ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  eqgfval GIF version

Theorem eqgfval 13352
Description: Value of the subgroup left coset equivalence relation. (Contributed by Mario Carneiro, 15-Jan-2015.)
Hypotheses
Ref Expression
eqgval.x 𝑋 = (Base‘𝐺)
eqgval.n 𝑁 = (invg𝐺)
eqgval.p + = (+g𝐺)
eqgval.r 𝑅 = (𝐺 ~QG 𝑆)
Assertion
Ref Expression
eqgfval ((𝐺𝑉𝑆𝑋) → 𝑅 = {⟨𝑥, 𝑦⟩ ∣ ({𝑥, 𝑦} ⊆ 𝑋 ∧ ((𝑁𝑥) + 𝑦) ∈ 𝑆)})
Distinct variable groups:   𝑥,𝑦,𝐺   𝑥,𝑁,𝑦   𝑥,𝑆,𝑦   𝑥, + ,𝑦   𝑥,𝑋,𝑦
Allowed substitution hints:   𝑅(𝑥,𝑦)   𝑉(𝑥,𝑦)

Proof of Theorem eqgfval
Dummy variables 𝑔 𝑠 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqgval.r . 2 𝑅 = (𝐺 ~QG 𝑆)
2 elex 2774 . . . 4 (𝐺𝑉𝐺 ∈ V)
32adantr 276 . . 3 ((𝐺𝑉𝑆𝑋) → 𝐺 ∈ V)
4 eqgval.x . . . . . 6 𝑋 = (Base‘𝐺)
5 basfn 12736 . . . . . . 7 Base Fn V
6 funfvex 5575 . . . . . . . 8 ((Fun Base ∧ 𝐺 ∈ dom Base) → (Base‘𝐺) ∈ V)
76funfni 5358 . . . . . . 7 ((Base Fn V ∧ 𝐺 ∈ V) → (Base‘𝐺) ∈ V)
85, 2, 7sylancr 414 . . . . . 6 (𝐺𝑉 → (Base‘𝐺) ∈ V)
94, 8eqeltrid 2283 . . . . 5 (𝐺𝑉𝑋 ∈ V)
109adantr 276 . . . 4 ((𝐺𝑉𝑆𝑋) → 𝑋 ∈ V)
11 simpr 110 . . . 4 ((𝐺𝑉𝑆𝑋) → 𝑆𝑋)
1210, 11ssexd 4173 . . 3 ((𝐺𝑉𝑆𝑋) → 𝑆 ∈ V)
13 xpexg 4777 . . . . 5 ((𝑋 ∈ V ∧ 𝑋 ∈ V) → (𝑋 × 𝑋) ∈ V)
1410, 10, 13syl2anc 411 . . . 4 ((𝐺𝑉𝑆𝑋) → (𝑋 × 𝑋) ∈ V)
15 simpl 109 . . . . . . . 8 (({𝑥, 𝑦} ⊆ 𝑋 ∧ ((𝑁𝑥) + 𝑦) ∈ 𝑆) → {𝑥, 𝑦} ⊆ 𝑋)
16 vex 2766 . . . . . . . . 9 𝑥 ∈ V
17 vex 2766 . . . . . . . . 9 𝑦 ∈ V
1816, 17prss 3778 . . . . . . . 8 ((𝑥𝑋𝑦𝑋) ↔ {𝑥, 𝑦} ⊆ 𝑋)
1915, 18sylibr 134 . . . . . . 7 (({𝑥, 𝑦} ⊆ 𝑋 ∧ ((𝑁𝑥) + 𝑦) ∈ 𝑆) → (𝑥𝑋𝑦𝑋))
