ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ltaddpr GIF version

Theorem ltaddpr 7659
Description: The sum of two positive reals is greater than one of them. Proposition 9-3.5(iii) of [Gleason] p. 123. (Contributed by NM, 26-Mar-1996.) (Revised by Mario Carneiro, 12-Jun-2013.)
Assertion
Ref Expression
ltaddpr ((𝐴P𝐵P) → 𝐴<P (𝐴 +P 𝐵))

Proof of Theorem ltaddpr
Dummy variables 𝑓 𝑔 𝑥 𝑦 𝑝 𝑞 𝑟 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 prop 7537 . . . 4 (𝐵P → ⟨(1st𝐵), (2nd𝐵)⟩ ∈ P)
2 prml 7539 . . . 4 (⟨(1st𝐵), (2nd𝐵)⟩ ∈ P → ∃𝑝Q 𝑝 ∈ (1st𝐵))
31, 2syl 14 . . 3 (𝐵P → ∃𝑝Q 𝑝 ∈ (1st𝐵))
43adantl 277 . 2 ((𝐴P𝐵P) → ∃𝑝Q 𝑝 ∈ (1st𝐵))
5 prop 7537 . . . . 5 (𝐴P → ⟨(1st𝐴), (2nd𝐴)⟩ ∈ P)
6 prarloc 7565 . . . . 5 ((⟨(1st𝐴), (2nd𝐴)⟩ ∈ P𝑝Q) → ∃𝑟 ∈ (1st𝐴)∃𝑞 ∈ (2nd𝐴)𝑞 <Q (𝑟 +Q 𝑝))
75, 6sylan 283 . . . 4 ((𝐴P𝑝Q) → ∃𝑟 ∈ (1st𝐴)∃𝑞 ∈ (2nd𝐴)𝑞 <Q (𝑟 +Q 𝑝))
87ad2ant2r 509 . . 3 (((𝐴P𝐵P) ∧ (𝑝Q𝑝 ∈ (1st𝐵))) → ∃𝑟 ∈ (1st𝐴)∃𝑞 ∈ (2nd𝐴)𝑞 <Q (𝑟 +Q 𝑝))
9 elprnqu 7544 . . . . . . . . . . 11 ((⟨(1st𝐴), (2nd𝐴)⟩ ∈ P𝑞 ∈ (2nd𝐴)) → 𝑞Q)
105, 9sylan 283 . . . . . . . . . 10 ((𝐴P𝑞 ∈ (2nd𝐴)) → 𝑞Q)
1110adantlr 477 . . . . . . . . 9 (((𝐴P𝐵P) ∧ 𝑞 ∈ (2nd𝐴)) → 𝑞Q)
1211ad2ant2rl 511 . . . . . . . 8 ((((𝐴P𝐵P) ∧ (𝑝Q𝑝 ∈ (1st𝐵))) ∧ (𝑟 ∈ (1st𝐴) ∧ 𝑞 ∈ (2nd𝐴))) → 𝑞Q)
1312adantr 276 . . . . . . 7 (((((𝐴P𝐵P) ∧ (𝑝Q𝑝 ∈ (1st𝐵))) ∧ (𝑟 ∈ (1st𝐴) ∧ 𝑞 ∈ (2nd𝐴))) ∧ 𝑞 <Q (𝑟 +Q 𝑝)) → 𝑞Q)
14 simplrr 536 . . . . . . 7 (((((𝐴P𝐵P) ∧ (𝑝Q𝑝 ∈ (1st𝐵))) ∧ (𝑟 ∈ (1st𝐴) ∧ 𝑞 ∈ (2nd𝐴))) ∧ 𝑞 <Q (𝑟 +Q 𝑝)) → 𝑞 ∈ (2nd𝐴))
15 simprl 529 . . . . . . . . . . . . 13 (((𝑝Q𝑝 ∈ (1st𝐵)) ∧ (𝑟 ∈ (1st𝐴) ∧ 𝑞 ∈ (2nd𝐴))) → 𝑟 ∈ (1st𝐴))
