ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  sbthlem2 GIF version

Theorem sbthlem2 6959
Description: Lemma for isbth 6968. (Contributed by NM, 22-Mar-1998.)
Hypotheses
Ref Expression
sbthlem.1 𝐴 ∈ V
sbthlem.2 𝐷 = {𝑥 ∣ (𝑥𝐴 ∧ (𝑔 “ (𝐵 ∖ (𝑓𝑥))) ⊆ (𝐴𝑥))}
Assertion
Ref Expression
sbthlem2 (ran 𝑔𝐴 → (𝐴 ∖ (𝑔 “ (𝐵 ∖ (𝑓 𝐷)))) ⊆ 𝐷)
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵   𝑥,𝐷   𝑥,𝑓   𝑥,𝑔
Allowed substitution hints:   𝐴(𝑓,𝑔)   𝐵(𝑓,𝑔)   𝐷(𝑓,𝑔)

Proof of Theorem sbthlem2
StepHypRef Expression
1 sbthlem.1 . . . . . . . . 9 𝐴 ∈ V
2 sbthlem.2 . . . . . . . . 9 𝐷 = {𝑥 ∣ (𝑥𝐴 ∧ (𝑔 “ (𝐵 ∖ (𝑓𝑥))) ⊆ (𝐴𝑥))}
31, 2sbthlem1 6958 . . . . . . . 8 𝐷 ⊆ (𝐴 ∖ (𝑔 “ (𝐵 ∖ (𝑓 𝐷))))
4 imass2 5006 . . . . . . . 8 ( 𝐷 ⊆ (𝐴 ∖ (𝑔 “ (𝐵 ∖ (𝑓 𝐷)))) → (𝑓 𝐷) ⊆ (𝑓 “ (𝐴 ∖ (𝑔 “ (𝐵 ∖ (𝑓 𝐷))))))
5 sscon 3271 . . . . . . . 8 ((𝑓 𝐷) ⊆ (𝑓 “ (𝐴 ∖ (𝑔 “ (𝐵 ∖ (𝑓 𝐷))))) → (𝐵 ∖ (𝑓 “ (𝐴 ∖ (𝑔 “ (𝐵 ∖ (𝑓 𝐷)))))) ⊆ (𝐵 ∖ (𝑓 𝐷)))
63, 4, 5mp2b 8 . . . . . . 7 (𝐵 ∖ (𝑓 “ (𝐴 ∖ (𝑔 “ (𝐵 ∖ (𝑓 𝐷)))))) ⊆ (𝐵 ∖ (𝑓 𝐷))
7 imass2 5006 . . . . . . 7 ((𝐵 ∖ (𝑓 “ (𝐴 ∖ (𝑔 “ (𝐵 ∖ (𝑓 𝐷)))))) ⊆ (𝐵 ∖ (𝑓 𝐷)) → (𝑔 “ (𝐵 ∖ (𝑓 “ (𝐴 ∖ (𝑔 “ (𝐵 ∖ (𝑓 𝐷))))))) ⊆ (𝑔 “ (𝐵 ∖ (𝑓 𝐷))))
8 sscon 3271 . . . . . . 7 ((𝑔 “ (𝐵 ∖ (𝑓 “ (𝐴 ∖ (𝑔 “ (𝐵 ∖ (𝑓 𝐷))))))) ⊆ (𝑔 “ (𝐵 ∖ (𝑓 𝐷))) → (𝐴 ∖ (𝑔 “ (𝐵 ∖ (𝑓 𝐷)))) ⊆ (𝐴 ∖ (𝑔 “ (𝐵 ∖ (𝑓 “ (𝐴 ∖ (𝑔 “ (𝐵 ∖ (𝑓 𝐷)))))))))
96, 7, 8mp2b 8 . . . . . 6 (𝐴 ∖ (𝑔 “ (𝐵 ∖ (𝑓 𝐷)))) ⊆ (𝐴 ∖ (𝑔 “ (𝐵 ∖ (𝑓 “ (𝐴 ∖ (𝑔 “ (𝐵 ∖ (𝑓 𝐷))))))))
10 imassrn 4983 . . . . . . . 8 (𝑔 “ (𝐵 ∖ (𝑓 “ (𝐴 ∖ (𝑔 “ (𝐵 ∖ (𝑓 𝐷))))))) ⊆ ran 𝑔
