| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > sseq2d | GIF version | ||
| Description: An equality deduction for the subclass relationship. (Contributed by NM, 14-Aug-1994.) |
| Ref | Expression |
|---|---|
| sseq1d.1 | ⊢ (𝜑 → 𝐴 = 𝐵) |
| Ref | Expression |
|---|---|
| sseq2d | ⊢ (𝜑 → (𝐶 ⊆ 𝐴 ↔ 𝐶 ⊆ 𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sseq1d.1 | . 2 ⊢ (𝜑 → 𝐴 = 𝐵) | |
| 2 | sseq2 3248 | . 2 ⊢ (𝐴 = 𝐵 → (𝐶 ⊆ 𝐴 ↔ 𝐶 ⊆ 𝐵)) | |
| 3 | 1, 2 | syl 14 | 1 ⊢ (𝜑 → (𝐶 ⊆ 𝐴 ↔ 𝐶 ⊆ 𝐵)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ↔ wb 105 = wceq 1395 ⊆ wss 3197 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-11 1552 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-ext 2211 |
| This theorem depends on definitions: df-bi 117 df-nf 1507 df-sb 1809 df-clab 2216 df-cleq 2222 df-clel 2225 df-in 3203 df-ss 3210 |
| This theorem is referenced by: sseq12d 3255 sseqtrd 3262 exmidsssn 4285 exmidsssnc 4286 onsucsssucexmid 4616 sbcrel 4802 funimass2 5395 fnco 5427 fnssresb 5431 fnimaeq0 5441 foimacnv 5586 fvelimab 5683 ssimaexg 5689 fvmptss2 5702 rdgss 6519 tapeq2 7427 fzowrddc 11165 swrdnd 11177 swrd0g 11178 summodclem2 11879 summodc 11880 zsumdc 11881 fsum3cvg3 11893 prodmodclem2 12074 prodmodc 12075 zproddc 12076 ennnfoneleminc 12968 tgval 13281 prdsval 13292 releqgg 13743 eqgex 13744 eqgfval 13745 opprsubgg 14033 unitsubm 14068 subrngpropd 14165 subrgsubm 14183 issubrg3 14196 subrgpropd 14202 lsslss 14330 lsspropdg 14380 islidlm 14428 rspcl 14440 rspssid 14441 isbasisg 14703 tgss3 14737 restbasg 14827 tgrest 14828 restopn2 14842 cnpnei 14878 cnptopresti 14897 txbas 14917 elmopn 15105 neibl 15150 dvfgg 15347 incistruhgr 15875 edgssv2en 15982 |
| Copyright terms: Public domain | W3C validator |