Proof of Theorem cauappcvgprlemopu
| Step | Hyp | Ref
 | Expression | 
| 1 |   | breq2 4037 | 
. . . . . 6
⊢ (𝑢 = 𝑟 → (((𝐹‘𝑞) +Q 𝑞) <Q
𝑢 ↔ ((𝐹‘𝑞) +Q 𝑞) <Q
𝑟)) | 
| 2 | 1 | rexbidv 2498 | 
. . . . 5
⊢ (𝑢 = 𝑟 → (∃𝑞 ∈ Q ((𝐹‘𝑞) +Q 𝑞) <Q
𝑢 ↔ ∃𝑞 ∈ Q ((𝐹‘𝑞) +Q 𝑞) <Q
𝑟)) | 
| 3 |   | cauappcvgpr.lim | 
. . . . . . 7
⊢ 𝐿 = 〈{𝑙 ∈ Q ∣ ∃𝑞 ∈ Q (𝑙 +Q
𝑞)
<Q (𝐹‘𝑞)}, {𝑢 ∈ Q ∣ ∃𝑞 ∈ Q ((𝐹‘𝑞) +Q 𝑞) <Q
𝑢}〉 | 
| 4 | 3 | fveq2i 5561 | 
. . . . . 6
⊢
(2nd ‘𝐿) = (2nd ‘〈{𝑙 ∈ Q ∣
∃𝑞 ∈
Q (𝑙
+Q 𝑞) <Q (𝐹‘𝑞)}, {𝑢 ∈ Q ∣ ∃𝑞 ∈ Q ((𝐹‘𝑞) +Q 𝑞) <Q
𝑢}〉) | 
| 5 |   | nqex 7430 | 
. . . . . . . 8
⊢
Q ∈ V | 
| 6 | 5 | rabex 4177 | 
. . . . . . 7
⊢ {𝑙 ∈ Q ∣
∃𝑞 ∈
Q (𝑙
+Q 𝑞) <Q (𝐹‘𝑞)} ∈ V | 
| 7 | 5 | rabex 4177 | 
. . . . . . 7
⊢ {𝑢 ∈ Q ∣
∃𝑞 ∈
Q ((𝐹‘𝑞) +Q 𝑞) <Q
𝑢} ∈
V | 
| 8 | 6, 7 | op2nd 6205 | 
. . . . . 6
⊢
(2nd ‘〈{𝑙 ∈ Q ∣ ∃𝑞 ∈ Q (𝑙 +Q
𝑞)
<Q (𝐹‘𝑞)}, {𝑢 ∈ Q ∣ ∃𝑞 ∈ Q ((𝐹‘𝑞) +Q 𝑞) <Q
𝑢}〉) = {𝑢 ∈ Q ∣
∃𝑞 ∈
Q ((𝐹‘𝑞) +Q 𝑞) <Q
𝑢} | 
| 9 | 4, 8 | eqtri 2217 | 
. . . . 5
⊢
(2nd ‘𝐿) = {𝑢 ∈ Q ∣ ∃𝑞 ∈ Q ((𝐹‘𝑞) +Q 𝑞) <Q
𝑢} | 
| 10 | 2, 9 | elrab2 2923 | 
. . . 4
⊢ (𝑟 ∈ (2nd
‘𝐿) ↔ (𝑟 ∈ Q ∧
∃𝑞 ∈
Q ((𝐹‘𝑞) +Q 𝑞) <Q
𝑟)) | 
| 11 | 10 | simprbi 275 | 
. . 3
⊢ (𝑟 ∈ (2nd
‘𝐿) →
∃𝑞 ∈
Q ((𝐹‘𝑞) +Q 𝑞) <Q
𝑟) | 
| 12 | 11 | adantl 277 | 
. 2
⊢ ((𝜑 ∧ 𝑟 ∈ (2nd ‘𝐿)) → ∃𝑞 ∈ Q ((𝐹‘𝑞) +Q 𝑞) <Q
𝑟) | 
