| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ssopab2b | GIF version | ||
| Description: Equivalence of ordered pair abstraction subclass and implication. (Contributed by NM, 27-Dec-1996.) (Proof shortened by Mario Carneiro, 18-Nov-2016.) |
| Ref | Expression |
|---|---|
| ssopab2b | ⊢ ({〈𝑥, 𝑦〉 ∣ 𝜑} ⊆ {〈𝑥, 𝑦〉 ∣ 𝜓} ↔ ∀𝑥∀𝑦(𝜑 → 𝜓)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nfopab1 4121 | . . . 4 ⊢ Ⅎ𝑥{〈𝑥, 𝑦〉 ∣ 𝜑} | |
| 2 | nfopab1 4121 | . . . 4 ⊢ Ⅎ𝑥{〈𝑥, 𝑦〉 ∣ 𝜓} | |
| 3 | 1, 2 | nfss 3190 | . . 3 ⊢ Ⅎ𝑥{〈𝑥, 𝑦〉 ∣ 𝜑} ⊆ {〈𝑥, 𝑦〉 ∣ 𝜓} |
| 4 | nfopab2 4122 | . . . . 5 ⊢ Ⅎ𝑦{〈𝑥, 𝑦〉 ∣ 𝜑} | |
| 5 | nfopab2 4122 | . . . . 5 ⊢ Ⅎ𝑦{〈𝑥, 𝑦〉 ∣ 𝜓} | |
| 6 | 4, 5 | nfss 3190 | . . . 4 ⊢ Ⅎ𝑦{〈𝑥, 𝑦〉 ∣ 𝜑} ⊆ {〈𝑥, 𝑦〉 ∣ 𝜓} |
| 7 | ssel 3191 | . . . . 5 ⊢ ({〈𝑥, 𝑦〉 ∣ 𝜑} ⊆ {〈𝑥, 𝑦〉 ∣ 𝜓} → (〈𝑥, 𝑦〉 ∈ {〈𝑥, 𝑦〉 ∣ 𝜑} → 〈𝑥, 𝑦〉 ∈ {〈𝑥, 𝑦〉 ∣ 𝜓})) | |
| 8 | opabid 4310 | . . . . 5 ⊢ (〈𝑥, 𝑦〉 ∈ {〈𝑥, 𝑦〉 ∣ 𝜑} ↔ 𝜑) | |
| 9 | opabid 4310 | . . . . 5 ⊢ (〈𝑥, 𝑦〉 ∈ {〈𝑥, 𝑦〉 ∣ 𝜓} ↔ 𝜓) | |
| 10 | 7, 8, 9 | 3imtr3g 204 | . . . 4 ⊢ ({〈𝑥, 𝑦〉 ∣ 𝜑} ⊆ {〈𝑥, 𝑦〉 ∣ 𝜓} → (𝜑 → 𝜓)) |
| 11 | 6, 10 | alrimi 1546 | . . 3 ⊢ ({〈𝑥, 𝑦〉 ∣ 𝜑} ⊆ {〈𝑥, 𝑦〉 ∣ 𝜓} → ∀𝑦(𝜑 → 𝜓)) |
| 12 | 3, 11 | alrimi 1546 | . 2 ⊢ ({〈𝑥, 𝑦〉 ∣ 𝜑} ⊆ {〈𝑥, 𝑦〉 ∣ 𝜓} → ∀𝑥∀𝑦(𝜑 → 𝜓)) |
| 13 | ssopab2 4330 | . 2 ⊢ (∀𝑥∀𝑦(𝜑 → 𝜓) → {〈𝑥, 𝑦〉 ∣ 𝜑} ⊆ {〈𝑥, 𝑦〉 ∣ 𝜓}) | |
| 14 | 12, 13 | impbii 126 | 1 ⊢ ({〈𝑥, 𝑦〉 ∣ 𝜑} ⊆ {〈𝑥, 𝑦〉 ∣ 𝜓} ↔ ∀𝑥∀𝑦(𝜑 → 𝜓)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ↔ wb 105 ∀wal 1371 ∈ wcel 2177 ⊆ wss 3170 〈cop 3641 {copab 4112 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-14 2180 ax-ext 2188 ax-sep 4170 ax-pow 4226 ax-pr 4261 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ral 2490 df-v 2775 df-un 3174 df-in 3176 df-ss 3183 df-pw 3623 df-sn 3644 df-pr 3645 df-op 3647 df-opab 4114 |
| This theorem is referenced by: eqopab2b 4334 dffun2 5290 |
| Copyright terms: Public domain | W3C validator |