| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > sseq2d | GIF version | ||
| Description: An equality deduction for the subclass relationship. (Contributed by NM, 14-Aug-1994.) |
| Ref | Expression |
|---|---|
| sseq1d.1 | ⊢ (𝜑 → 𝐴 = 𝐵) |
| Ref | Expression |
|---|---|
| sseq2d | ⊢ (𝜑 → (𝐶 ⊆ 𝐴 ↔ 𝐶 ⊆ 𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sseq1d.1 | . 2 ⊢ (𝜑 → 𝐴 = 𝐵) | |
| 2 | sseq2 3208 | . 2 ⊢ (𝐴 = 𝐵 → (𝐶 ⊆ 𝐴 ↔ 𝐶 ⊆ 𝐵)) | |
| 3 | 1, 2 | syl 14 | 1 ⊢ (𝜑 → (𝐶 ⊆ 𝐴 ↔ 𝐶 ⊆ 𝐵)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ↔ wb 105 = wceq 1364 ⊆ wss 3157 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-11 1520 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 |
| This theorem depends on definitions: df-bi 117 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-in 3163 df-ss 3170 |
| This theorem is referenced by: sseq12d 3215 sseqtrd 3222 exmidsssn 4236 exmidsssnc 4237 onsucsssucexmid 4564 sbcrel 4750 funimass2 5337 fnco 5369 fnssresb 5373 fnimaeq0 5382 foimacnv 5525 fvelimab 5620 ssimaexg 5626 fvmptss2 5639 rdgss 6450 tapeq2 7338 summodclem2 11566 summodc 11567 zsumdc 11568 fsum3cvg3 11580 prodmodclem2 11761 prodmodc 11762 zproddc 11763 ennnfoneleminc 12655 tgval 12966 prdsval 12977 releqgg 13428 eqgex 13429 eqgfval 13430 opprsubgg 13718 unitsubm 13753 subrngpropd 13850 subrgsubm 13868 issubrg3 13881 subrgpropd 13887 lsslss 14015 lsspropdg 14065 islidlm 14113 rspcl 14125 rspssid 14126 isbasisg 14388 tgss3 14422 restbasg 14512 tgrest 14513 restopn2 14527 cnpnei 14563 cnptopresti 14582 txbas 14602 elmopn 14790 neibl 14835 dvfgg 15032 |
| Copyright terms: Public domain | W3C validator |