𝑥 <Q ((𝐹𝐾) +Q 𝑄)))
14 simprl 529 . . . 4 ((𝜑 ∧ (𝑥Q ∧ (((𝐹𝐾) +Q (*Q‘[⟨𝐾, 1o⟩] ~Q )) <Q 𝑥𝑥 <Q ((𝐹𝐾) +Q 𝑄)))) → 𝑥Q)
158adantr 276 . . . . . 6 ((𝜑 ∧ (𝑥Q ∧ (((𝐹𝐾) +Q (*Q‘[⟨𝐾, 1o⟩] ~Q )) <Q 𝑥𝑥 <Q ((𝐹𝐾) +Q 𝑄)))) → 𝐾N)
16 simprrl 539 . . . . . 6 ((𝜑 ∧ (𝑥Q ∧ (((𝐹𝐾) +Q (*Q‘[⟨𝐾, 1o⟩] ~Q )) <Q 𝑥𝑥 <Q ((𝐹𝐾) +Q 𝑄)))) → ((𝐹𝐾) +Q (*Q‘[⟨𝐾, 1o⟩] ~Q )) <Q 𝑥)
17 fveq2 5623 . . . . . . . . 9 (𝑗 = 𝐾 → (𝐹𝑗) = (𝐹𝐾))
18 opeq1 3856 . . . . . . . . . . 11 (𝑗 = 𝐾 → ⟨𝑗, 1o⟩ = ⟨𝐾, 1o⟩)
1918eceq1d 6706 . . . . . . . . . 10 (𝑗 = 𝐾 → [⟨𝑗, 1o⟩] ~Q = [⟨𝐾, 1o⟩] ~Q )
2019fveq2d 5627 . . . . . . . . 9 (𝑗 = 𝐾 → (*Q‘[⟨𝑗, 1o⟩] ~Q ) = (*Q‘[⟨𝐾, 1o⟩] ~Q ))
2117, 20oveq12d 6012 . . . . . . . 8 (𝑗 = 𝐾 → ((𝐹𝑗) +Q (*Q‘[⟨𝑗, 1o⟩] ~Q )) = ((𝐹𝐾) +Q (*Q‘[⟨𝐾, 1o⟩] ~Q )))
2221breq1d 4092 . . . . . . 7 (𝑗 = 𝐾 → (((𝐹𝑗) +Q (*Q‘[⟨𝑗, 1o⟩] ~Q )) <Q 𝑥 ↔ ((𝐹𝐾) +Q (*Q‘[⟨𝐾, 1o⟩] ~Q )) <Q 𝑥))
2322rspcev 2907 . . . . . 6 ((𝐾N ∧ ((𝐹𝐾) +Q (*Q‘[⟨𝐾, 1o⟩] ~Q )) <Q 𝑥) → ∃𝑗N ((𝐹𝑗) +Q (*Q‘[⟨𝑗, 1o⟩] ~Q )) <Q 𝑥)
2415, 16, 23syl2anc 411 . . . . 5 ((𝜑 ∧ (𝑥Q ∧ (((𝐹𝐾) +Q (*Q‘[⟨𝐾, 1o⟩] ~Q )) <Q 𝑥𝑥 <Q ((𝐹𝐾) +Q 𝑄)))) → ∃𝑗N ((𝐹𝑗) +Q (*Q‘[⟨𝑗, 1o⟩] ~Q )) <Q 𝑥)
25 breq2 4086 . . . . . . 7 (𝑢 = 𝑥 → (((𝐹𝑗) +Q (*Q‘[⟨𝑗, 1o⟩] ~Q )) <Q 𝑢 ↔ ((𝐹𝑗) +Q (*Q‘[⟨𝑗, 1o⟩] ~Q )) <Q 𝑥))
2625rexbidv 2531 . . . . . 6 (𝑢 = 𝑥 → (∃𝑗N ((𝐹𝑗) +Q (*Q‘[⟨𝑗, 1o⟩] ~Q )) <Q 𝑢 ↔ ∃𝑗N ((𝐹𝑗) +Q (*Q‘[⟨𝑗, 1o⟩] ~Q )) <Q 𝑥))
27 caucvgpr.lim . . . . . . . 8 𝐿 = ⟨{𝑙Q ∣ ∃𝑗N (𝑙 +Q (*Q‘[⟨𝑗, 1o⟩] ~Q )) <Q (𝐹𝑗)}, {𝑢Q ∣ ∃𝑗N ((𝐹𝑗) +Q (*Q‘[⟨𝑗, 1o⟩] ~Q )) <Q 𝑢}⟩
2827fveq2i 5626 . . . . . . 7 (2nd𝐿) = (2nd ‘⟨{𝑙Q ∣ ∃𝑗N (𝑙 +Q (*Q‘[⟨𝑗, 1o⟩] ~Q )) <Q (𝐹𝑗)}, {𝑢Q ∣ ∃𝑗N ((𝐹𝑗) +Q (*Q‘[⟨𝑗, 1o⟩] ~Q )) <Q 𝑢}⟩)
29 nqex 7538 . . . . . . . . 9 Q ∈ V
