| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > disjsnxp | GIF version | ||
| Description: The sets in the cartesian product of singletons with other sets, are disjoint. (Contributed by Glauco Siliprandi, 11-Oct-2020.) |
| Ref | Expression |
|---|---|
| disjsnxp | ⊢ Disj 𝑗 ∈ 𝐴 ({𝑗} × 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sndisj 4079 | . . . 4 ⊢ Disj 𝑗 ∈ 𝐴 {𝑗} | |
| 2 | 1 | a1i 9 | . . 3 ⊢ (⊤ → Disj 𝑗 ∈ 𝐴 {𝑗}) |
| 3 | 2 | disjxp1 6388 | . 2 ⊢ (⊤ → Disj 𝑗 ∈ 𝐴 ({𝑗} × 𝐵)) |
| 4 | 3 | mptru 1404 | 1 ⊢ Disj 𝑗 ∈ 𝐴 ({𝑗} × 𝐵) |
| Colors of variables: wff set class |
| Syntax hints: ⊤wtru 1396 {csn 3666 Disj wdisj 4059 × cxp 4717 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-sep 4202 ax-pow 4258 ax-pr 4293 ax-un 4524 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ral 2513 df-rex 2514 df-rmo 2516 df-v 2801 df-sbc 3029 df-csb 3125 df-un 3201 df-in 3203 df-ss 3210 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3889 df-disj 4060 df-br 4084 df-opab 4146 df-mpt 4147 df-id 4384 df-xp 4725 df-rel 4726 df-cnv 4727 df-co 4728 df-dm 4729 df-rn 4730 df-iota 5278 df-fun 5320 df-fn 5321 df-f 5322 df-fo 5324 df-fv 5326 df-1st 6292 |
| This theorem is referenced by: fsum2dlemstep 11953 fisumcom2 11957 fprod2dlemstep 12141 fprodcom2fi 12145 |
| Copyright terms: Public domain | W3C validator |