ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  cauappcvgprlemopu GIF version

Theorem cauappcvgprlemopu 7803
Description: Lemma for cauappcvgpr 7817. The upper cut of the putative limit is open. (Contributed by Jim Kingdon, 4-Aug-2020.)
Hypotheses
Ref Expression
cauappcvgpr.f (𝜑𝐹:QQ)
cauappcvgpr.app (𝜑 → ∀𝑝Q𝑞Q ((𝐹𝑝) <Q ((𝐹𝑞) +Q (𝑝 +Q 𝑞)) ∧ (𝐹𝑞) <Q ((𝐹𝑝) +Q (𝑝 +Q 𝑞))))
cauappcvgpr.bnd (𝜑 → ∀𝑝Q 𝐴 <Q (𝐹𝑝))
cauappcvgpr.lim 𝐿 = ⟨{𝑙Q ∣ ∃𝑞Q (𝑙 +Q 𝑞) <Q (𝐹𝑞)}, {𝑢Q ∣ ∃𝑞Q ((𝐹𝑞) +Q 𝑞) <Q 𝑢}⟩
Assertion
Ref Expression
cauappcvgprlemopu ((𝜑𝑟 ∈ (2nd𝐿)) → ∃𝑠Q (𝑠 <Q 𝑟𝑠 ∈ (2nd𝐿)))
Distinct variable groups:   𝐴,𝑝   𝐿,𝑝,𝑞   𝜑,𝑝,𝑞   𝐿,𝑟,𝑠   𝐴,𝑠,𝑝   𝐹,𝑙,𝑢,𝑝,𝑞,𝑟,𝑠   𝜑,𝑟,𝑠
Allowed substitution hints:   𝜑(𝑢,𝑙)   𝐴(𝑢,𝑟,𝑞,𝑙)   𝐿(𝑢,𝑙)

Proof of Theorem cauappcvgprlemopu
StepHypRef Expression
1 breq2 4066 . . . . . 6 (𝑢 = 𝑟 → (((𝐹𝑞) +Q 𝑞) <Q 𝑢 ↔ ((𝐹𝑞) +Q 𝑞) <Q 𝑟))
21rexbidv 2511 . . . . 5 (𝑢 = 𝑟 → (∃𝑞Q ((𝐹𝑞) +Q 𝑞) <Q 𝑢 ↔ ∃𝑞Q ((𝐹𝑞) +Q 𝑞) <Q 𝑟))
3 cauappcvgpr.lim . . . . . . 7 𝐿 = ⟨{𝑙Q ∣ ∃𝑞Q (𝑙 +Q 𝑞) <Q (𝐹𝑞)}, {𝑢Q ∣ ∃𝑞Q ((𝐹𝑞) +Q 𝑞) <Q 𝑢}⟩
43fveq2i 5606 . . . . . 6 (2nd𝐿) = (2nd ‘⟨{𝑙Q ∣ ∃𝑞Q (𝑙 +Q 𝑞) <Q (𝐹𝑞)}, {𝑢Q ∣ ∃𝑞Q ((𝐹𝑞) +Q 𝑞) <Q 𝑢}⟩)
5 nqex 7518 . . . . . . . 8 Q ∈ V
65rabex 4207 . . . . . . 7 {𝑙Q ∣ ∃𝑞Q (𝑙 +Q 𝑞) <Q (𝐹𝑞)} ∈ V
75rabex 4207 . . . . . . 7 {𝑢Q ∣ ∃𝑞Q ((𝐹𝑞) +Q 𝑞) <Q 𝑢} ∈ V
86, 7op2nd 6263 . . . . . 6 (2nd ‘⟨{𝑙Q ∣ ∃𝑞Q (𝑙 +Q 𝑞) <Q (𝐹𝑞)}, {𝑢Q ∣ ∃𝑞Q ((𝐹𝑞) +Q 𝑞) <Q 𝑢}⟩) = {𝑢Q ∣ ∃𝑞Q ((𝐹𝑞) +Q 𝑞) <Q 𝑢}
94, 8eqtri 2230 . . . . 5 (2nd𝐿) = {𝑢Q ∣ ∃𝑞Q ((𝐹𝑞) +Q 𝑞) <Q 𝑢}
102, 9elrab2 2942 . . . 4 (𝑟 ∈ (2nd𝐿) ↔ (𝑟Q ∧ ∃𝑞Q ((𝐹𝑞) +Q 𝑞) <Q 𝑟))
1110simprbi 275 . . 3 (𝑟 ∈ (2nd𝐿) → ∃𝑞Q ((𝐹𝑞) +Q 𝑞) <Q 𝑟)
1211adantl 277 . 2 ((𝜑𝑟 ∈ (2nd𝐿)) → ∃𝑞Q ((𝐹𝑞) +Q 𝑞) <Q 𝑟)
13 simprr 531 . . . 4 (((𝜑𝑟 ∈ (2nd𝐿)) ∧ (𝑞Q ∧ ((𝐹𝑞) +Q 𝑞) <Q 𝑟)) → ((𝐹𝑞) +Q 𝑞) <Q 𝑟)
14 ltbtwnnqq 7570 . . . 4 (((𝐹𝑞) +Q 𝑞) <Q 𝑟 ↔ ∃𝑠Q (((𝐹𝑞) +Q 𝑞) <Q 𝑠𝑠 <Q 𝑟))
