![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > card0 | GIF version |
Description: The cardinality of the empty set is the empty set. (Contributed by NM, 25-Oct-2003.) |
Ref | Expression |
---|---|
card0 | ⊢ (card‘∅) = ∅ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 0elon 4219 | . . 3 ⊢ ∅ ∈ On | |
2 | cardonle 6813 | . . 3 ⊢ (∅ ∈ On → (card‘∅) ⊆ ∅) | |
3 | 1, 2 | ax-mp 7 | . 2 ⊢ (card‘∅) ⊆ ∅ |
4 | ss0b 3322 | . 2 ⊢ ((card‘∅) ⊆ ∅ ↔ (card‘∅) = ∅) | |
5 | 3, 4 | mpbi 143 | 1 ⊢ (card‘∅) = ∅ |
Colors of variables: wff set class |
Syntax hints: = wceq 1289 ∈ wcel 1438 ⊆ wss 2999 ∅c0 3286 Oncon0 4190 ‘cfv 5015 cardccrd 6805 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-in1 579 ax-in2 580 ax-io 665 ax-5 1381 ax-7 1382 ax-gen 1383 ax-ie1 1427 ax-ie2 1428 ax-8 1440 ax-10 1441 ax-11 1442 ax-i12 1443 ax-bndl 1444 ax-4 1445 ax-13 1449 ax-14 1450 ax-17 1464 ax-i9 1468 ax-ial 1472 ax-i5r 1473 ax-ext 2070 ax-sep 3957 ax-nul 3965 ax-pow 4009 ax-pr 4036 ax-un 4260 |
This theorem depends on definitions: df-bi 115 df-3an 926 df-tru 1292 df-nf 1395 df-sb 1693 df-eu 1951 df-mo 1952 df-clab 2075 df-cleq 2081 df-clel 2084 df-nfc 2217 df-ral 2364 df-rex 2365 df-rab 2368 df-v 2621 df-sbc 2841 df-dif 3001 df-un 3003 df-in 3005 df-ss 3012 df-nul 3287 df-pw 3431 df-sn 3452 df-pr 3453 df-op 3455 df-uni 3654 df-int 3689 df-br 3846 df-opab 3900 df-mpt 3901 df-tr 3937 df-id 4120 df-iord 4193 df-on 4195 df-xp 4444 df-rel 4445 df-cnv 4446 df-co 4447 df-dm 4448 df-rn 4449 df-res 4450 df-ima 4451 df-iota 4980 df-fun 5017 df-fn 5018 df-f 5019 df-f1 5020 df-fo 5021 df-f1o 5022 df-fv 5023 df-en 6456 df-card 6806 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |