ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ltaddpr GIF version

Theorem ltaddpr 7657
Description: The sum of two positive reals is greater than one of them. Proposition 9-3.5(iii) of [Gleason] p. 123. (Contributed by NM, 26-Mar-1996.) (Revised by Mario Carneiro, 12-Jun-2013.)
Assertion
Ref Expression
ltaddpr ((𝐴P𝐵P) → 𝐴<P (𝐴 +P 𝐵))

Proof of Theorem ltaddpr
Dummy variables 𝑓 𝑔 𝑥 𝑦 𝑝 𝑞 𝑟 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 prop 7535 . . . 4 (𝐵P → ⟨(1st𝐵), (2nd𝐵)⟩ ∈ P)
2 prml 7537 . . . 4 (⟨(1st𝐵), (2nd𝐵)⟩ ∈ P → ∃𝑝Q 𝑝 ∈ (1st𝐵))
31, 2syl 14 . . 3 (𝐵P → ∃𝑝Q 𝑝 ∈ (1st𝐵))
43adantl 277 . 2 ((𝐴P𝐵P) → ∃𝑝Q 𝑝 ∈ (1st𝐵))
5 prop 7535 . . . . 5 (𝐴P → ⟨(1st𝐴), (2nd𝐴)⟩ ∈ P)
6 prarloc 7563 . . . . 5 ((⟨(1st𝐴), (2nd𝐴)⟩ ∈ P𝑝Q) → ∃𝑟 ∈ (1st𝐴)∃𝑞 ∈ (2nd𝐴)𝑞 <Q (𝑟 +Q 𝑝))
75, 6sylan 283 . . . 4 ((𝐴P𝑝Q) → ∃𝑟 ∈ (1st𝐴)∃𝑞 ∈ (2nd𝐴)𝑞 <Q (𝑟 +Q 𝑝))
87ad2ant2r 509 . . 3 (((𝐴P𝐵P) ∧ (𝑝Q𝑝 ∈ (1st𝐵))) → ∃𝑟 ∈ (1st𝐴)∃𝑞 ∈ (2nd𝐴)𝑞 <Q (𝑟 +Q 𝑝))
9 elprnqu 7542 . . . . . . . . . . 11 ((⟨(1st𝐴), (2nd𝐴)⟩ ∈ P𝑞 ∈ (2nd𝐴)) → 𝑞Q)
105, 9sylan 283 . . . . . . . . . 10 ((𝐴P𝑞 ∈ (2nd𝐴)) → 𝑞Q)
1110adantlr 477 . . . . . . . . 9 (((𝐴P𝐵P) ∧ 𝑞 ∈ (2nd𝐴)) → 𝑞Q)
1211ad2ant2rl 511 . . . . . . . 8 ((((𝐴P𝐵P) ∧ (𝑝Q𝑝 ∈ (1st𝐵))) ∧ (𝑟 ∈ (1st𝐴) ∧ 𝑞 ∈ (2nd𝐴))) → 𝑞Q)
1312adantr 276 . . . . . . 7 (((((𝐴P𝐵P) ∧ (𝑝Q𝑝 ∈ (1st𝐵))) ∧ (𝑟 ∈ (1st𝐴) ∧ 𝑞 ∈ (2nd𝐴))) ∧ 𝑞 <Q (𝑟 +Q 𝑝)) → 𝑞Q)
14 simplrr 536 . . . . . . 7 (((((𝐴P𝐵P) ∧ (𝑝Q𝑝 ∈ (1st𝐵))) ∧ (𝑟 ∈ (1st𝐴) ∧ 𝑞 ∈ (2nd𝐴))) ∧ 𝑞 <Q (𝑟 +Q 𝑝)) → 𝑞 ∈ (2nd𝐴))
15 simprl 529 . . . . . . . . . . . . 13 (((𝑝Q𝑝 ∈ (1st𝐵)) ∧ (𝑟 ∈ (1st𝐴) ∧ 𝑞 ∈ (2nd𝐴))) → 𝑟 ∈ (1st𝐴))