1513, 14sylib 122 . . 3 (((𝜑𝑟 ∈ (2nd𝐿)) ∧ (𝑞Q ∧ ((𝐹𝑞) +Q 𝑞) <Q 𝑟)) → ∃𝑠Q (((𝐹𝑞) +Q 𝑞) <Q 𝑠𝑠 <Q 𝑟))
16 simprr 531 . . . . . 6 (((((𝜑𝑟 ∈ (2nd𝐿)) ∧ (𝑞Q ∧ ((𝐹𝑞) +Q 𝑞) <Q 𝑟)) ∧ 𝑠Q) ∧ (((𝐹𝑞) +Q 𝑞) <Q 𝑠𝑠 <Q 𝑟)) → 𝑠 <Q 𝑟)
17 simplr 528 . . . . . . 7 (((((𝜑𝑟 ∈ (2nd𝐿)) ∧ (𝑞Q ∧ ((𝐹𝑞) +Q 𝑞) <Q 𝑟)) ∧ 𝑠Q) ∧ (((𝐹𝑞) +Q 𝑞) <Q 𝑠𝑠 <Q 𝑟)) → 𝑠Q)
18 simplrl 535 . . . . . . . . 9 ((((𝜑𝑟 ∈ (2nd𝐿)) ∧ (𝑞Q ∧ ((𝐹𝑞) +Q 𝑞) <Q 𝑟)) ∧ 𝑠Q) → 𝑞Q)
1918adantr 276 . . . . . . . 8 (((((𝜑𝑟 ∈ (2nd𝐿)) ∧ (𝑞Q ∧ ((𝐹𝑞) +Q 𝑞) <Q 𝑟)) ∧ 𝑠Q) ∧ (((𝐹𝑞) +Q 𝑞) <Q 𝑠𝑠 <Q 𝑟)) → 𝑞Q)
20 simprl 529 . . . . . . . 8 (((((𝜑𝑟 ∈ (2nd𝐿)) ∧ (𝑞Q ∧ ((𝐹𝑞) +Q 𝑞) <Q 𝑟)) ∧ 𝑠Q) ∧ (((𝐹𝑞) +Q 𝑞) <Q 𝑠𝑠 <Q 𝑟)) → ((𝐹𝑞) +Q 𝑞) <Q 𝑠)
21 rspe 2559 . . . . . . . 8 ((𝑞Q ∧ ((𝐹𝑞) +Q 𝑞) <Q 𝑠) → ∃𝑞Q ((𝐹𝑞) +Q 𝑞) <Q 𝑠)
2219, 20, 21syl2anc 411 . . . . . . 7 (((((𝜑𝑟 ∈ (2nd𝐿)) ∧ (𝑞Q ∧ ((𝐹𝑞) +Q 𝑞) <Q 𝑟)) ∧ 𝑠Q) ∧ (((𝐹𝑞) +Q 𝑞) <Q 𝑠𝑠 <Q 𝑟)) → ∃𝑞Q ((𝐹𝑞) +Q 𝑞) <Q 𝑠)
23 breq2 4066 . . . . . . . . 9 (𝑢 = 𝑠 → (((𝐹𝑞) +Q 𝑞) <Q 𝑢 ↔ ((𝐹𝑞) +Q 𝑞) <Q 𝑠))
2423rexbidv 2511 . . . . . . . 8 (𝑢 = 𝑠 → (∃𝑞Q ((𝐹𝑞) +Q 𝑞) <Q 𝑢 ↔ ∃𝑞Q ((𝐹𝑞) +Q 𝑞) <Q 𝑠))
2524, 9elrab2 2942 . . . . . . 7 (𝑠 ∈ (2nd𝐿) ↔ (𝑠Q ∧ ∃𝑞Q ((𝐹𝑞) +Q 𝑞) <Q 𝑠))
2617, 22, 25sylanbrc 417 . . . . . 6 (((((𝜑𝑟 ∈ (2nd𝐿)) ∧ (𝑞Q ∧ ((𝐹𝑞) +Q 𝑞) <Q 𝑟)) ∧ 𝑠Q) ∧ (((𝐹𝑞) +Q 𝑞) <Q 𝑠𝑠 <Q 𝑟)) → 𝑠 ∈ (2nd𝐿))
2716, 26jca 306 . . . . 5 (((((𝜑𝑟 ∈ (2nd𝐿)) ∧ (𝑞Q ∧ ((𝐹𝑞) +Q 𝑞) <Q 𝑟)) ∧ 𝑠Q) ∧ (((𝐹𝑞) +Q 𝑞) <Q 𝑠𝑠 <Q 𝑟)) → (𝑠 <Q 𝑟𝑠 ∈ (2nd𝐿)))
2827ex 115 . . . 4 ((((𝜑𝑟 ∈ (2nd𝐿)) ∧ (𝑞Q ∧ ((𝐹𝑞) +Q 𝑞) <Q 𝑟)) ∧ 𝑠Q) → ((((𝐹𝑞) +Q 𝑞) <Q 𝑠𝑠 <Q 𝑟) → (𝑠 <Q 𝑟𝑠 ∈ (2nd𝐿))))
2928reximdva 2612 . . 3 (((𝜑𝑟 ∈ (2nd𝐿)) ∧ (𝑞Q ∧ ((𝐹𝑞) +Q 𝑞) <Q 𝑟)) → (∃𝑠Q (((𝐹𝑞) +Q 𝑞) <Q 𝑠𝑠 <Q 𝑟) → ∃𝑠Q (𝑠 <Q 𝑟𝑠 ∈ (2nd𝐿))))
3015, 29mpd 13 . 2 (((𝜑𝑟 ∈ (2nd𝐿)) ∧ (𝑞Q ∧ ((𝐹𝑞) +Q 𝑞) <Q 𝑟)) → ∃𝑠Q (𝑠 <Q 𝑟𝑠 ∈ (2nd𝐿)))
