ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ltaddpr GIF version

Theorem ltaddpr 7538
Description: The sum of two positive reals is greater than one of them. Proposition 9-3.5(iii) of [Gleason] p. 123. (Contributed by NM, 26-Mar-1996.) (Revised by Mario Carneiro, 12-Jun-2013.)
Assertion
Ref Expression
ltaddpr ((𝐴P𝐵P) → 𝐴<P (𝐴 +P 𝐵))

Proof of Theorem ltaddpr
Dummy variables 𝑓 𝑔 𝑥 𝑦 𝑝 𝑞 𝑟 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 prop 7416 . . . 4 (𝐵P → ⟨(1st𝐵), (2nd𝐵)⟩ ∈ P)
2 prml 7418 . . . 4 (⟨(1st𝐵), (2nd𝐵)⟩ ∈ P → ∃𝑝Q 𝑝 ∈ (1st𝐵))
31, 2syl 14 . . 3 (𝐵P → ∃𝑝Q 𝑝 ∈ (1st𝐵))
43adantl 275 . 2 ((𝐴P𝐵P) → ∃𝑝Q 𝑝 ∈ (1st𝐵))
5 prop 7416 . . . . 5 (𝐴P → ⟨(1st𝐴), (2nd𝐴)⟩ ∈ P)
6 prarloc 7444 . . . . 5 ((⟨(1st𝐴), (2nd𝐴)⟩ ∈ P𝑝Q) → ∃𝑟 ∈ (1st𝐴)∃𝑞 ∈ (2nd𝐴)𝑞 <Q (𝑟 +Q 𝑝))
75, 6sylan 281 . . . 4 ((𝐴P𝑝Q) → ∃𝑟 ∈ (1st𝐴)∃𝑞 ∈ (2nd𝐴)𝑞 <Q (𝑟 +Q 𝑝))
87ad2ant2r 501 . . 3 (((𝐴P𝐵P) ∧ (𝑝Q𝑝 ∈ (1st𝐵))) → ∃𝑟 ∈ (1st𝐴)∃𝑞 ∈ (2nd𝐴)𝑞 <Q (𝑟 +Q 𝑝))
9 elprnqu 7423 . . . . . . . . . . 11 ((⟨(1st𝐴), (2nd𝐴)⟩ ∈ P𝑞 ∈ (2nd𝐴)) → 𝑞Q)
105, 9sylan 281 . . . . . . . . . 10 ((𝐴P𝑞 ∈ (2nd𝐴)) → 𝑞Q)
1110adantlr 469 . . . . . . . . 9 (((𝐴P𝐵P) ∧ 𝑞 ∈ (2nd𝐴)) → 𝑞Q)
1211ad2ant2rl 503 . . . . . . . 8 ((((𝐴P𝐵P) ∧ (𝑝Q𝑝 ∈ (1st𝐵))) ∧ (𝑟 ∈ (1st𝐴) ∧ 𝑞 ∈ (2nd𝐴))) → 𝑞Q)
1312adantr 274 . . . . . . 7 (((((𝐴P𝐵P) ∧ (𝑝Q𝑝 ∈ (1st𝐵))) ∧ (𝑟 ∈ (1st𝐴) ∧ 𝑞 ∈ (2nd𝐴))) ∧ 𝑞 <Q (𝑟 +Q 𝑝)) → 𝑞Q)
14 simplrr 526 . . . . . . 7 (((((𝐴P𝐵P) ∧ (𝑝Q𝑝 ∈ (1st𝐵))) ∧ (𝑟 ∈ (1st𝐴) ∧ 𝑞 ∈ (2nd𝐴))) ∧ 𝑞 <Q (𝑟 +Q 𝑝)) → 𝑞 ∈ (2nd𝐴))
15 simprl 521 . . . . . . . . . . . . 13 (((𝑝Q𝑝 ∈ (1st𝐵)) ∧ (𝑟 ∈ (1st𝐴) ∧ 𝑞 ∈ (2nd𝐴))) → 𝑟 ∈ (1st𝐴))