11 sstr2 3164 . . . . . . . 8 ((𝑔 “ (𝐵 ∖ (𝑓 “ (𝐴 ∖ (𝑔 “ (𝐵 ∖ (𝑓 𝐷))))))) ⊆ ran 𝑔 → (ran 𝑔𝐴 → (𝑔 “ (𝐵 ∖ (𝑓 “ (𝐴 ∖ (𝑔 “ (𝐵 ∖ (𝑓 𝐷))))))) ⊆ 𝐴))
1210, 11ax-mp 5 . . . . . . 7 (ran 𝑔𝐴 → (𝑔 “ (𝐵 ∖ (𝑓 “ (𝐴 ∖ (𝑔 “ (𝐵 ∖ (𝑓 𝐷))))))) ⊆ 𝐴)
13 difss 3263 . . . . . . 7 (𝐴 ∖ (𝑔 “ (𝐵 ∖ (𝑓 𝐷)))) ⊆ 𝐴
14 ssconb 3270 . . . . . . 7 (((𝑔 “ (𝐵 ∖ (𝑓 “ (𝐴 ∖ (𝑔 “ (𝐵 ∖ (𝑓 𝐷))))))) ⊆ 𝐴 ∧ (𝐴 ∖ (𝑔 “ (𝐵 ∖ (𝑓 𝐷)))) ⊆ 𝐴) → ((𝑔 “ (𝐵 ∖ (𝑓 “ (𝐴 ∖ (𝑔 “ (𝐵 ∖ (𝑓 𝐷))))))) ⊆ (𝐴 ∖ (𝐴 ∖ (𝑔 “ (𝐵 ∖ (𝑓 𝐷))))) ↔ (𝐴 ∖ (𝑔 “ (𝐵 ∖ (𝑓 𝐷)))) ⊆ (𝐴 ∖ (𝑔 “ (𝐵 ∖ (𝑓 “ (𝐴 ∖ (𝑔 “ (𝐵 ∖ (𝑓 𝐷))))))))))
1512, 13, 14sylancl 413 . . . . . 6 (ran 𝑔𝐴 → ((𝑔 “ (𝐵 ∖ (𝑓 “ (𝐴 ∖ (𝑔 “ (𝐵 ∖ (𝑓 𝐷))))))) ⊆ (𝐴 ∖ (𝐴 ∖ (𝑔 “ (𝐵 ∖ (𝑓 𝐷))))) ↔ (𝐴 ∖ (𝑔 “ (𝐵 ∖ (𝑓 𝐷)))) ⊆ (𝐴 ∖ (𝑔 “ (𝐵 ∖ (𝑓 “ (𝐴 ∖ (𝑔 “ (𝐵 ∖ (𝑓 𝐷))))))))))
169, 15mpbiri 168 . . . . 5 (ran 𝑔𝐴 → (𝑔 “ (𝐵 ∖ (𝑓 “ (𝐴 ∖ (𝑔 “ (𝐵 ∖ (𝑓 𝐷))))))) ⊆ (𝐴 ∖ (𝐴 ∖ (𝑔 “ (𝐵 ∖ (𝑓 𝐷))))))
1716, 13jctil 312 . . . 4 (ran 𝑔𝐴 → ((𝐴 ∖ (𝑔 “ (𝐵 ∖ (𝑓 𝐷)))) ⊆ 𝐴 ∧ (𝑔 “ (𝐵 ∖ (𝑓 “ (𝐴 ∖ (𝑔 “ (𝐵 ∖ (𝑓 𝐷))))))) ⊆ (𝐴 ∖ (𝐴 ∖ (𝑔 “ (𝐵 ∖ (𝑓 𝐷)))))))
181, 13ssexi 4143 . . . . 5 (𝐴 ∖ (𝑔 “ (𝐵 ∖ (𝑓 𝐷)))) ∈ V
19 sseq1 3180 . . . . . 6 (𝑥 = (𝐴 ∖ (𝑔 “ (𝐵 ∖ (𝑓 𝐷)))) → (𝑥𝐴 ↔ (𝐴 ∖ (𝑔 “ (𝐵 ∖ (𝑓 𝐷)))) ⊆ 𝐴))
20 imaeq2 4968 . . . . . . . . 9 (𝑥 = (𝐴 ∖ (𝑔 “ (𝐵 ∖ (𝑓 𝐷)))) → (𝑓𝑥) = (𝑓 “ (𝐴 ∖ (𝑔 “ (𝐵 ∖ (𝑓 𝐷))))))
2120difeq2d 3255 . . . . . . . 8 (𝑥 = (𝐴 ∖ (𝑔 “ (𝐵 ∖ (𝑓 𝐷)))) → (𝐵 ∖ (𝑓𝑥)) = (𝐵 ∖ (𝑓 “ (𝐴 ∖ (𝑔 “ (𝐵 ∖ (𝑓 𝐷)))))))
2221imaeq2d 4972 . . . . . . 7 (𝑥 = (𝐴 ∖ (𝑔 “ (𝐵 ∖ (𝑓 𝐷)))) → (𝑔 “ (𝐵 ∖ (𝑓𝑥))) = (𝑔 “ (𝐵 ∖ (𝑓 “ (𝐴 ∖ (𝑔 “ (𝐵 ∖ (𝑓 𝐷))))))))
23 difeq2 3249 . . . . . . 7 (𝑥 = (𝐴 ∖ (𝑔 “ (𝐵 ∖ (𝑓 𝐷)))) → (𝐴𝑥) = (𝐴 ∖ (𝐴 ∖ (𝑔 “ (𝐵 ∖ (𝑓 𝐷))))))