3112, 30rexlimddv 2633 1 ((𝜑𝑟 ∈ (2nd𝐿)) → ∃𝑠Q (𝑠 <Q 𝑟𝑠 ∈ (2nd𝐿)))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104   = wceq 1375  wcel 2180  wral 2488  wrex 2489  {crab 2492  cop 3649   class class class wbr 4062  wf 5290  cfv 5294  (class class class)co 5974  2nd c2nd 6255  Qcnq 7435   +Q cplq 7437   <Q cltq 7440
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 713  ax-5 1473  ax-7 1474  ax-gen 1475  ax-ie1 1519  ax-ie2 1520  ax-8 1530  ax-10 1531  ax-11 1532  ax-i12 1533  ax-bndl 1535  ax-4 1536  ax-17 1552  ax-i9 1556  ax-ial 1560  ax-i5r 1561  ax-13 2182  ax-14 2183  ax-ext 2191  ax-coll 4178  ax-sep 4181  ax-nul 4189  ax-pow 4237  ax-pr 4272  ax-un 4501  ax-setind 4606  ax-iinf 4657
This theorem depends on definitions:  df-bi 117  df-dc 839  df-3or 984  df-3an 985  df-tru 1378  df-fal 1381  df-nf 1487  df-sb 1789  df-eu 2060  df-mo 2061  df-clab 2196  df-cleq 2202  df-clel 2205  df-nfc 2341  df-ne 2381  df-ral 2493  df-rex 2494  df-reu 2495  df-rab 2497  df-v 2781  df-sbc 3009  df-csb 3105  df-dif 3179  df-un 3181  df-in 3183  df-ss 3190  df-nul 3472  df-pw 3631  df-sn 3652  df-pr 3653  df-op 3655  df-uni 3868  df-int 3903  df-iun 3946  df-br 4063  df-opab 4125  df-mpt 4126  df-tr 4162  df-eprel 4357  df-id 4361  df-po 4364  df-iso 4365  df-iord 4434  df-on 4436  df-suc 4439  df-iom 4660  df-xp 4702  df-rel 4703  df-cnv 4704  df-co 4705  df-dm 4706  df-rn 4707  df-res 4708  df-ima 4709  df-iota 5254  df-fun 5296  df-fn 5297  df-f 5298  df-f1 5299  df-fo 5300  df-f1o 5301  df-fv 5302  df-ov 5977  df-oprab 5978  df-mpo 5979  df-1st 6256  df-2nd 6257  df-recs 6421  df-irdg 6486  df-1o 6532  df-oadd 6536  df-omul 6537  df-er 6650  df-ec 6652  df-qs 6656  df-ni 7459  df-pli 7460  df-mi 7461  df-lti 7462  df-plpq 7499  df-mpq 7500  df-enq 7502  df-nqqs 7503  df-plqqs 7504  df-mqqs 7505  df-1nqqs 7506  df-rq 7507  df-ltnqqs 7508
This theorem is referenced by:  cauappcvgprlemrnd  7805
  Copyright terms: Public domain W3C validator