| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > sseq2d | GIF version | ||
| Description: An equality deduction for the subclass relationship. (Contributed by NM, 14-Aug-1994.) |
| Ref | Expression |
|---|---|
| sseq1d.1 | ⊢ (𝜑 → 𝐴 = 𝐵) |
| Ref | Expression |
|---|---|
| sseq2d | ⊢ (𝜑 → (𝐶 ⊆ 𝐴 ↔ 𝐶 ⊆ 𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sseq1d.1 | . 2 ⊢ (𝜑 → 𝐴 = 𝐵) | |
| 2 | sseq2 3248 | . 2 ⊢ (𝐴 = 𝐵 → (𝐶 ⊆ 𝐴 ↔ 𝐶 ⊆ 𝐵)) | |
| 3 | 1, 2 | syl 14 | 1 ⊢ (𝜑 → (𝐶 ⊆ 𝐴 ↔ 𝐶 ⊆ 𝐵)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ↔ wb 105 = wceq 1395 ⊆ wss 3197 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-11 1552 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-ext 2211 |
| This theorem depends on definitions: df-bi 117 df-nf 1507 df-sb 1809 df-clab 2216 df-cleq 2222 df-clel 2225 df-in 3203 df-ss 3210 |
| This theorem is referenced by: sseq12d 3255 sseqtrd 3262 exmidsssn 4286 exmidsssnc 4287 onsucsssucexmid 4619 sbcrel 4805 funimass2 5399 fnco 5431 fnssresb 5435 fnimaeq0 5445 foimacnv 5592 fvelimab 5692 ssimaexg 5698 fvmptss2 5711 rdgss 6535 tapeq2 7447 fzowrddc 11187 swrdnd 11199 swrd0g 11200 summodclem2 11901 summodc 11902 zsumdc 11903 fsum3cvg3 11915 prodmodclem2 12096 prodmodc 12097 zproddc 12098 ennnfoneleminc 12990 tgval 13303 prdsval 13314 releqgg 13765 eqgex 13766 eqgfval 13767 opprsubgg 14055 unitsubm 14091 subrngpropd 14188 subrgsubm 14206 issubrg3 14219 subrgpropd 14225 lsslss 14353 lsspropdg 14403 islidlm 14451 rspcl 14463 rspssid 14464 isbasisg 14726 tgss3 14760 restbasg 14850 tgrest 14851 restopn2 14865 cnpnei 14901 cnptopresti 14920 txbas 14940 elmopn 15128 neibl 15173 dvfgg 15370 incistruhgr 15898 edgssv2en 16005 wksfval 16043 |
| Copyright terms: Public domain | W3C validator |