| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > sseq2d | GIF version | ||
| Description: An equality deduction for the subclass relationship. (Contributed by NM, 14-Aug-1994.) |
| Ref | Expression |
|---|---|
| sseq1d.1 | ⊢ (𝜑 → 𝐴 = 𝐵) |
| Ref | Expression |
|---|---|
| sseq2d | ⊢ (𝜑 → (𝐶 ⊆ 𝐴 ↔ 𝐶 ⊆ 𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sseq1d.1 | . 2 ⊢ (𝜑 → 𝐴 = 𝐵) | |
| 2 | sseq2 3219 | . 2 ⊢ (𝐴 = 𝐵 → (𝐶 ⊆ 𝐴 ↔ 𝐶 ⊆ 𝐵)) | |
| 3 | 1, 2 | syl 14 | 1 ⊢ (𝜑 → (𝐶 ⊆ 𝐴 ↔ 𝐶 ⊆ 𝐵)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ↔ wb 105 = wceq 1373 ⊆ wss 3168 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-11 1530 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-ext 2188 |
| This theorem depends on definitions: df-bi 117 df-nf 1485 df-sb 1787 df-clab 2193 df-cleq 2199 df-clel 2202 df-in 3174 df-ss 3181 |
| This theorem is referenced by: sseq12d 3226 sseqtrd 3233 exmidsssn 4251 exmidsssnc 4252 onsucsssucexmid 4580 sbcrel 4766 funimass2 5358 fnco 5390 fnssresb 5394 fnimaeq0 5404 foimacnv 5549 fvelimab 5645 ssimaexg 5651 fvmptss2 5664 rdgss 6479 tapeq2 7378 fzowrddc 11114 swrdnd 11126 swrd0g 11127 summodclem2 11743 summodc 11744 zsumdc 11745 fsum3cvg3 11757 prodmodclem2 11938 prodmodc 11939 zproddc 11940 ennnfoneleminc 12832 tgval 13144 prdsval 13155 releqgg 13606 eqgex 13607 eqgfval 13608 opprsubgg 13896 unitsubm 13931 subrngpropd 14028 subrgsubm 14046 issubrg3 14059 subrgpropd 14065 lsslss 14193 lsspropdg 14243 islidlm 14291 rspcl 14303 rspssid 14304 isbasisg 14566 tgss3 14600 restbasg 14690 tgrest 14691 restopn2 14705 cnpnei 14741 cnptopresti 14760 txbas 14780 elmopn 14968 neibl 15013 dvfgg 15210 incistruhgr 15736 |
| Copyright terms: Public domain | W3C validator |