| 13 |   | simprr 531 | 
. . . 4
⊢ (((𝜑 ∧ 𝑟 ∈ (2nd ‘𝐿)) ∧ (𝑞 ∈ Q ∧ ((𝐹‘𝑞) +Q 𝑞) <Q
𝑟)) → ((𝐹‘𝑞) +Q 𝑞) <Q
𝑟) | 
| 14 |   | ltbtwnnqq 7482 | 
. . . 4
⊢ (((𝐹‘𝑞) +Q 𝑞) <Q
𝑟 ↔ ∃𝑠 ∈ Q (((𝐹‘𝑞) +Q 𝑞) <Q
𝑠 ∧ 𝑠 <Q 𝑟)) | 
| 15 | 13, 14 | sylib 122 | 
. . 3
⊢ (((𝜑 ∧ 𝑟 ∈ (2nd ‘𝐿)) ∧ (𝑞 ∈ Q ∧ ((𝐹‘𝑞) +Q 𝑞) <Q
𝑟)) → ∃𝑠 ∈ Q (((𝐹‘𝑞) +Q 𝑞) <Q
𝑠 ∧ 𝑠 <Q 𝑟)) | 
| 16 |   | simprr 531 | 
. . . . . 6
⊢
(((((𝜑 ∧ 𝑟 ∈ (2nd
‘𝐿)) ∧ (𝑞 ∈ Q ∧
((𝐹‘𝑞) +Q
𝑞)
<Q 𝑟)) ∧ 𝑠 ∈ Q) ∧ (((𝐹‘𝑞) +Q 𝑞) <Q
𝑠 ∧ 𝑠 <Q 𝑟)) → 𝑠 <Q 𝑟) | 
| 17 |   | simplr 528 | 
. . . . . . 7
⊢
(((((𝜑 ∧ 𝑟 ∈ (2nd
‘𝐿)) ∧ (𝑞 ∈ Q ∧
((𝐹‘𝑞) +Q
𝑞)
<Q 𝑟)) ∧ 𝑠 ∈ Q) ∧ (((𝐹‘𝑞) +Q 𝑞) <Q
𝑠 ∧ 𝑠 <Q 𝑟)) → 𝑠 ∈ Q) | 
| 18 |   | simplrl 535 | 
. . . . . . . . 9
⊢ ((((𝜑 ∧ 𝑟 ∈ (2nd ‘𝐿)) ∧ (𝑞 ∈ Q ∧ ((𝐹‘𝑞) +Q 𝑞) <Q
𝑟)) ∧ 𝑠 ∈ Q) →
𝑞 ∈
Q) | 
| 19 | 18 | adantr 276 | 
. . . . . . . 8
⊢
(((((𝜑 ∧ 𝑟 ∈ (2nd
‘𝐿)) ∧ (𝑞 ∈ Q ∧
((𝐹‘𝑞) +Q
𝑞)
<Q 𝑟)) ∧ 𝑠 ∈ Q) ∧ (((𝐹‘𝑞) +Q 𝑞) <Q
𝑠 ∧ 𝑠 <Q 𝑟)) → 𝑞 ∈ Q) | 
| 20 |   | simprl 529 | 
. . . . . . . 8
⊢
(((((𝜑 ∧ 𝑟 ∈ (2nd
‘𝐿)) ∧ (𝑞 ∈ Q ∧
((𝐹‘𝑞) +Q
𝑞)
<Q 𝑟)) ∧ 𝑠 ∈ Q) ∧ (((𝐹‘𝑞) +Q 𝑞) <Q
𝑠 ∧ 𝑠 <Q 𝑟)) → ((𝐹‘𝑞) +Q 𝑞) <Q
𝑠) | 
| 21 |   | rspe 2546 | 
. . . . . . . 8
⊢ ((𝑞 ∈ Q ∧
((𝐹‘𝑞) +Q
𝑞)
<Q 𝑠) → ∃𝑞 ∈ Q ((𝐹‘𝑞) +Q 𝑞) <Q
𝑠) | 
| 22 | 19, 20, 21 | syl2anc 411 | 
. . . . . . 7
⊢
(((((𝜑 ∧ 𝑟 ∈ (2nd
‘𝐿)) ∧ (𝑞 ∈ Q ∧
((𝐹‘𝑞) +Q
𝑞)