3029rabex 4227 . . . . . . . 8 {𝑙Q ∣ ∃𝑗N (𝑙 +Q (*Q‘[⟨𝑗, 1o⟩] ~Q )) <Q (𝐹𝑗)} ∈ V
3129rabex 4227 . . . . . . . 8 {𝑢Q ∣ ∃𝑗N ((𝐹𝑗) +Q (*Q‘[⟨𝑗, 1o⟩] ~Q )) <Q 𝑢} ∈ V
3230, 31op2nd 6283 . . . . . . 7 (2nd ‘⟨{𝑙Q ∣ ∃𝑗N (𝑙 +Q (*Q‘[⟨𝑗, 1o⟩] ~Q )) <Q (𝐹𝑗)}, {𝑢Q ∣ ∃𝑗N ((𝐹𝑗) +Q (*Q‘[⟨𝑗, 1o⟩] ~Q )) <Q 𝑢}⟩) = {𝑢Q ∣ ∃𝑗N ((𝐹𝑗) +Q (*Q‘[⟨𝑗, 1o⟩] ~Q )) <Q 𝑢}
3328, 32eqtri 2250 . . . . . 6 (2nd𝐿) = {𝑢Q ∣ ∃𝑗N ((𝐹𝑗) +Q (*Q‘[⟨𝑗, 1o⟩] ~Q )) <Q 𝑢}
3426, 33elrab2 2962 . . . . 5 (𝑥 ∈ (2nd𝐿) ↔ (𝑥Q ∧ ∃𝑗N ((𝐹𝑗) +Q (*Q‘[⟨𝑗, 1o⟩] ~Q )) <Q 𝑥))
3514, 24, 34sylanbrc 417 . . . 4 ((𝜑 ∧ (𝑥Q ∧ (((𝐹𝐾) +Q (*Q‘[⟨𝐾, 1o⟩] ~Q )) <Q 𝑥𝑥 <Q ((𝐹𝐾) +Q 𝑄)))) → 𝑥 ∈ (2nd𝐿))
36 simprrr 540 . . . . . 6 ((𝜑 ∧ (𝑥Q ∧ (((𝐹𝐾) +Q (*Q‘[⟨𝐾, 1o⟩] ~Q )) <Q 𝑥𝑥 <Q ((𝐹𝐾) +Q 𝑄)))) → 𝑥 <Q ((𝐹𝐾) +Q 𝑄))
37 vex 2802 . . . . . . 7 𝑥 ∈ V
38 breq1 4085 . . . . . . 7 (𝑙 = 𝑥 → (𝑙 <Q ((𝐹𝐾) +Q 𝑄) ↔ 𝑥 <Q ((𝐹𝐾) +Q 𝑄)))
3937, 38elab 2947 . . . . . 6 (𝑥 ∈ {𝑙𝑙 <Q ((𝐹𝐾) +Q 𝑄)} ↔ 𝑥 <Q ((𝐹𝐾) +Q 𝑄))
4036, 39sylibr 134 . . . . 5 ((𝜑 ∧ (𝑥Q ∧ (((𝐹𝐾) +Q (*Q‘[⟨𝐾, 1o⟩] ~Q )) <Q 𝑥𝑥 <Q ((𝐹𝐾) +Q 𝑄)))) → 𝑥 ∈ {𝑙𝑙 <Q ((𝐹𝐾) +Q 𝑄)})
41 ltnqex 7724 . . . . . 6 {𝑙𝑙 <Q ((𝐹𝐾) +Q 𝑄)} ∈ V
42 gtnqex 7725 . . . . . 6 {𝑢 ∣ ((𝐹𝐾) +Q 𝑄) <Q 𝑢} ∈ V
4341, 42op1st 6282 . . . . 5 (1st ‘⟨{𝑙𝑙 <Q ((𝐹𝐾) +Q 𝑄)}, {𝑢 ∣ ((𝐹𝐾) +Q 𝑄) <Q 𝑢}⟩) = {𝑙𝑙 <Q ((𝐹𝐾) +Q 𝑄)}
4440, 43eleqtrrdi 2323 . . . 4 ((𝜑 ∧ (𝑥Q ∧ (((𝐹𝐾) +Q (*Q‘[⟨𝐾, 1o⟩] ~Q )) <Q 𝑥𝑥 <Q ((𝐹𝐾) +Q 𝑄)))) → 𝑥 ∈ (1st ‘⟨{𝑙𝑙 <Q ((𝐹𝐾) +Q 𝑄)}, {𝑢 ∣ ((𝐹𝐾) +Q 𝑄) <Q 𝑢}⟩))
45 rspe 2579 . . . 4 ((𝑥Q ∧ (𝑥 ∈ (2nd𝐿) ∧ 𝑥 ∈ (1st ‘⟨{𝑙𝑙 <Q ((𝐹𝐾) +Q 𝑄)}, {𝑢 ∣ ((𝐹𝐾) +Q 𝑄) <Q 𝑢}⟩))) → ∃𝑥Q (𝑥 ∈ (2nd𝐿) ∧ 𝑥 ∈ (1st ‘⟨{𝑙𝑙 <Q ((𝐹𝐾) +Q 𝑄)}, {𝑢 ∣ ((𝐹𝐾) +Q 𝑄) <Q 𝑢}⟩)))
