Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > sseq2d | GIF version |
Description: An equality deduction for the subclass relationship. (Contributed by NM, 14-Aug-1994.) |
Ref | Expression |
---|---|
sseq1d.1 | ⊢ (𝜑 → 𝐴 = 𝐵) |
Ref | Expression |
---|---|
sseq2d | ⊢ (𝜑 → (𝐶 ⊆ 𝐴 ↔ 𝐶 ⊆ 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sseq1d.1 | . 2 ⊢ (𝜑 → 𝐴 = 𝐵) | |
2 | sseq2 3166 | . 2 ⊢ (𝐴 = 𝐵 → (𝐶 ⊆ 𝐴 ↔ 𝐶 ⊆ 𝐵)) | |
3 | 1, 2 | syl 14 | 1 ⊢ (𝜑 → (𝐶 ⊆ 𝐴 ↔ 𝐶 ⊆ 𝐵)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ↔ wb 104 = wceq 1343 ⊆ wss 3116 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-11 1494 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-ext 2147 |
This theorem depends on definitions: df-bi 116 df-nf 1449 df-sb 1751 df-clab 2152 df-cleq 2158 df-clel 2161 df-in 3122 df-ss 3129 |
This theorem is referenced by: sseq12d 3173 sseqtrd 3180 exmidsssn 4181 exmidsssnc 4182 onsucsssucexmid 4504 sbcrel 4690 funimass2 5266 fnco 5296 fnssresb 5300 fnimaeq0 5309 foimacnv 5450 fvelimab 5542 ssimaexg 5548 fvmptss2 5561 rdgss 6351 summodclem2 11323 summodc 11324 zsumdc 11325 fsum3cvg3 11337 prodmodclem2 11518 prodmodc 11519 zproddc 11520 ennnfoneleminc 12344 isbasisg 12682 tgval 12689 tgss3 12718 restbasg 12808 tgrest 12809 restopn2 12823 cnpnei 12859 cnptopresti 12878 txbas 12898 elmopn 13086 neibl 13131 dvfgg 13297 |
Copyright terms: Public domain | W3C validator |