16 simplr 528 . . . . . . . . . . . . 13 (((𝑝Q𝑝 ∈ (1st𝐵)) ∧ (𝑟 ∈ (1st𝐴) ∧ 𝑞 ∈ (2nd𝐴))) → 𝑝 ∈ (1st𝐵))
1715, 16jca 306 . . . . . . . . . . . 12 (((𝑝Q𝑝 ∈ (1st𝐵)) ∧ (𝑟 ∈ (1st𝐴) ∧ 𝑞 ∈ (2nd𝐴))) → (𝑟 ∈ (1st𝐴) ∧ 𝑝 ∈ (1st𝐵)))
18 df-iplp 7528 . . . . . . . . . . . . 13 +P = (𝑥P, 𝑦P ↦ ⟨{𝑓Q ∣ ∃𝑔QQ (𝑔 ∈ (1st𝑥) ∧ ∈ (1st𝑦) ∧ 𝑓 = (𝑔 +Q ))}, {𝑓Q ∣ ∃𝑔QQ (𝑔 ∈ (2nd𝑥) ∧ ∈ (2nd𝑦) ∧ 𝑓 = (𝑔 +Q ))}⟩)
19 addclnq 7435 . . . . . . . . . . . . 13 ((𝑔QQ) → (𝑔 +Q ) ∈ Q)
2018, 19genpprecll 7574 . . . . . . . . . . . 12 ((𝐴P𝐵P) → ((𝑟 ∈ (1st𝐴) ∧ 𝑝 ∈ (1st𝐵)) → (𝑟 +Q 𝑝) ∈ (1st ‘(𝐴 +P 𝐵))))
2117, 20syl5 32 . . . . . . . . . . 11 ((𝐴P𝐵P) → (((𝑝Q𝑝 ∈ (1st𝐵)) ∧ (𝑟 ∈ (1st𝐴) ∧ 𝑞 ∈ (2nd𝐴))) → (𝑟 +Q 𝑝) ∈ (1st ‘(𝐴 +P 𝐵))))
2221imdistani 445 . . . . . . . . . 10 (((𝐴P𝐵P) ∧ ((𝑝Q𝑝 ∈ (1st𝐵)) ∧ (𝑟 ∈ (1st𝐴) ∧ 𝑞 ∈ (2nd𝐴)))) → ((𝐴P𝐵P) ∧ (𝑟 +Q 𝑝) ∈ (1st ‘(𝐴 +P 𝐵))))
23 addclpr 7597 . . . . . . . . . . 11 ((𝐴P𝐵P) → (𝐴 +P 𝐵) ∈ P)
24 prop 7535 . . . . . . . . . . . 12 ((𝐴 +P 𝐵) ∈ P → ⟨(1st ‘(𝐴 +P 𝐵)), (2nd ‘(𝐴 +P 𝐵))⟩ ∈ P)
25 prcdnql 7544 . . . . . . . . . . . 12 ((⟨(1st ‘(𝐴 +P 𝐵)), (2nd ‘(𝐴 +P 𝐵))⟩ ∈ P ∧ (𝑟 +Q 𝑝) ∈ (1st ‘(𝐴 +P 𝐵))) → (𝑞 <Q (𝑟 +Q 𝑝) → 𝑞 ∈ (1st ‘(𝐴 +P 𝐵))))
2624, 25sylan 283 . . . . . . . . . . 11 (((𝐴 +P 𝐵) ∈ P ∧ (𝑟 +Q 𝑝) ∈ (1st ‘(𝐴 +P 𝐵))) → (𝑞 <Q (𝑟 +Q 𝑝) → 𝑞 ∈ (1st ‘(𝐴 +P 𝐵))))
2723, 26sylan 283 . . . . . . . . . 10 (((𝐴P𝐵P) ∧ (𝑟 +Q 𝑝) ∈ (1st ‘(𝐴 +P 𝐵))) → (𝑞 <Q (𝑟 +Q 𝑝) → 𝑞 ∈ (1st ‘(𝐴 +P 𝐵))))
2822, 27syl 14 . . . . . . . . 9 (((𝐴P𝐵P) ∧ ((𝑝Q𝑝 ∈ (1st𝐵)) ∧ (𝑟 ∈ (1st𝐴) ∧ 𝑞 ∈ (2nd𝐴)))) → (𝑞 <Q (𝑟 +Q 𝑝) → 𝑞 ∈ (1st ‘(𝐴 +P 𝐵))))
2928anassrs 400 . . . . . . . 8 ((((𝐴P𝐵P) ∧ (𝑝Q𝑝 ∈ (1st𝐵))) ∧ (𝑟 ∈ (1st𝐴) ∧ 𝑞 ∈ (2nd𝐴))) → (𝑞 <Q (𝑟 +Q 𝑝) → 𝑞 ∈ (1st ‘(𝐴 +P 𝐵))))
