ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  card0 GIF version

Theorem card0 7234
Description: The cardinality of the empty set is the empty set. (Contributed by NM, 25-Oct-2003.)
Assertion
Ref Expression
card0 (card‘∅) = ∅

Proof of Theorem card0
StepHypRef Expression
1 0elon 4417 . . 3 ∅ ∈ On
2 cardonle 7233 . . 3 (∅ ∈ On → (card‘∅) ⊆ ∅)
31, 2ax-mp 5 . 2 (card‘∅) ⊆ ∅
4 ss0b 3482 . 2 ((card‘∅) ⊆ ∅ ↔ (card‘∅) = ∅)
53, 4mpbi 145 1 (card‘∅) = ∅
Colors of variables: wff set class
Syntax hints:   = wceq 1364  wcel 2160  wss 3149  c0 3442  Oncon0 4388  cfv 5242  cardccrd 7225
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2162  ax-14 2163  ax-ext 2171  ax-sep 4143  ax-nul 4151  ax-pow 4199  ax-pr 4234  ax-un 4458
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1472  df-sb 1774  df-eu 2041  df-mo 2042  df-clab 2176  df-cleq 2182  df-clel 2185  df-nfc 2321  df-ral 2473  df-rex 2474  df-rab 2477  df-v 2758  df-sbc 2982  df-dif 3151  df-un 3153  df-in 3155  df-ss 3162  df-nul 3443  df-pw 3599  df-sn 3620  df-pr 3621  df-op 3623  df-uni 3832  df-int 3867  df-br 4026  df-opab 4087  df-mpt 4088  df-tr 4124  df-id 4318  df-iord 4391  df-on 4393  df-xp 4657  df-rel 4658  df-cnv 4659  df-co 4660  df-dm 4661  df-rn 4662  df-res 4663  df-ima 4664  df-iota 5203  df-fun 5244  df-fn 5245  df-f 5246  df-f1 5247  df-fo 5248  df-f1o 5249  df-fv 5250  df-en 6782  df-card 7226
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator