Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > sseq2d | GIF version |
Description: An equality deduction for the subclass relationship. (Contributed by NM, 14-Aug-1994.) |
Ref | Expression |
---|---|
sseq1d.1 | ⊢ (𝜑 → 𝐴 = 𝐵) |
Ref | Expression |
---|---|
sseq2d | ⊢ (𝜑 → (𝐶 ⊆ 𝐴 ↔ 𝐶 ⊆ 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sseq1d.1 | . 2 ⊢ (𝜑 → 𝐴 = 𝐵) | |
2 | sseq2 3148 | . 2 ⊢ (𝐴 = 𝐵 → (𝐶 ⊆ 𝐴 ↔ 𝐶 ⊆ 𝐵)) | |
3 | 1, 2 | syl 14 | 1 ⊢ (𝜑 → (𝐶 ⊆ 𝐴 ↔ 𝐶 ⊆ 𝐵)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ↔ wb 104 = wceq 1332 ⊆ wss 3098 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-5 1424 ax-7 1425 ax-gen 1426 ax-ie1 1470 ax-ie2 1471 ax-8 1481 ax-11 1483 ax-4 1487 ax-17 1503 ax-i9 1507 ax-ial 1511 ax-i5r 1512 ax-ext 2136 |
This theorem depends on definitions: df-bi 116 df-nf 1438 df-sb 1740 df-clab 2141 df-cleq 2147 df-clel 2150 df-in 3104 df-ss 3111 |
This theorem is referenced by: sseq12d 3155 sseqtrd 3162 exmidsssn 4158 exmidsssnc 4159 onsucsssucexmid 4480 sbcrel 4665 funimass2 5241 fnco 5271 fnssresb 5275 fnimaeq0 5284 foimacnv 5425 fvelimab 5517 ssimaexg 5523 fvmptss2 5536 rdgss 6320 summodclem2 11256 summodc 11257 zsumdc 11258 fsum3cvg3 11270 prodmodclem2 11451 prodmodc 11452 zproddc 11453 ennnfoneleminc 12091 isbasisg 12381 tgval 12388 tgss3 12417 restbasg 12507 tgrest 12508 restopn2 12522 cnpnei 12558 cnptopresti 12577 txbas 12597 elmopn 12785 neibl 12830 dvfgg 12996 |
Copyright terms: Public domain | W3C validator |