16 simplr 520 . . . . . . . . . . . . 13 (((𝑝Q𝑝 ∈ (1st𝐵)) ∧ (𝑟 ∈ (1st𝐴) ∧ 𝑞 ∈ (2nd𝐴))) → 𝑝 ∈ (1st𝐵))
1715, 16jca 304 . . . . . . . . . . . 12 (((𝑝Q𝑝 ∈ (1st𝐵)) ∧ (𝑟 ∈ (1st𝐴) ∧ 𝑞 ∈ (2nd𝐴))) → (𝑟 ∈ (1st𝐴) ∧ 𝑝 ∈ (1st𝐵)))
18 df-iplp 7409 . . . . . . . . . . . . 13 +P = (𝑥P, 𝑦P ↦ ⟨{𝑓Q ∣ ∃𝑔QQ (𝑔 ∈ (1st𝑥) ∧ ∈ (1st𝑦) ∧ 𝑓 = (𝑔 +Q ))}, {𝑓Q ∣ ∃𝑔QQ (𝑔 ∈ (2nd𝑥) ∧ ∈ (2nd𝑦) ∧ 𝑓 = (𝑔 +Q ))}⟩)
19 addclnq 7316 . . . . . . . . . . . . 13 ((𝑔QQ) → (𝑔 +Q ) ∈ Q)
2018, 19genpprecll 7455 . . . . . . . . . . . 12 ((𝐴P𝐵P) → ((𝑟 ∈ (1st𝐴) ∧ 𝑝 ∈ (1st𝐵)) → (𝑟 +Q 𝑝) ∈ (1st ‘(𝐴 +P 𝐵))))
2117, 20syl5 32 . . . . . . . . . . 11 ((𝐴P𝐵P) → (((𝑝Q𝑝 ∈ (1st𝐵)) ∧ (𝑟 ∈ (1st𝐴) ∧ 𝑞 ∈ (2nd𝐴))) → (𝑟 +Q 𝑝) ∈ (1st ‘(𝐴 +P 𝐵))))
2221imdistani 442 . . . . . . . . . 10 (((𝐴P𝐵P) ∧ ((𝑝Q𝑝 ∈ (1st𝐵)) ∧ (𝑟 ∈ (1st𝐴) ∧ 𝑞 ∈ (2nd𝐴)))) → ((𝐴P𝐵P) ∧ (𝑟 +Q 𝑝) ∈ (1st ‘(𝐴 +P 𝐵))))
23 addclpr 7478 . . . . . . . . . . 11 ((𝐴P𝐵P) → (𝐴 +P 𝐵) ∈ P)
24 prop 7416 . . . . . . . . . . . 12 ((𝐴 +P 𝐵) ∈ P → ⟨(1st ‘(𝐴 +P 𝐵)), (2nd ‘(𝐴 +P 𝐵))⟩ ∈ P)
25 prcdnql 7425 . . . . . . . . . . . 12 ((⟨(1st ‘(𝐴 +P 𝐵)), (2nd ‘(𝐴 +P 𝐵))⟩ ∈ P ∧ (𝑟 +Q 𝑝) ∈ (1st ‘(𝐴 +P 𝐵))) → (𝑞 <Q (𝑟 +Q 𝑝) → 𝑞 ∈ (1st ‘(𝐴 +P 𝐵))))
2624, 25sylan 281 . . . . . . . . . . 11 (((𝐴 +P 𝐵) ∈ P ∧ (𝑟 +Q 𝑝) ∈ (1st ‘(𝐴 +P 𝐵))) → (𝑞 <Q (𝑟 +Q 𝑝) → 𝑞 ∈ (1st ‘(𝐴 +P 𝐵))))
2723, 26sylan 281 . . . . . . . . . 10 (((𝐴P𝐵P) ∧ (𝑟 +Q 𝑝) ∈ (1st ‘(𝐴 +P 𝐵))) → (𝑞 <Q (𝑟 +Q 𝑝) → 𝑞 ∈ (1st ‘(𝐴 +P 𝐵))))
2822, 27syl 14 . . . . . . . . 9 (((𝐴P𝐵P) ∧ ((𝑝Q𝑝 ∈ (1st𝐵)) ∧ (𝑟 ∈ (1st𝐴) ∧ 𝑞 ∈ (2nd𝐴)))) → (𝑞 <Q (𝑟 +Q 𝑝) → 𝑞 ∈ (1st ‘(𝐴 +P 𝐵))))
2928anassrs 398 . . . . . . . 8 ((((𝐴P𝐵P) ∧ (𝑝Q𝑝 ∈ (1st𝐵))) ∧ (𝑟 ∈ (1st𝐴) ∧ 𝑞 ∈ (2nd𝐴))) → (𝑞 <Q (𝑟 +Q 𝑝) → 𝑞 ∈ (1st ‘(𝐴 +P 𝐵))))