3029imp 124 . . . . . . 7 (((((𝐴P𝐵P) ∧ (𝑝Q𝑝 ∈ (1st𝐵))) ∧ (𝑟 ∈ (1st𝐴) ∧ 𝑞 ∈ (2nd𝐴))) ∧ 𝑞 <Q (𝑟 +Q 𝑝)) → 𝑞 ∈ (1st ‘(𝐴 +P 𝐵)))
31 rspe 2543 . . . . . . 7 ((𝑞Q ∧ (𝑞 ∈ (2nd𝐴) ∧ 𝑞 ∈ (1st ‘(𝐴 +P 𝐵)))) → ∃𝑞Q (𝑞 ∈ (2nd𝐴) ∧ 𝑞 ∈ (1st ‘(𝐴 +P 𝐵))))
3213, 14, 30, 31syl12anc 1247 . . . . . 6 (((((𝐴P𝐵P) ∧ (𝑝Q𝑝 ∈ (1st𝐵))) ∧ (𝑟 ∈ (1st𝐴) ∧ 𝑞 ∈ (2nd𝐴))) ∧ 𝑞 <Q (𝑟 +Q 𝑝)) → ∃𝑞Q (𝑞 ∈ (2nd𝐴) ∧ 𝑞 ∈ (1st ‘(𝐴 +P 𝐵))))
33 ltdfpr 7566 . . . . . . . 8 ((𝐴P ∧ (𝐴 +P 𝐵) ∈ P) → (𝐴<P (𝐴 +P 𝐵) ↔ ∃𝑞Q (𝑞 ∈ (2nd𝐴) ∧ 𝑞 ∈ (1st ‘(𝐴 +P 𝐵)))))
3423, 33syldan 282 . . . . . . 7 ((𝐴P𝐵P) → (𝐴<P (𝐴 +P 𝐵) ↔ ∃𝑞Q (𝑞 ∈ (2nd𝐴) ∧ 𝑞 ∈ (1st ‘(𝐴 +P 𝐵)))))
3534ad3antrrr 492 . . . . . 6 (((((𝐴P𝐵P) ∧ (𝑝Q𝑝 ∈ (1st𝐵))) ∧ (𝑟 ∈ (1st𝐴) ∧ 𝑞 ∈ (2nd𝐴))) ∧ 𝑞 <Q (𝑟 +Q 𝑝)) → (𝐴<P (𝐴 +P 𝐵) ↔ ∃𝑞Q (𝑞 ∈ (2nd𝐴) ∧ 𝑞 ∈ (1st ‘(𝐴 +P 𝐵)))))
3632, 35mpbird 167 . . . . 5 (((((𝐴P𝐵P) ∧ (𝑝Q𝑝 ∈ (1st𝐵))) ∧ (𝑟 ∈ (1st𝐴) ∧ 𝑞 ∈ (2nd𝐴))) ∧ 𝑞 <Q (𝑟 +Q 𝑝)) → 𝐴<P (𝐴 +P 𝐵))
3736ex 115 . . . 4 ((((𝐴P𝐵P) ∧ (𝑝Q𝑝 ∈ (1st𝐵))) ∧ (𝑟 ∈ (1st𝐴) ∧ 𝑞 ∈ (2nd𝐴))) → (𝑞 <Q (𝑟 +Q 𝑝) → 𝐴<P (𝐴 +P 𝐵)))
3837rexlimdvva 2619 . . 3 (((𝐴P𝐵P) ∧ (𝑝Q𝑝 ∈ (1st𝐵))) → (∃𝑟 ∈ (1st𝐴)∃𝑞 ∈ (2nd𝐴)𝑞 <Q (𝑟 +Q 𝑝) → 𝐴<P (𝐴 +P 𝐵)))
398, 38mpd 13 . 2 (((𝐴P𝐵P) ∧ (𝑝Q𝑝 ∈ (1st𝐵))) → 𝐴<P (𝐴 +P 𝐵))
404, 39rexlimddv 2616 1 ((𝐴P𝐵P) → 𝐴<P (𝐴 +P 𝐵))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105  wcel 2164  wrex 2473  cop 3621   class class class wbr 4029  cfv 5254  (class class class)co 5918  1st c1st 6191  2nd c2nd 6192  Qcnq 7340   +Q cplq 7342   <Q cltq 7345  Pcnp 7351   +P cpp 7353  <P cltp 7355
