Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > ssopab2b | GIF version |
Description: Equivalence of ordered pair abstraction subclass and implication. (Contributed by NM, 27-Dec-1996.) (Proof shortened by Mario Carneiro, 18-Nov-2016.) |
Ref | Expression |
---|---|
ssopab2b | ⊢ ({〈𝑥, 𝑦〉 ∣ 𝜑} ⊆ {〈𝑥, 𝑦〉 ∣ 𝜓} ↔ ∀𝑥∀𝑦(𝜑 → 𝜓)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfopab1 4058 | . . . 4 ⊢ Ⅎ𝑥{〈𝑥, 𝑦〉 ∣ 𝜑} | |
2 | nfopab1 4058 | . . . 4 ⊢ Ⅎ𝑥{〈𝑥, 𝑦〉 ∣ 𝜓} | |
3 | 1, 2 | nfss 3140 | . . 3 ⊢ Ⅎ𝑥{〈𝑥, 𝑦〉 ∣ 𝜑} ⊆ {〈𝑥, 𝑦〉 ∣ 𝜓} |
4 | nfopab2 4059 | . . . . 5 ⊢ Ⅎ𝑦{〈𝑥, 𝑦〉 ∣ 𝜑} | |
5 | nfopab2 4059 | . . . . 5 ⊢ Ⅎ𝑦{〈𝑥, 𝑦〉 ∣ 𝜓} | |
6 | 4, 5 | nfss 3140 | . . . 4 ⊢ Ⅎ𝑦{〈𝑥, 𝑦〉 ∣ 𝜑} ⊆ {〈𝑥, 𝑦〉 ∣ 𝜓} |
7 | ssel 3141 | . . . . 5 ⊢ ({〈𝑥, 𝑦〉 ∣ 𝜑} ⊆ {〈𝑥, 𝑦〉 ∣ 𝜓} → (〈𝑥, 𝑦〉 ∈ {〈𝑥, 𝑦〉 ∣ 𝜑} → 〈𝑥, 𝑦〉 ∈ {〈𝑥, 𝑦〉 ∣ 𝜓})) | |
8 | opabid 4242 | . . . . 5 ⊢ (〈𝑥, 𝑦〉 ∈ {〈𝑥, 𝑦〉 ∣ 𝜑} ↔ 𝜑) | |
9 | opabid 4242 | . . . . 5 ⊢ (〈𝑥, 𝑦〉 ∈ {〈𝑥, 𝑦〉 ∣ 𝜓} ↔ 𝜓) | |
10 | 7, 8, 9 | 3imtr3g 203 | . . . 4 ⊢ ({〈𝑥, 𝑦〉 ∣ 𝜑} ⊆ {〈𝑥, 𝑦〉 ∣ 𝜓} → (𝜑 → 𝜓)) |
11 | 6, 10 | alrimi 1515 | . . 3 ⊢ ({〈𝑥, 𝑦〉 ∣ 𝜑} ⊆ {〈𝑥, 𝑦〉 ∣ 𝜓} → ∀𝑦(𝜑 → 𝜓)) |
12 | 3, 11 | alrimi 1515 | . 2 ⊢ ({〈𝑥, 𝑦〉 ∣ 𝜑} ⊆ {〈𝑥, 𝑦〉 ∣ 𝜓} → ∀𝑥∀𝑦(𝜑 → 𝜓)) |
13 | ssopab2 4260 | . 2 ⊢ (∀𝑥∀𝑦(𝜑 → 𝜓) → {〈𝑥, 𝑦〉 ∣ 𝜑} ⊆ {〈𝑥, 𝑦〉 ∣ 𝜓}) | |
14 | 12, 13 | impbii 125 | 1 ⊢ ({〈𝑥, 𝑦〉 ∣ 𝜑} ⊆ {〈𝑥, 𝑦〉 ∣ 𝜓} ↔ ∀𝑥∀𝑦(𝜑 → 𝜓)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ↔ wb 104 ∀wal 1346 ∈ wcel 2141 ⊆ wss 3121 〈cop 3586 {copab 4049 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-14 2144 ax-ext 2152 ax-sep 4107 ax-pow 4160 ax-pr 4194 |
This theorem depends on definitions: df-bi 116 df-3an 975 df-tru 1351 df-nf 1454 df-sb 1756 df-eu 2022 df-mo 2023 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ral 2453 df-v 2732 df-un 3125 df-in 3127 df-ss 3134 df-pw 3568 df-sn 3589 df-pr 3590 df-op 3592 df-opab 4051 |
This theorem is referenced by: eqopab2b 4264 dffun2 5208 |
Copyright terms: Public domain | W3C validator |