16 simplr 528 . . . . . . . . . . . . 13 (((𝑝Q𝑝 ∈ (1st𝐵)) ∧ (𝑟 ∈ (1st𝐴) ∧ 𝑞 ∈ (2nd𝐴))) → 𝑝 ∈ (1st𝐵))
1715, 16jca 306 . . . . . . . . . . . 12 (((𝑝Q𝑝 ∈ (1st𝐵)) ∧ (𝑟 ∈ (1st𝐴) ∧ 𝑞 ∈ (2nd𝐴))) → (𝑟 ∈ (1st𝐴) ∧ 𝑝 ∈ (1st𝐵)))
18 df-iplp 7530 . . . . . . . . . . . . 13 +P = (𝑥P, 𝑦P ↦ ⟨{𝑓Q ∣ ∃𝑔QQ (𝑔 ∈ (1st𝑥) ∧ ∈ (1st𝑦) ∧ 𝑓 = (𝑔 +Q ))}, {𝑓Q ∣ ∃𝑔QQ (𝑔 ∈ (2nd𝑥) ∧ ∈ (2nd𝑦) ∧ 𝑓 = (𝑔 +Q ))}⟩)
19 addclnq 7437 . . . . . . . . . . . . 13 ((𝑔QQ) → (𝑔 +Q ) ∈ Q)
2018, 19genpprecll 7576 . . . . . . . . . . . 12 ((𝐴P𝐵P) → ((𝑟 ∈ (1st𝐴) ∧ 𝑝 ∈ (1st𝐵)) → (𝑟 +Q 𝑝) ∈ (1st ‘(𝐴 +P 𝐵))))
2117, 20syl5 32 . . . . . . . . . . 11 ((𝐴P𝐵P) → (((𝑝Q𝑝 ∈ (1st𝐵)) ∧ (𝑟 ∈ (1st𝐴) ∧ 𝑞 ∈ (2nd𝐴))) → (𝑟 +Q 𝑝) ∈ (1st ‘(𝐴 +P 𝐵))))
2221imdistani 445 . . . . . . . . . 10 (((𝐴P𝐵P) ∧ ((𝑝Q𝑝 ∈ (1st𝐵)) ∧ (𝑟 ∈ (1st𝐴) ∧ 𝑞 ∈ (2nd𝐴)))) → ((𝐴P𝐵P) ∧ (𝑟 +Q 𝑝) ∈ (1st ‘(𝐴 +P 𝐵))))
23 addclpr 7599 . . . . . . . . . . 11 ((𝐴P𝐵P) → (𝐴 +P 𝐵) ∈ P)
24 prop 7537 . . . . . . . . . . . 12 ((𝐴 +P 𝐵) ∈ P → ⟨(1st ‘(𝐴 +P 𝐵)), (2nd ‘(𝐴 +P 𝐵))⟩ ∈ P)
25 prcdnql 7546 . . . . . . . . . . . 12 ((⟨(1st ‘(𝐴 +P 𝐵)), (2nd ‘(𝐴 +P 𝐵))⟩ ∈ P ∧ (𝑟 +Q 𝑝) ∈ (1st ‘(𝐴 +P 𝐵))) → (𝑞 <Q (𝑟 +Q 𝑝) → 𝑞 ∈ (1st ‘(𝐴 +P 𝐵))))
2624, 25sylan 283 . . . . . . . . . . 11 (((𝐴 +P 𝐵) ∈ P ∧ (𝑟 +Q 𝑝) ∈ (1st ‘(𝐴 +P 𝐵))) → (𝑞 <Q (𝑟 +Q 𝑝) → 𝑞 ∈ (1st ‘(𝐴 +P 𝐵))))
2723, 26sylan 283 . . . . . . . . . 10 (((𝐴P𝐵P) ∧ (𝑟 +Q 𝑝) ∈ (1st ‘(𝐴 +P 𝐵))) → (𝑞 <Q (𝑟 +Q 𝑝) → 𝑞 ∈ (1st ‘(𝐴 +P 𝐵))))
2822, 27syl 14 . . . . . . . . 9 (((𝐴P𝐵P) ∧ ((𝑝Q𝑝 ∈ (1st𝐵)) ∧ (𝑟 ∈ (1st𝐴) ∧ 𝑞 ∈ (2nd𝐴)))) → (𝑞 <Q (𝑟 +Q 𝑝) → 𝑞 ∈ (1st ‘(𝐴 +P 𝐵))))
2928anassrs 400 . . . . . . . 8 ((((𝐴P𝐵P) ∧ (𝑝Q𝑝 ∈ (1st𝐵))) ∧ (𝑟 ∈ (1st𝐴) ∧ 𝑞 ∈ (2nd𝐴))) → (𝑞 <Q (𝑟 +Q 𝑝) → 𝑞 ∈ (1st ‘(𝐴 +P 𝐵))))