4614, 35, 44, 45syl12anc 1269 . . 3 ((𝜑 ∧ (𝑥Q ∧ (((𝐹𝐾) +Q (*Q‘[⟨𝐾, 1o⟩] ~Q )) <Q 𝑥𝑥 <Q ((𝐹𝐾) +Q 𝑄)))) → ∃𝑥Q (𝑥 ∈ (2nd𝐿) ∧ 𝑥 ∈ (1st ‘⟨{𝑙𝑙 <Q ((𝐹𝐾) +Q 𝑄)}, {𝑢 ∣ ((𝐹𝐾) +Q 𝑄) <Q 𝑢}⟩)))
47 caucvgpr.cau . . . . . 6 (𝜑 → ∀𝑛N𝑘N (𝑛 <N 𝑘 → ((𝐹𝑛) <Q ((𝐹𝑘) +Q (*Q‘[⟨𝑛, 1o⟩] ~Q )) ∧ (𝐹𝑘) <Q ((𝐹𝑛) +Q (*Q‘[⟨𝑛, 1o⟩] ~Q )))))
48 caucvgpr.bnd . . . . . 6 (𝜑 → ∀𝑗N 𝐴 <Q (𝐹𝑗))
494, 47, 48, 27caucvgprlemcl 7851 . . . . 5 (𝜑𝐿P)
5049adantr 276 . . . 4 ((𝜑 ∧ (𝑥Q ∧ (((𝐹𝐾) +Q (*Q‘[⟨𝐾, 1o⟩] ~Q )) <Q 𝑥𝑥 <Q ((𝐹𝐾) +Q 𝑄)))) → 𝐿P)
51 caucvgprlemlim.q . . . . . . 7 (𝜑𝑄Q)
52 addclnq 7550 . . . . . . 7 (((𝐹𝐾) ∈ Q𝑄Q) → ((𝐹𝐾) +Q 𝑄) ∈ Q)
539, 51, 52syl2anc 411 . . . . . 6 (𝜑 → ((𝐹𝐾) +Q 𝑄) ∈ Q)
54 nqprlu 7722 . . . . . 6 (((𝐹𝐾) +Q 𝑄) ∈ Q → ⟨{𝑙𝑙 <Q ((𝐹𝐾) +Q 𝑄)}, {𝑢 ∣ ((𝐹𝐾) +Q 𝑄) <Q 𝑢}⟩ ∈ P)
5553, 54syl 14 . . . . 5 (𝜑 → ⟨{𝑙𝑙 <Q ((𝐹𝐾) +Q 𝑄)}, {𝑢 ∣ ((𝐹𝐾) +Q 𝑄) <Q 𝑢}⟩ ∈ P)
5655adantr 276 . . . 4 ((𝜑 ∧ (𝑥Q ∧ (((𝐹𝐾) +Q (*Q‘[⟨𝐾, 1o⟩] ~Q )) <Q 𝑥𝑥 <Q ((𝐹𝐾) +Q 𝑄)))) → ⟨{𝑙𝑙 <Q ((𝐹𝐾) +Q 𝑄)}, {𝑢 ∣ ((𝐹𝐾) +Q 𝑄) <Q 𝑢}⟩ ∈ P)
57 ltdfpr 7681 . . . 4 ((𝐿P ∧ ⟨{𝑙𝑙 <Q ((𝐹𝐾) +Q 𝑄)}, {𝑢 ∣ ((𝐹𝐾) +Q 𝑄) <Q 𝑢}⟩ ∈ P) → (𝐿<P ⟨{𝑙𝑙 <Q ((𝐹𝐾) +Q 𝑄)}, {𝑢 ∣ ((𝐹𝐾) +Q 𝑄) <Q 𝑢}⟩ ↔ ∃𝑥Q (𝑥 ∈ (2nd𝐿) ∧ 𝑥 ∈ (1st ‘⟨{𝑙𝑙 <Q ((𝐹𝐾) +Q 𝑄)}, {𝑢 ∣ ((𝐹𝐾) +Q 𝑄) <Q 𝑢}⟩))))
5850, 56, 57syl2anc 411 . . 3 ((𝜑 ∧ (𝑥Q ∧ (((𝐹𝐾) +Q (*Q‘[⟨𝐾, 1o⟩] ~Q )) <Q 𝑥𝑥 <Q ((𝐹𝐾) +Q 𝑄)))) → (𝐿<P ⟨{𝑙𝑙 <Q ((𝐹𝐾) +Q 𝑄)}, {𝑢 ∣ ((𝐹𝐾) +Q 𝑄) <Q 𝑢}⟩ ↔ ∃𝑥Q (𝑥 ∈ (2nd𝐿) ∧ 𝑥 ∈ (1st ‘⟨{𝑙𝑙 <Q ((𝐹𝐾) +Q 𝑄)}, {𝑢 ∣ ((𝐹𝐾) +Q 𝑄) <Q 𝑢}⟩))))
5946, 58mpbird 167 . 2 ((𝜑 ∧ (𝑥Q ∧ (((𝐹𝐾) +Q (*Q‘[⟨𝐾, 1o⟩] ~Q )) <Q 𝑥𝑥 <Q ((𝐹𝐾) +Q 𝑄)))) → 𝐿<P ⟨{𝑙𝑙 <Q ((𝐹𝐾) +Q 𝑄)}, {𝑢 ∣ ((𝐹𝐾) +Q 𝑄) <Q 𝑢}⟩)