2422, 23sseq12d 3188 . . . . . 6 (𝑥 = (𝐴 ∖ (𝑔 “ (𝐵 ∖ (𝑓 𝐷)))) → ((𝑔 “ (𝐵 ∖ (𝑓𝑥))) ⊆ (𝐴𝑥) ↔ (𝑔 “ (𝐵 ∖ (𝑓 “ (𝐴 ∖ (𝑔 “ (𝐵 ∖ (𝑓 𝐷))))))) ⊆ (𝐴 ∖ (𝐴 ∖ (𝑔 “ (𝐵 ∖ (𝑓 𝐷)))))))
2519, 24anbi12d 473 . . . . 5 (𝑥 = (𝐴 ∖ (𝑔 “ (𝐵 ∖ (𝑓 𝐷)))) → ((𝑥𝐴 ∧ (𝑔 “ (𝐵 ∖ (𝑓𝑥))) ⊆ (𝐴𝑥)) ↔ ((𝐴 ∖ (𝑔 “ (𝐵 ∖ (𝑓 𝐷)))) ⊆ 𝐴 ∧ (𝑔 “ (𝐵 ∖ (𝑓 “ (𝐴 ∖ (𝑔 “ (𝐵 ∖ (𝑓 𝐷))))))) ⊆ (𝐴 ∖ (𝐴 ∖ (𝑔 “ (𝐵 ∖ (𝑓 𝐷))))))))
2618, 25elab 2883 . . . 4 ((𝐴 ∖ (𝑔 “ (𝐵 ∖ (𝑓 𝐷)))) ∈ {𝑥 ∣ (𝑥𝐴 ∧ (𝑔 “ (𝐵 ∖ (𝑓𝑥))) ⊆ (𝐴𝑥))} ↔ ((𝐴 ∖ (𝑔 “ (𝐵 ∖ (𝑓 𝐷)))) ⊆ 𝐴 ∧ (𝑔 “ (𝐵 ∖ (𝑓 “ (𝐴 ∖ (𝑔 “ (𝐵 ∖ (𝑓 𝐷))))))) ⊆ (𝐴 ∖ (𝐴 ∖ (𝑔 “ (𝐵 ∖ (𝑓 𝐷)))))))
2717, 26sylibr 134 . . 3 (ran 𝑔𝐴 → (𝐴 ∖ (𝑔 “ (𝐵 ∖ (𝑓 𝐷)))) ∈ {𝑥 ∣ (𝑥𝐴 ∧ (𝑔 “ (𝐵 ∖ (𝑓𝑥))) ⊆ (𝐴𝑥))})
2827, 2eleqtrrdi 2271 . 2 (ran 𝑔𝐴 → (𝐴 ∖ (𝑔 “ (𝐵 ∖ (𝑓 𝐷)))) ∈ 𝐷)
29 elssuni 3839 . 2 ((𝐴 ∖ (𝑔 “ (𝐵 ∖ (𝑓 𝐷)))) ∈ 𝐷 → (𝐴 ∖ (𝑔 “ (𝐵 ∖ (𝑓 𝐷)))) ⊆ 𝐷)
3028, 29syl 14 1 (ran 𝑔𝐴 → (𝐴 ∖ (𝑔 “ (𝐵 ∖ (𝑓 𝐷)))) ⊆ 𝐷)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105   = wceq 1353  wcel 2148  {cab 2163  Vcvv 2739  cdif 3128  wss 3131   cuni 3811  ran crn 4629  cima 4631
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-14 2151  ax-ext 2159  ax-sep 4123  ax-pow 4176  ax-pr 4211
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ral 2460  df-rex 2461  df-rab 2464  df-v 2741  df-dif 3133  df-un 3135  df-in 3137  df-ss 3144  df-pw 3579  df-sn 3600  df-pr 3601  df-op 3603  df-uni 3812  df-br 4006  df-opab 4067  df-xp 4634  df-cnv 4636  df-dm 4638  df-rn 4639  df-res 4640  df-ima 4641
This theorem is referenced by:  sbthlemi3  6960
  Copyright terms: Public domain W3C validator