| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > sseq2d | GIF version | ||
| Description: An equality deduction for the subclass relationship. (Contributed by NM, 14-Aug-1994.) | 
| Ref | Expression | 
|---|---|
| sseq1d.1 | ⊢ (𝜑 → 𝐴 = 𝐵) | 
| Ref | Expression | 
|---|---|
| sseq2d | ⊢ (𝜑 → (𝐶 ⊆ 𝐴 ↔ 𝐶 ⊆ 𝐵)) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | sseq1d.1 | . 2 ⊢ (𝜑 → 𝐴 = 𝐵) | |
| 2 | sseq2 3207 | . 2 ⊢ (𝐴 = 𝐵 → (𝐶 ⊆ 𝐴 ↔ 𝐶 ⊆ 𝐵)) | |
| 3 | 1, 2 | syl 14 | 1 ⊢ (𝜑 → (𝐶 ⊆ 𝐴 ↔ 𝐶 ⊆ 𝐵)) | 
| Colors of variables: wff set class | 
| Syntax hints: → wi 4 ↔ wb 105 = wceq 1364 ⊆ wss 3157 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-11 1520 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 | 
| This theorem depends on definitions: df-bi 117 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-in 3163 df-ss 3170 | 
| This theorem is referenced by: sseq12d 3214 sseqtrd 3221 exmidsssn 4235 exmidsssnc 4236 onsucsssucexmid 4563 sbcrel 4749 funimass2 5336 fnco 5366 fnssresb 5370 fnimaeq0 5379 foimacnv 5522 fvelimab 5617 ssimaexg 5623 fvmptss2 5636 rdgss 6441 tapeq2 7320 summodclem2 11547 summodc 11548 zsumdc 11549 fsum3cvg3 11561 prodmodclem2 11742 prodmodc 11743 zproddc 11744 ennnfoneleminc 12628 tgval 12933 releqgg 13350 eqgex 13351 eqgfval 13352 opprsubgg 13640 unitsubm 13675 subrngpropd 13772 subrgsubm 13790 issubrg3 13803 subrgpropd 13809 lsslss 13937 lsspropdg 13987 islidlm 14035 rspcl 14047 rspssid 14048 isbasisg 14280 tgss3 14314 restbasg 14404 tgrest 14405 restopn2 14419 cnpnei 14455 cnptopresti 14474 txbas 14494 elmopn 14682 neibl 14727 dvfgg 14924 | 
| Copyright terms: Public domain | W3C validator |