Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > sseq2d | GIF version |
Description: An equality deduction for the subclass relationship. (Contributed by NM, 14-Aug-1994.) |
Ref | Expression |
---|---|
sseq1d.1 | ⊢ (𝜑 → 𝐴 = 𝐵) |
Ref | Expression |
---|---|
sseq2d | ⊢ (𝜑 → (𝐶 ⊆ 𝐴 ↔ 𝐶 ⊆ 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sseq1d.1 | . 2 ⊢ (𝜑 → 𝐴 = 𝐵) | |
2 | sseq2 3177 | . 2 ⊢ (𝐴 = 𝐵 → (𝐶 ⊆ 𝐴 ↔ 𝐶 ⊆ 𝐵)) | |
3 | 1, 2 | syl 14 | 1 ⊢ (𝜑 → (𝐶 ⊆ 𝐴 ↔ 𝐶 ⊆ 𝐵)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ↔ wb 105 = wceq 1353 ⊆ wss 3127 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1445 ax-7 1446 ax-gen 1447 ax-ie1 1491 ax-ie2 1492 ax-8 1502 ax-11 1504 ax-4 1508 ax-17 1524 ax-i9 1528 ax-ial 1532 ax-i5r 1533 ax-ext 2157 |
This theorem depends on definitions: df-bi 117 df-nf 1459 df-sb 1761 df-clab 2162 df-cleq 2168 df-clel 2171 df-in 3133 df-ss 3140 |
This theorem is referenced by: sseq12d 3184 sseqtrd 3191 exmidsssn 4197 exmidsssnc 4198 onsucsssucexmid 4520 sbcrel 4706 funimass2 5286 fnco 5316 fnssresb 5320 fnimaeq0 5329 foimacnv 5471 fvelimab 5564 ssimaexg 5570 fvmptss2 5583 rdgss 6374 summodclem2 11356 summodc 11357 zsumdc 11358 fsum3cvg3 11370 prodmodclem2 11551 prodmodc 11552 zproddc 11553 ennnfoneleminc 12377 isbasisg 13093 tgval 13100 tgss3 13129 restbasg 13219 tgrest 13220 restopn2 13234 cnpnei 13270 cnptopresti 13289 txbas 13309 elmopn 13497 neibl 13542 dvfgg 13708 |
Copyright terms: Public domain | W3C validator |