ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  disjsnxp GIF version

Theorem disjsnxp 6389
Description: The sets in the cartesian product of singletons with other sets, are disjoint. (Contributed by Glauco Siliprandi, 11-Oct-2020.)
Assertion
Ref Expression
disjsnxp Disj 𝑗𝐴 ({𝑗} × 𝐵)
Distinct variable group:   𝐴,𝑗
Allowed substitution hint:   𝐵(𝑗)

Proof of Theorem disjsnxp
StepHypRef Expression
1 sndisj 4079 . . . 4 Disj 𝑗𝐴 {𝑗}
21a1i 9 . . 3 (⊤ → Disj 𝑗𝐴 {𝑗})
32disjxp1 6388 . 2 (⊤ → Disj 𝑗𝐴 ({𝑗} × 𝐵))
43mptru 1404 1 Disj 𝑗𝐴 ({𝑗} × 𝐵)
Colors of variables: wff set class
Syntax hints:  wtru 1396  {csn 3666  Disj wdisj 4059   × cxp 4717
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-sep 4202  ax-pow 4258  ax-pr 4293  ax-un 4524
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ral 2513  df-rex 2514  df-rmo 2516  df-v 2801  df-sbc 3029  df-csb 3125  df-un 3201  df-in 3203  df-ss 3210  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3889  df-disj 4060  df-br 4084  df-opab 4146  df-mpt 4147  df-id 4384  df-xp 4725  df-rel 4726  df-cnv 4727  df-co 4728  df-dm 4729  df-rn 4730  df-iota 5278  df-fun 5320  df-fn 5321  df-f 5322  df-fo 5324  df-fv 5326  df-1st 6292
This theorem is referenced by:  fsum2dlemstep  11953  fisumcom2  11957  fprod2dlemstep  12141  fprodcom2fi  12145
  Copyright terms: Public domain W3C validator