6013, 59rexlimddv 2653 1 (𝜑𝐿<P ⟨{𝑙𝑙 <Q ((𝐹𝐾) +Q 𝑄)}, {𝑢 ∣ ((𝐹𝐾) +Q 𝑄) <Q 𝑢}⟩)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105   = wceq 1395  wcel 2200  {cab 2215  wral 2508  wrex 2509  {crab 2512  cop 3669   class class class wbr 4082  wf 5310  cfv 5314  (class class class)co 5994  1st c1st 6274  2nd c2nd 6275  1oc1o 6545  [cec 6668  Ncnpi 7447   <N clti 7450   ~Q ceq 7454  Qcnq 7455   +Q cplq 7457  *Qcrq 7459   <Q cltq 7460  Pcnp 7466  <P cltp 7470
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-coll 4198  ax-sep 4201  ax-nul 4209  ax-pow 4257  ax-pr 4292  ax-un 4521  ax-setind 4626  ax-iinf 4677
This theorem depends on definitions:  df-bi 117  df-dc 840  df-3or 1003  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-ral 2513  df-rex 2514  df-reu 2515  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-nul 3492  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3888  df-int 3923  df-iun 3966  df-br 4083  df-opab 4145  df-mpt 4146  df-tr 4182  df-eprel 4377  df-id 4381  df-po 4384  df-iso 4385  df-iord 4454  df-on 4456  df-suc 4459  df-iom 4680  df-xp 4722  df-rel 4723  df-cnv 4724  df-co 4725  df-dm 4726  df-rn 4727  df-res 4728  df-ima 4729  df-iota 5274  df-fun 5316  df-fn 5317  df-f 5318  df-f1 5319  df-fo 5320  df-f1o 5321  df-fv 5322  df-ov 5997  df-oprab 5998  df-mpo 5999  df-1st 6276  df-2nd 6277  df-recs 6441  df-irdg 6506  df-1o 6552  df-oadd 6556  df-omul 6557  df-er 6670  df-ec 6672  df-qs 6676  df-ni 7479  df-pli 7480  df-mi 7481  df-lti 7482  df-plpq 7519  df-mpq 7520  df-enq 7522  df-nqqs 7523  df-plqqs 7524  df-mqqs 7525  df-1nqqs 7526  df-rq 7527  df-ltnqqs 7528  df-inp 7641  df-iltp 7645
This theorem is referenced by:  caucvgprlemlim  7856
  Copyright terms: Public domain W3C validator