3029imp 124 . . . . . . 7 (((((𝐴P𝐵P) ∧ (𝑝Q𝑝 ∈ (1st𝐵))) ∧ (𝑟 ∈ (1st𝐴) ∧ 𝑞 ∈ (2nd𝐴))) ∧ 𝑞 <Q (𝑟 +Q 𝑝)) → 𝑞 ∈ (1st ‘(𝐴 +P 𝐵)))
31 rspe 2543 . . . . . . 7 ((𝑞Q ∧ (𝑞 ∈ (2nd𝐴) ∧ 𝑞 ∈ (1st ‘(𝐴 +P 𝐵)))) → ∃𝑞Q (𝑞 ∈ (2nd𝐴) ∧ 𝑞 ∈ (1st ‘(𝐴 +P 𝐵))))
3213, 14, 30, 31syl12anc 1247 . . . . . 6 (((((𝐴P𝐵P) ∧ (𝑝Q𝑝 ∈ (1st𝐵))) ∧ (𝑟 ∈ (1st𝐴) ∧ 𝑞 ∈ (2nd𝐴))) ∧ 𝑞 <Q (𝑟 +Q 𝑝)) → ∃𝑞Q (𝑞 ∈ (2nd𝐴) ∧ 𝑞 ∈ (1st ‘(𝐴 +P 𝐵))))
33 ltdfpr 7568 . . . . . . . 8 ((𝐴P ∧ (𝐴 +P 𝐵) ∈ P) → (𝐴<P (𝐴 +P 𝐵) ↔ ∃𝑞Q (𝑞 ∈ (2nd𝐴) ∧ 𝑞 ∈ (1st ‘(𝐴 +P 𝐵)))))
3423, 33syldan 282 . . . . . . 7 ((𝐴P𝐵P) → (𝐴<P (𝐴 +P 𝐵) ↔ ∃𝑞Q (𝑞 ∈ (2nd𝐴) ∧ 𝑞 ∈ (1st ‘(𝐴 +P 𝐵)))))
3534ad3antrrr 492 . . . . . 6 (((((𝐴P𝐵P) ∧ (𝑝Q𝑝 ∈ (1st𝐵))) ∧ (𝑟 ∈ (1st𝐴) ∧ 𝑞 ∈ (2nd𝐴))) ∧ 𝑞 <Q (𝑟 +Q 𝑝)) → (𝐴<P (𝐴 +P 𝐵) ↔ ∃𝑞Q (𝑞 ∈ (2nd𝐴) ∧ 𝑞 ∈ (1st ‘(𝐴 +P 𝐵)))))
3632, 35mpbird 167 . . . . 5 (((((𝐴P𝐵P) ∧ (𝑝Q𝑝 ∈ (1st𝐵))) ∧ (𝑟 ∈ (1st𝐴) ∧ 𝑞 ∈ (2nd𝐴))) ∧ 𝑞 <Q (𝑟 +Q 𝑝)) → 𝐴<P (𝐴 +P 𝐵))
3736ex 115 . . . 4 ((((𝐴P𝐵P) ∧ (𝑝Q𝑝 ∈ (1st𝐵))) ∧ (𝑟 ∈ (1st𝐴) ∧ 𝑞 ∈ (2nd𝐴))) → (𝑞 <Q (𝑟 +Q 𝑝) → 𝐴<P (𝐴 +P 𝐵)))
3837rexlimdvva 2619 . . 3 (((𝐴P𝐵P) ∧ (𝑝Q𝑝 ∈ (1st𝐵))) → (∃𝑟 ∈ (1st𝐴)∃𝑞 ∈ (2nd𝐴)𝑞 <Q (𝑟 +Q 𝑝) → 𝐴<P (𝐴 +P 𝐵)))
398, 38mpd 13 . 2 (((𝐴P𝐵P) ∧ (𝑝Q𝑝 ∈ (1st𝐵))) → 𝐴<P (𝐴 +P 𝐵))
404, 39rexlimddv 2616 1 ((𝐴P𝐵P) → 𝐴<P (𝐴 +P 𝐵))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105  wcel 2164  wrex 2473  cop 3622   class class class wbr 4030  cfv 5255  (class class class)co 5919  1st c1st 6193  2nd c2nd 6194  Qcnq 7342   +Q cplq 7344   <Q cltq 7347  Pcnp 7353   +P cpp 7355  <P cltp 7357
