| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > sseq2d | GIF version | ||
| Description: An equality deduction for the subclass relationship. (Contributed by NM, 14-Aug-1994.) |
| Ref | Expression |
|---|---|
| sseq1d.1 | ⊢ (𝜑 → 𝐴 = 𝐵) |
| Ref | Expression |
|---|---|
| sseq2d | ⊢ (𝜑 → (𝐶 ⊆ 𝐴 ↔ 𝐶 ⊆ 𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sseq1d.1 | . 2 ⊢ (𝜑 → 𝐴 = 𝐵) | |
| 2 | sseq2 3208 | . 2 ⊢ (𝐴 = 𝐵 → (𝐶 ⊆ 𝐴 ↔ 𝐶 ⊆ 𝐵)) | |
| 3 | 1, 2 | syl 14 | 1 ⊢ (𝜑 → (𝐶 ⊆ 𝐴 ↔ 𝐶 ⊆ 𝐵)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ↔ wb 105 = wceq 1364 ⊆ wss 3157 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-11 1520 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 |
| This theorem depends on definitions: df-bi 117 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-in 3163 df-ss 3170 |
| This theorem is referenced by: sseq12d 3215 sseqtrd 3222 exmidsssn 4236 exmidsssnc 4237 onsucsssucexmid 4564 sbcrel 4750 funimass2 5337 fnco 5369 fnssresb 5373 fnimaeq0 5382 foimacnv 5525 fvelimab 5620 ssimaexg 5626 fvmptss2 5639 rdgss 6450 tapeq2 7336 summodclem2 11564 summodc 11565 zsumdc 11566 fsum3cvg3 11578 prodmodclem2 11759 prodmodc 11760 zproddc 11761 ennnfoneleminc 12653 tgval 12964 prdsval 12975 releqgg 13426 eqgex 13427 eqgfval 13428 opprsubgg 13716 unitsubm 13751 subrngpropd 13848 subrgsubm 13866 issubrg3 13879 subrgpropd 13885 lsslss 14013 lsspropdg 14063 islidlm 14111 rspcl 14123 rspssid 14124 isbasisg 14364 tgss3 14398 restbasg 14488 tgrest 14489 restopn2 14503 cnpnei 14539 cnptopresti 14558 txbas 14578 elmopn 14766 neibl 14811 dvfgg 15008 |
| Copyright terms: Public domain | W3C validator |