3029imp 123 . . . . . . 7 (((((𝐴P𝐵P) ∧ (𝑝Q𝑝 ∈ (1st𝐵))) ∧ (𝑟 ∈ (1st𝐴) ∧ 𝑞 ∈ (2nd𝐴))) ∧ 𝑞 <Q (𝑟 +Q 𝑝)) → 𝑞 ∈ (1st ‘(𝐴 +P 𝐵)))
31 rspe 2515 . . . . . . 7 ((𝑞Q ∧ (𝑞 ∈ (2nd𝐴) ∧ 𝑞 ∈ (1st ‘(𝐴 +P 𝐵)))) → ∃𝑞Q (𝑞 ∈ (2nd𝐴) ∧ 𝑞 ∈ (1st ‘(𝐴 +P 𝐵))))
3213, 14, 30, 31syl12anc 1226 . . . . . 6 (((((𝐴P𝐵P) ∧ (𝑝Q𝑝 ∈ (1st𝐵))) ∧ (𝑟 ∈ (1st𝐴) ∧ 𝑞 ∈ (2nd𝐴))) ∧ 𝑞 <Q (𝑟 +Q 𝑝)) → ∃𝑞Q (𝑞 ∈ (2nd𝐴) ∧ 𝑞 ∈ (1st ‘(𝐴 +P 𝐵))))
33 ltdfpr 7447 . . . . . . . 8 ((𝐴P ∧ (𝐴 +P 𝐵) ∈ P) → (𝐴<P (𝐴 +P 𝐵) ↔ ∃𝑞Q (𝑞 ∈ (2nd𝐴) ∧ 𝑞 ∈ (1st ‘(𝐴 +P 𝐵)))))
3423, 33syldan 280 . . . . . . 7 ((𝐴P𝐵P) → (𝐴<P (𝐴 +P 𝐵) ↔ ∃𝑞Q (𝑞 ∈ (2nd𝐴) ∧ 𝑞 ∈ (1st ‘(𝐴 +P 𝐵)))))
3534ad3antrrr 484 . . . . . 6 (((((𝐴P𝐵P) ∧ (𝑝Q𝑝 ∈ (1st𝐵))) ∧ (𝑟 ∈ (1st𝐴) ∧ 𝑞 ∈ (2nd𝐴))) ∧ 𝑞 <Q (𝑟 +Q 𝑝)) → (𝐴<P (𝐴 +P 𝐵) ↔ ∃𝑞Q (𝑞 ∈ (2nd𝐴) ∧ 𝑞 ∈ (1st ‘(𝐴 +P 𝐵)))))
3632, 35mpbird 166 . . . . 5 (((((𝐴P𝐵P) ∧ (𝑝Q𝑝 ∈ (1st𝐵))) ∧ (𝑟 ∈ (1st𝐴) ∧ 𝑞 ∈ (2nd𝐴))) ∧ 𝑞 <Q (𝑟 +Q 𝑝)) → 𝐴<P (𝐴 +P 𝐵))
3736ex 114 . . . 4 ((((𝐴P𝐵P) ∧ (𝑝Q𝑝 ∈ (1st𝐵))) ∧ (𝑟 ∈ (1st𝐴) ∧ 𝑞 ∈ (2nd𝐴))) → (𝑞 <Q (𝑟 +Q 𝑝) → 𝐴<P (𝐴 +P 𝐵)))
3837rexlimdvva 2591 . . 3 (((𝐴P𝐵P) ∧ (𝑝Q𝑝 ∈ (1st𝐵))) → (∃𝑟 ∈ (1st𝐴)∃𝑞 ∈ (2nd𝐴)𝑞 <Q (𝑟 +Q 𝑝) → 𝐴<P (𝐴 +P 𝐵)))
398, 38mpd 13 . 2 (((𝐴P𝐵P) ∧ (𝑝Q𝑝 ∈ (1st𝐵))) → 𝐴<P (𝐴 +P 𝐵))
404, 39rexlimddv 2588 1 ((𝐴P𝐵P) → 𝐴<P (𝐴 +P 𝐵))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wb 104  wcel 2136  wrex 2445  cop 3579   class class class wbr 3982  cfv 5188  (class class class)co 5842  1st c1st 6106  2nd c2nd 6107  Qcnq 7221   +Q cplq 7223   <Q cltq 7226  Pcnp 7232   +P cpp 7234  <P cltp 7236
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-13 2138  ax-14 2139  ax-ext 2147  ax-coll 4097  ax-sep 4100  ax-nul 4108  ax-pow 4153  ax-pr 4187  ax-un 4411  ax-setind 4514  ax-iinf 4565
