ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  card0 GIF version

Theorem card0 6814
Description: The cardinality of the empty set is the empty set. (Contributed by NM, 25-Oct-2003.)
Assertion
Ref Expression
card0 (card‘∅) = ∅

Proof of Theorem card0
StepHypRef Expression
1 0elon 4219 . . 3 ∅ ∈ On
2 cardonle 6813 . . 3 (∅ ∈ On → (card‘∅) ⊆ ∅)
31, 2ax-mp 7 . 2 (card‘∅) ⊆ ∅
4 ss0b 3322 . 2 ((card‘∅) ⊆ ∅ ↔ (card‘∅) = ∅)
53, 4mpbi 143 1 (card‘∅) = ∅
Colors of variables: wff set class
Syntax hints:   = wceq 1289  wcel 1438  wss 2999  c0 3286  Oncon0 4190  cfv 5015  cardccrd 6805
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 579  ax-in2 580  ax-io 665  ax-5 1381  ax-7 1382  ax-gen 1383  ax-ie1 1427  ax-ie2 1428  ax-8 1440  ax-10 1441  ax-11 1442  ax-i12 1443  ax-bndl 1444  ax-4 1445  ax-13 1449  ax-14 1450  ax-17 1464  ax-i9 1468  ax-ial 1472  ax-i5r 1473  ax-ext 2070  ax-sep 3957  ax-nul 3965  ax-pow 4009  ax-pr 4036  ax-un 4260
This theorem depends on definitions:  df-bi 115  df-3an 926  df-tru 1292  df-nf 1395  df-sb 1693  df-eu 1951  df-mo 1952  df-clab 2075  df-cleq 2081  df-clel 2084  df-nfc 2217  df-ral 2364  df-rex 2365  df-rab 2368  df-v 2621  df-sbc 2841  df-dif 3001  df-un 3003  df-in 3005  df-ss 3012  df-nul 3287  df-pw 3431  df-sn 3452  df-pr 3453  df-op 3455  df-uni 3654  df-int 3689  df-br 3846  df-opab 3900  df-mpt 3901  df-tr 3937  df-id 4120  df-iord 4193  df-on 4195  df-xp 4444  df-rel 4445  df-cnv 4446  df-co 4447  df-dm 4448  df-rn 4449  df-res 4450  df-ima 4451  df-iota 4980  df-fun 5017  df-fn 5018  df-f 5019  df-f1 5020  df-fo 5021  df-f1o 5022  df-fv 5023  df-en 6456  df-card 6806
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator