ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  sbthlem2 GIF version

Theorem sbthlem2 6935
Description: Lemma for isbth 6944. (Contributed by NM, 22-Mar-1998.)
Hypotheses
Ref Expression
sbthlem.1 𝐴 ∈ V
sbthlem.2 𝐷 = {𝑥 ∣ (𝑥𝐴 ∧ (𝑔 “ (𝐵 ∖ (𝑓𝑥))) ⊆ (𝐴𝑥))}
Assertion
Ref Expression
sbthlem2 (ran 𝑔𝐴 → (𝐴 ∖ (𝑔 “ (𝐵 ∖ (𝑓 𝐷)))) ⊆ 𝐷)
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵   𝑥,𝐷   𝑥,𝑓   𝑥,𝑔
Allowed substitution hints:   𝐴(𝑓,𝑔)   𝐵(𝑓,𝑔)   𝐷(𝑓,𝑔)

Proof of Theorem sbthlem2
StepHypRef Expression
1 sbthlem.1 . . . . . . . . 9 𝐴 ∈ V
2 sbthlem.2 . . . . . . . . 9 𝐷 = {𝑥 ∣ (𝑥𝐴 ∧ (𝑔 “ (𝐵 ∖ (𝑓𝑥))) ⊆ (𝐴𝑥))}
31, 2sbthlem1 6934 . . . . . . . 8 𝐷 ⊆ (𝐴 ∖ (𝑔 “ (𝐵 ∖ (𝑓 𝐷))))
4 imass2 4987 . . . . . . . 8 ( 𝐷 ⊆ (𝐴 ∖ (𝑔 “ (𝐵 ∖ (𝑓 𝐷)))) → (𝑓 𝐷) ⊆ (𝑓 “ (𝐴 ∖ (𝑔 “ (𝐵 ∖ (𝑓 𝐷))))))
5 sscon 3261 . . . . . . . 8 ((𝑓 𝐷) ⊆ (𝑓 “ (𝐴 ∖ (𝑔 “ (𝐵 ∖ (𝑓 𝐷))))) → (𝐵 ∖ (𝑓 “ (𝐴 ∖ (𝑔 “ (𝐵 ∖ (𝑓 𝐷)))))) ⊆ (𝐵 ∖ (𝑓 𝐷)))
63, 4, 5mp2b 8 . . . . . . 7 (𝐵 ∖ (𝑓 “ (𝐴 ∖ (𝑔 “ (𝐵 ∖ (𝑓 𝐷)))))) ⊆ (𝐵 ∖ (𝑓 𝐷))
7 imass2 4987 . . . . . . 7 ((𝐵 ∖ (𝑓 “ (𝐴 ∖ (𝑔 “ (𝐵 ∖ (𝑓 𝐷)))))) ⊆ (𝐵 ∖ (𝑓 𝐷)) → (𝑔 “ (𝐵 ∖ (𝑓 “ (𝐴 ∖ (𝑔 “ (𝐵 ∖ (𝑓 𝐷))))))) ⊆ (𝑔 “ (𝐵 ∖ (𝑓 𝐷))))
8 sscon 3261 . . . . . . 7 ((𝑔 “ (𝐵 ∖ (𝑓 “ (𝐴 ∖ (𝑔 “ (𝐵 ∖ (𝑓 𝐷))))))) ⊆ (𝑔 “ (𝐵 ∖ (𝑓 𝐷))) → (𝐴 ∖ (𝑔 “ (𝐵 ∖ (𝑓 𝐷)))) ⊆ (𝐴 ∖ (𝑔 “ (𝐵 ∖ (𝑓 “ (𝐴 ∖ (𝑔 “ (𝐵 ∖ (𝑓 𝐷)))))))))
96, 7, 8mp2b 8 . . . . . 6 (𝐴 ∖ (𝑔 “ (𝐵 ∖ (𝑓 𝐷)))) ⊆ (𝐴 ∖ (𝑔 “ (𝐵 ∖ (𝑓 “ (𝐴 ∖ (𝑔 “ (𝐵 ∖ (𝑓 𝐷))))))))
10 imassrn 4964 . . . . . . . 8 (𝑔 “ (𝐵 ∖ (𝑓 “ (𝐴 ∖ (𝑔 “ (𝐵 ∖ (𝑓 𝐷))))))) ⊆ ran 𝑔
11 sstr2 3154 . . . . . . . 8 ((𝑔 “ (𝐵 ∖ (𝑓 “ (𝐴 ∖ (𝑔 “ (𝐵 ∖ (𝑓 𝐷))))))) ⊆ ran 𝑔 → (ran 𝑔𝐴 → (𝑔 “ (𝐵 ∖ (𝑓 “ (𝐴 ∖ (𝑔 “ (𝐵 ∖ (𝑓 𝐷))))))) ⊆ 𝐴))
1210, 11ax-mp 5 . . . . . . 7 (ran 𝑔𝐴 → (𝑔 “ (𝐵 ∖ (𝑓 “ (𝐴 ∖ (𝑔 “ (𝐵 ∖ (𝑓 𝐷))))))) ⊆ 𝐴)
13 difss 3253 . . . . . . 7 (𝐴 ∖ (𝑔 “ (𝐵 ∖ (𝑓 𝐷)))) ⊆ 𝐴
14 ssconb 3260 . . . . . . 7 (((𝑔 “ (𝐵 ∖ (𝑓 “ (𝐴 ∖ (𝑔 “ (𝐵 ∖ (𝑓 𝐷))))))) ⊆ 𝐴 ∧ (𝐴 ∖ (𝑔 “ (𝐵 ∖ (𝑓 𝐷)))) ⊆ 𝐴) → ((𝑔 “ (𝐵 ∖ (𝑓 “ (𝐴 ∖ (𝑔 “ (𝐵 ∖ (𝑓 𝐷))))))) ⊆ (𝐴 ∖ (𝐴 ∖ (𝑔 “ (𝐵 ∖ (𝑓 𝐷))))) ↔ (𝐴 ∖ (𝑔 “ (𝐵 ∖ (𝑓 𝐷)))) ⊆ (𝐴 ∖ (𝑔 “ (𝐵 ∖ (𝑓 “ (𝐴 ∖ (𝑔 “ (𝐵 ∖ (𝑓 𝐷))))))))))
1512, 13, 14sylancl 411 . . . . . 6 (ran 𝑔𝐴 → ((𝑔 “ (𝐵 ∖ (𝑓 “ (𝐴 ∖ (𝑔 “ (𝐵 ∖ (𝑓 𝐷))))))) ⊆ (𝐴 ∖ (𝐴 ∖ (𝑔 “ (𝐵 ∖ (𝑓 𝐷))))) ↔ (𝐴 ∖ (𝑔 “ (𝐵 ∖ (𝑓 𝐷)))) ⊆ (𝐴 ∖ (𝑔 “ (𝐵 ∖ (𝑓 “ (𝐴 ∖ (𝑔 “ (𝐵 ∖ (𝑓 𝐷))))))))))
169, 15mpbiri 167 . . . . 5 (ran 𝑔𝐴 → (𝑔 “ (𝐵 ∖ (𝑓 “ (𝐴 ∖ (𝑔 “ (𝐵 ∖ (𝑓 𝐷))))))) ⊆ (𝐴 ∖ (𝐴 ∖ (𝑔 “ (𝐵 ∖ (𝑓 𝐷))))))
1716, 13jctil 310 . . . 4 (ran 𝑔𝐴 → ((𝐴 ∖ (𝑔 “ (𝐵 ∖ (𝑓 𝐷)))) ⊆ 𝐴 ∧ (𝑔 “ (𝐵 ∖ (𝑓 “ (𝐴 ∖ (𝑔 “ (𝐵 ∖ (𝑓 𝐷))))))) ⊆ (𝐴 ∖ (𝐴 ∖ (𝑔 “ (𝐵 ∖ (𝑓 𝐷)))))))
181, 13ssexi 4127 . . . . 5 (𝐴 ∖ (𝑔 “ (𝐵 ∖ (𝑓 𝐷)))) ∈ V
19 sseq1 3170 . . . . . 6 (𝑥 = (𝐴 ∖ (𝑔 “ (𝐵 ∖ (𝑓 𝐷)))) → (𝑥𝐴 ↔ (𝐴 ∖ (𝑔 “ (𝐵 ∖ (𝑓 𝐷)))) ⊆ 𝐴))
20 imaeq2 4949 . . . . . . . . 9 (𝑥 = (𝐴 ∖ (𝑔 “ (𝐵 ∖ (𝑓 𝐷)))) → (𝑓𝑥) = (𝑓 “ (𝐴 ∖ (𝑔 “ (𝐵 ∖ (𝑓 𝐷))))))
2120difeq2d 3245 . . . . . . . 8 (𝑥 = (𝐴 ∖ (𝑔 “ (𝐵 ∖ (𝑓 𝐷)))) → (𝐵 ∖ (𝑓𝑥)) = (𝐵 ∖ (𝑓 “ (𝐴 ∖ (𝑔 “ (𝐵 ∖ (𝑓 𝐷)))))))
2221imaeq2d 4953 . . . . . . 7 (𝑥 = (𝐴 ∖ (𝑔 “ (𝐵 ∖ (𝑓 𝐷)))) → (𝑔 “ (𝐵 ∖ (𝑓𝑥))) = (𝑔 “ (𝐵 ∖ (𝑓 “ (𝐴 ∖ (𝑔 “ (𝐵 ∖ (𝑓 𝐷))))))))
23 difeq2 3239 . . . . . . 7 (𝑥 = (𝐴 ∖ (𝑔 “ (𝐵 ∖ (𝑓 𝐷)))) → (𝐴𝑥) = (𝐴 ∖ (𝐴 ∖ (𝑔 “ (𝐵 ∖ (𝑓 𝐷))))))
2422, 23sseq12d 3178 . . . . . 6 (𝑥 = (𝐴 ∖ (𝑔 “ (𝐵 ∖ (𝑓 𝐷)))) → ((𝑔 “ (𝐵 ∖ (𝑓𝑥))) ⊆ (𝐴𝑥) ↔ (𝑔 “ (𝐵 ∖ (𝑓 “ (𝐴 ∖ (𝑔 “ (𝐵 ∖ (𝑓 𝐷))))))) ⊆ (𝐴 ∖ (𝐴 ∖ (𝑔 “ (𝐵 ∖ (𝑓 𝐷)))))))