This theorem depends on definitions:  df-bi 116  df-dc 825  df-3or 969  df-3an 970  df-tru 1346  df-fal 1349  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ne 2337  df-ral 2449  df-rex 2450  df-reu 2451  df-rab 2453  df-v 2728  df-sbc 2952  df-csb 3046  df-dif 3118  df-un 3120  df-in 3122  df-ss 3129  df-nul 3410  df-pw 3561  df-sn 3582  df-pr 3583  df-op 3585  df-uni 3790  df-int 3825  df-iun 3868  df-br 3983  df-opab 4044  df-mpt 4045  df-tr 4081  df-eprel 4267  df-id 4271  df-po 4274  df-iso 4275  df-iord 4344  df-on 4346  df-suc 4349  df-iom 4568  df-xp 4610  df-rel 4611  df-cnv 4612  df-co 4613  df-dm 4614  df-rn 4615  df-res 4616  df-ima 4617  df-iota 5153  df-fun 5190  df-fn 5191  df-f 5192  df-f1 5193  df-fo 5194  df-f1o 5195  df-fv 5196  df-ov 5845  df-oprab 5846  df-mpo 5847  df-1st 6108  df-2nd 6109  df-recs 6273  df-irdg 6338  df-1o 6384  df-2o 6385  df-oadd 6388  df-omul 6389  df-er 6501  df-ec 6503  df-qs 6507  df-ni 7245  df-pli 7246  df-mi 7247  df-lti 7248  df-plpq 7285  df-mpq 7286  df-enq 7288  df-nqqs 7289  df-plqqs 7290  df-mqqs 7291  df-1nqqs 7292  df-rq 7293  df-ltnqqs 7294  df-enq0 7365  df-nq0 7366  df-0nq0 7367  df-plq0 7368  df-mq0 7369  df-inp 7407  df-iplp 7409  df-iltp 7411
This theorem is referenced by:  ltexprlemrl  7551  ltaprlem  7559  ltaprg  7560  prplnqu  7561  ltmprr  7583  caucvgprprlemnkltj  7630  caucvgprprlemnkeqj  7631  caucvgprprlemnbj  7634  0lt1sr  7706  recexgt0sr  7714  mulgt0sr  7719  archsr  7723  prsrpos  7726  mappsrprg  7745  pitoregt0  7790
  Copyright terms: Public domain W3C validator