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-coll 4144  ax-sep 4147  ax-nul 4155  ax-pow 4203  ax-pr 4238  ax-un 4464  ax-setind 4569  ax-iinf 4620
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-ral 2477  df-rex 2478  df-reu 2479  df-rab 2481  df-v 2762  df-sbc 2986  df-csb 3081  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-nul 3447  df-pw 3603  df-sn 3624  df-pr 3625  df-op 3627  df-uni 3836  df-int 3871  df-iun 3914  df-br 4030  df-opab 4091  df-mpt 4092  df-tr 4128  df-eprel 4320  df-id 4324  df-po 4327  df-iso 4328  df-iord 4397  df-on 4399  df-suc 4402  df-iom 4623  df-xp 4665  df-rel 4666  df-cnv 4667  df-co 4668  df-dm 4669  df-rn 4670  df-res 4671  df-ima 4672  df-iota 5215  df-fun 5256  df-fn 5257  df-f 5258  df-f1 5259  df-fo 5260  df-f1o 5261  df-fv 5262  df-ov 5921  df-oprab 5922  df-mpo 5923  df-1st 6193  df-2nd 6194  df-recs 6358  df-irdg 6423  df-1o 6469  df-2o 6470  df-oadd 6473  df-omul 6474  df-er 6587  df-ec 6589  df-qs 6593  df-ni 7364  df-pli 7365  df-mi 7366  df-lti 7367  df-plpq 7404  df-mpq 7405  df-enq 7407  df-nqqs 7408  df-plqqs 7409  df-mqqs 7410  df-1nqqs 7411  df-rq 7412  df-ltnqqs 7413  df-enq0 7484  df-nq0 7485  df-0nq0 7486  df-plq0 7487  df-mq0 7488  df-inp 7526  df-iplp 7528  df-iltp 7530
This theorem is referenced by:  ltexprlemrl  7670  ltaprlem  7678  ltaprg  7679  prplnqu  7680  ltmprr  7702  caucvgprprlemnkltj  7749  caucvgprprlemnkeqj  7750  caucvgprprlemnbj  7753  0lt1sr  7825  recexgt0sr  7833  mulgt0sr  7838  archsr  7842  prsrpos  7845  mappsrprg  7864  pitoregt0  7909
  Copyright terms: Public domain W3C validator