2519, 24anbi12d 470 . . . . 5 (𝑥 = (𝐴 ∖ (𝑔 “ (𝐵 ∖ (𝑓 𝐷)))) → ((𝑥𝐴 ∧ (𝑔 “ (𝐵 ∖ (𝑓𝑥))) ⊆ (𝐴𝑥)) ↔ ((𝐴 ∖ (𝑔 “ (𝐵 ∖ (𝑓 𝐷)))) ⊆ 𝐴 ∧ (𝑔 “ (𝐵 ∖ (𝑓 “ (𝐴 ∖ (𝑔 “ (𝐵 ∖ (𝑓 𝐷))))))) ⊆ (𝐴 ∖ (𝐴 ∖ (𝑔 “ (𝐵 ∖ (𝑓 𝐷))))))))
2618, 25elab 2874 . . . 4 ((𝐴 ∖ (𝑔 “ (𝐵 ∖ (𝑓 𝐷)))) ∈ {𝑥 ∣ (𝑥𝐴 ∧ (𝑔 “ (𝐵 ∖ (𝑓𝑥))) ⊆ (𝐴𝑥))} ↔ ((𝐴 ∖ (𝑔 “ (𝐵 ∖ (𝑓 𝐷)))) ⊆ 𝐴 ∧ (𝑔 “ (𝐵 ∖ (𝑓 “ (𝐴 ∖ (𝑔 “ (𝐵 ∖ (𝑓 𝐷))))))) ⊆ (𝐴 ∖ (𝐴 ∖ (𝑔 “ (𝐵 ∖ (𝑓 𝐷)))))))
2717, 26sylibr 133 . . 3 (ran 𝑔𝐴 → (𝐴 ∖ (𝑔 “ (𝐵 ∖ (𝑓 𝐷)))) ∈ {𝑥 ∣ (𝑥𝐴 ∧ (𝑔 “ (𝐵 ∖ (𝑓𝑥))) ⊆ (𝐴𝑥))})
2827, 2eleqtrrdi 2264 . 2 (ran 𝑔𝐴 → (𝐴 ∖ (𝑔 “ (𝐵 ∖ (𝑓 𝐷)))) ∈ 𝐷)
29 elssuni 3824 . 2 ((𝐴 ∖ (𝑔 “ (𝐵 ∖ (𝑓 𝐷)))) ∈ 𝐷 → (𝐴 ∖ (𝑔 “ (𝐵 ∖ (𝑓 𝐷)))) ⊆ 𝐷)
3028, 29syl 14 1 (ran 𝑔𝐴 → (𝐴 ∖ (𝑔 “ (𝐵 ∖ (𝑓 𝐷)))) ⊆ 𝐷)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wb 104   = wceq 1348  wcel 2141  {cab 2156  Vcvv 2730  cdif 3118  wss 3121   cuni 3796  ran crn 4612  cima 4614
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 609  ax-in2 610  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-14 2144  ax-ext 2152  ax-sep 4107  ax-pow 4160  ax-pr 4194
This theorem depends on definitions:  df-bi 116  df-3an 975  df-tru 1351  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ral 2453  df-rex 2454  df-rab 2457  df-v 2732  df-dif 3123  df-un 3125  df-in 3127  df-ss 3134  df-pw 3568  df-sn 3589  df-pr 3590  df-op 3592  df-uni 3797  df-br 3990  df-opab 4051  df-xp 4617  df-cnv 4619  df-dm 4621  df-rn 4622  df-res 4623  df-ima 4624
This theorem is referenced by:  sbthlemi3  6936
  Copyright terms: Public domain W3C validator