<Q 𝑟)) ∧ 𝑠 ∈ Q) ∧ (((𝐹‘𝑞) +Q 𝑞) <Q
𝑠 ∧ 𝑠 <Q 𝑟)) → ∃𝑞 ∈ Q ((𝐹‘𝑞) +Q 𝑞) <Q
𝑠) | 
| 23 |   | breq2 4037 | 
. . . . . . . . 9
⊢ (𝑢 = 𝑠 → (((𝐹‘𝑞) +Q 𝑞) <Q
𝑢 ↔ ((𝐹‘𝑞) +Q 𝑞) <Q
𝑠)) | 
| 24 | 23 | rexbidv 2498 | 
. . . . . . . 8
⊢ (𝑢 = 𝑠 → (∃𝑞 ∈ Q ((𝐹‘𝑞) +Q 𝑞) <Q
𝑢 ↔ ∃𝑞 ∈ Q ((𝐹‘𝑞) +Q 𝑞) <Q
𝑠)) | 
| 25 | 24, 9 | elrab2 2923 | 
. . . . . . 7
⊢ (𝑠 ∈ (2nd
‘𝐿) ↔ (𝑠 ∈ Q ∧
∃𝑞 ∈
Q ((𝐹‘𝑞) +Q 𝑞) <Q
𝑠)) | 
| 26 | 17, 22, 25 | sylanbrc 417 | 
. . . . . 6
⊢
(((((𝜑 ∧ 𝑟 ∈ (2nd
‘𝐿)) ∧ (𝑞 ∈ Q ∧
((𝐹‘𝑞) +Q
𝑞)
<Q 𝑟)) ∧ 𝑠 ∈ Q) ∧ (((𝐹‘𝑞) +Q 𝑞) <Q
𝑠 ∧ 𝑠 <Q 𝑟)) → 𝑠 ∈ (2nd ‘𝐿)) | 
| 27 | 16, 26 | jca 306 | 
. . . . 5
⊢
(((((𝜑 ∧ 𝑟 ∈ (2nd
‘𝐿)) ∧ (𝑞 ∈ Q ∧
((𝐹‘𝑞) +Q
𝑞)
<Q 𝑟)) ∧ 𝑠 ∈ Q) ∧ (((𝐹‘𝑞) +Q 𝑞) <Q
𝑠 ∧ 𝑠 <Q 𝑟)) → (𝑠 <Q 𝑟 ∧ 𝑠 ∈ (2nd ‘𝐿))) | 
| 28 | 27 | ex 115 | 
. . . 4
⊢ ((((𝜑 ∧ 𝑟 ∈ (2nd ‘𝐿)) ∧ (𝑞 ∈ Q ∧ ((𝐹‘𝑞) +Q 𝑞) <Q
𝑟)) ∧ 𝑠 ∈ Q) →
((((𝐹‘𝑞) +Q
𝑞)
<Q 𝑠 ∧ 𝑠 <Q 𝑟) → (𝑠 <Q 𝑟 ∧ 𝑠 ∈ (2nd ‘𝐿)))) | 
| 29 | 28 | reximdva 2599 | 
. . 3
⊢ (((𝜑 ∧ 𝑟 ∈ (2nd ‘𝐿)) ∧ (𝑞 ∈ Q ∧ ((𝐹‘𝑞) +Q 𝑞) <Q
𝑟)) → (∃𝑠 ∈ Q (((𝐹‘𝑞) +Q 𝑞) <Q
𝑠 ∧ 𝑠 <Q 𝑟) → ∃𝑠 ∈ Q (𝑠 <Q
𝑟 ∧ 𝑠 ∈ (2nd ‘𝐿)))) | 
| 30 | 15, 29 | mpd 13 | 
. 2
⊢ (((𝜑 ∧ 𝑟 ∈ (2nd ‘𝐿)) ∧ (𝑞 ∈ Q ∧ ((𝐹‘𝑞) +Q 𝑞) <Q
𝑟)) → ∃𝑠 ∈ Q (𝑠 <Q
𝑟 ∧ 𝑠 ∈ (2nd ‘𝐿))) | 
| 31 | 12, 30 | rexlimddv 2619 | 
1
⊢ ((𝜑 ∧ 𝑟 ∈ (2nd ‘𝐿)) → ∃𝑠 ∈ Q (𝑠 <Q
𝑟 ∧ 𝑠 ∈ (2nd ‘𝐿))) |