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-coll 4145  ax-sep 4148  ax-nul 4156  ax-pow 4204  ax-pr 4239  ax-un 4465  ax-setind 4570  ax-iinf 4621
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-ral 2477  df-rex 2478  df-reu 2479  df-rab 2481  df-v 2762  df-sbc 2987  df-csb 3082  df-dif 3156  df-un 3158  df-in 3160  df-ss 3167  df-nul 3448  df-pw 3604  df-sn 3625  df-pr 3626  df-op 3628  df-uni 3837  df-int 3872  df-iun 3915  df-br 4031  df-opab 4092  df-mpt 4093  df-tr 4129  df-eprel 4321  df-id 4325  df-po 4328  df-iso 4329  df-iord 4398  df-on 4400  df-suc 4403  df-iom 4624  df-xp 4666  df-rel 4667  df-cnv 4668  df-co 4669  df-dm 4670  df-rn 4671  df-res 4672  df-ima 4673  df-iota 5216  df-fun 5257  df-fn 5258  df-f 5259  df-f1 5260  df-fo 5261  df-f1o 5262  df-fv 5263  df-ov 5922  df-oprab 5923  df-mpo 5924  df-1st 6195  df-2nd 6196  df-recs 6360  df-irdg 6425  df-1o 6471  df-2o 6472  df-oadd 6475  df-omul 6476  df-er 6589  df-ec 6591  df-qs 6595  df-ni 7366  df-pli 7367  df-mi 7368  df-lti 7369  df-plpq 7406  df-mpq 7407  df-enq 7409  df-nqqs 7410  df-plqqs 7411  df-mqqs 7412  df-1nqqs 7413  df-rq 7414  df-ltnqqs 7415  df-enq0 7486  df-nq0 7487  df-0nq0 7488  df-plq0 7489  df-mq0 7490  df-inp 7528  df-iplp 7530  df-iltp 7532
This theorem is referenced by:  ltexprlemrl  7672  ltaprlem  7680  ltaprg  7681  prplnqu  7682  ltmprr  7704  caucvgprprlemnkltj  7751  caucvgprprlemnkeqj  7752  caucvgprprlemnbj  7755  0lt1sr  7827  recexgt0sr  7835  mulgt0sr  7840  archsr  7844  prsrpos  7847  mappsrprg  7866  pitoregt0  7911
  Copyright terms: Public domain W3C validator