| Step | Hyp | Ref
 | Expression | 
| 1 |   | nfv 1542 | 
. . . 4
⊢
Ⅎ𝑤(𝑥 ∈ 𝐴 ∧ 𝑧 = 𝐵) | 
| 2 |   | cbvmptf.1 | 
. . . . . 6
⊢
Ⅎ𝑥𝐴 | 
| 3 | 2 | nfcri 2333 | 
. . . . 5
⊢
Ⅎ𝑥 𝑤 ∈ 𝐴 | 
| 4 |   | nfs1v 1958 | 
. . . . 5
⊢
Ⅎ𝑥[𝑤 / 𝑥]𝑧 = 𝐵 | 
| 5 | 3, 4 | nfan 1579 | 
. . . 4
⊢
Ⅎ𝑥(𝑤 ∈ 𝐴 ∧ [𝑤 / 𝑥]𝑧 = 𝐵) | 
| 6 |   | eleq1w 2257 | 
. . . . 5
⊢ (𝑥 = 𝑤 → (𝑥 ∈ 𝐴 ↔ 𝑤 ∈ 𝐴)) | 
| 7 |   | sbequ12 1785 | 
. . . . 5
⊢ (𝑥 = 𝑤 → (𝑧 = 𝐵 ↔ [𝑤 / 𝑥]𝑧 = 𝐵)) | 
| 8 | 6, 7 | anbi12d 473 | 
. . . 4
⊢ (𝑥 = 𝑤 → ((𝑥 ∈ 𝐴 ∧ 𝑧 = 𝐵) ↔ (𝑤 ∈ 𝐴 ∧ [𝑤 / 𝑥]𝑧 = 𝐵))) | 
| 9 | 1, 5, 8 | cbvopab1 4106 | 
. . 3
⊢
{〈𝑥, 𝑧〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝑧 = 𝐵)} = {〈𝑤, 𝑧〉 ∣ (𝑤 ∈ 𝐴 ∧ [𝑤 / 𝑥]𝑧 = 𝐵)} | 
| 10 |   | cbvmptf.2 | 
. . . . . 6
⊢
Ⅎ𝑦𝐴 | 
| 11 | 10 | nfcri 2333 | 
. . . . 5
⊢
Ⅎ𝑦 𝑤 ∈ 𝐴 | 
| 12 |   | cbvmptf.3 | 
. . . . . . 7
⊢
Ⅎ𝑦𝐵 | 
| 13 | 12 | nfeq2 2351 | 
. . . . . 6
⊢
Ⅎ𝑦 𝑧 = 𝐵 | 
| 14 | 13 | nfsb 1965 | 
. . . . 5
⊢
Ⅎ𝑦[𝑤 / 𝑥]𝑧 = 𝐵 | 
| 15 | 11, 14 | nfan 1579 | 
. . . 4
⊢
Ⅎ𝑦(𝑤 ∈ 𝐴 ∧ [𝑤 / 𝑥]𝑧 = 𝐵) | 
| 16 |   | nfv 1542 | 
. . . 4
⊢
Ⅎ𝑤(𝑦 ∈ 𝐴 ∧ 𝑧 = 𝐶) | 
| 17 |   | eleq1w 2257 | 
. . . . 5
⊢ (𝑤 = 𝑦 → (𝑤 ∈ 𝐴 ↔ 𝑦 ∈ 𝐴)) | 
| 18 |   | cbvmptf.4 | 
. . . . . . 7
⊢
Ⅎ𝑥𝐶 | 
| 19 | 18 | nfeq2 2351 | 
. . . . . 6
⊢
Ⅎ𝑥 𝑧 = 𝐶 | 
| 20 |   | cbvmptf.5 | 
. . . . . . 7
⊢ (𝑥 = 𝑦 → 𝐵 = 𝐶) | 
| 21 | 20 | eqeq2d 2208 | 
. . . . . 6
⊢ (𝑥 = 𝑦 → (𝑧 = 𝐵 ↔ 𝑧 = 𝐶)) | 
| 22 | 19, 21 | sbhypf 2813 | 
. . . . 5
⊢ (𝑤 = 𝑦 → ([𝑤 / 𝑥]𝑧 = 𝐵 ↔ 𝑧 = 𝐶)) | 
| 23 | 17, 22 | anbi12d 473 | 
. . . 4
⊢ (𝑤 = 𝑦 → ((𝑤 ∈ 𝐴 ∧ [𝑤 / 𝑥]𝑧 = 𝐵) ↔ (𝑦 ∈ 𝐴 ∧ 𝑧 = 𝐶))) | 
| 24 | 15, 16, 23 | cbvopab1 4106 | 
. . 3
⊢
{〈𝑤, 𝑧〉 ∣ (𝑤 ∈ 𝐴 ∧ [𝑤 / 𝑥]𝑧 = 𝐵)} = {〈𝑦, 𝑧〉 ∣ (𝑦 ∈ 𝐴 ∧ 𝑧 = 𝐶)} | 
| 25 | 9, 24 | eqtri 2217 | 
. 2
⊢
{〈𝑥, 𝑧〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝑧 = 𝐵)} = {〈𝑦, 𝑧〉 ∣ (𝑦 ∈ 𝐴 ∧ 𝑧 = 𝐶)} | 
| 26 |   | df-mpt 4096 | 
. 2
⊢ (𝑥 ∈ 𝐴 ↦ 𝐵) = {〈𝑥, 𝑧〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝑧 = 𝐵)} | 
| 27 |   | df-mpt 4096 | 
. 2
⊢ (𝑦 ∈ 𝐴 ↦ 𝐶) = {〈𝑦, 𝑧〉 ∣ (𝑦 ∈ 𝐴 ∧ 𝑧 = 𝐶)} | 
| 28 | 25, 26, 27 | 3eqtr4i 2227 | 
1
⊢ (𝑥 ∈ 𝐴 ↦ 𝐵) = (𝑦 ∈ 𝐴 ↦ 𝐶) |