2019ssopab2i 4312 . . . . . 6 {⟨𝑥, 𝑦⟩ ∣ ({𝑥, 𝑦} ⊆ 𝑋 ∧ ((𝑁𝑥) + 𝑦) ∈ 𝑆)} ⊆ {⟨𝑥, 𝑦⟩ ∣ (𝑥𝑋𝑦𝑋)}
21 df-xp 4669 . . . . . 6 (𝑋 × 𝑋) = {⟨𝑥, 𝑦⟩ ∣ (𝑥𝑋𝑦𝑋)}
2220, 21sseqtrri 3218 . . . . 5 {⟨𝑥, 𝑦⟩ ∣ ({𝑥, 𝑦} ⊆ 𝑋 ∧ ((𝑁𝑥) + 𝑦) ∈ 𝑆)} ⊆ (𝑋 × 𝑋)
2322a1i 9 . . . 4 ((𝐺𝑉𝑆𝑋) → {⟨𝑥, 𝑦⟩ ∣ ({𝑥, 𝑦} ⊆ 𝑋 ∧ ((𝑁𝑥) + 𝑦) ∈ 𝑆)} ⊆ (𝑋 × 𝑋))
2414, 23ssexd 4173 . . 3 ((𝐺𝑉𝑆𝑋) → {⟨𝑥, 𝑦⟩ ∣ ({𝑥, 𝑦} ⊆ 𝑋 ∧ ((𝑁𝑥) + 𝑦) ∈ 𝑆)} ∈ V)
25 simpl 109 . . . . . . . . 9 ((𝑔 = 𝐺𝑠 = 𝑆) → 𝑔 = 𝐺)
2625fveq2d 5562 . . . . . . . 8 ((𝑔 = 𝐺𝑠 = 𝑆) → (Base‘𝑔) = (Base‘𝐺))
2726, 4eqtr4di 2247 . . . . . . 7 ((𝑔 = 𝐺𝑠 = 𝑆) → (Base‘𝑔) = 𝑋)
2827sseq2d 3213 . . . . . 6 ((𝑔 = 𝐺𝑠 = 𝑆) → ({𝑥, 𝑦} ⊆ (Base‘𝑔) ↔ {𝑥, 𝑦} ⊆ 𝑋))
2925fveq2d 5562 . . . . . . . . 9 ((𝑔 = 𝐺𝑠 = 𝑆) → (+g𝑔) = (+g𝐺))
30 eqgval.p . . . . . . . . 9 + = (+g𝐺)
3129, 30eqtr4di 2247 . . . . . . . 8 ((𝑔 = 𝐺𝑠 = 𝑆) → (+g𝑔) = + )
3225fveq2d 5562 . . . . . . . . . 10 ((𝑔 = 𝐺𝑠 = 𝑆) → (invg𝑔) = (invg𝐺))
33 eqgval.n . . . . . . . . . 10 𝑁 = (invg𝐺)
3432, 33eqtr4di 2247 . . . . . . . . 9 ((𝑔 = 𝐺𝑠 = 𝑆) → (invg𝑔) = 𝑁)
3534fveq1d 5560 . . . . . . . 8 ((𝑔 = 𝐺𝑠 = 𝑆) → ((invg𝑔)‘𝑥) = (𝑁𝑥))
36 eqidd 2197 . . . . . . . 8 ((𝑔 = 𝐺𝑠 = 𝑆) → 𝑦 = 𝑦)
3731, 35, 36oveq123d 5943 . . . . . . 7 ((𝑔 = 𝐺𝑠 = 𝑆) → (((invg𝑔)‘𝑥)(+g𝑔)𝑦) = ((𝑁𝑥) + 𝑦))
38 simpr 110 . . . . . . 7 ((𝑔 = 𝐺𝑠 = 𝑆) → 𝑠 = 𝑆)
3937, 38eleq12d 2267 . . . . . 6 ((𝑔 = 𝐺𝑠 = 𝑆) → ((((invg𝑔)‘𝑥)(+g𝑔)𝑦) ∈ 𝑠 ↔ ((𝑁𝑥) + 𝑦) ∈ 𝑆))
4028, 39anbi12d 473 . . . . 5 ((𝑔 = 𝐺𝑠 = 𝑆) → (({𝑥, 𝑦} ⊆ (Base‘𝑔) ∧ (((invg𝑔)‘𝑥)(+g𝑔)𝑦) ∈ 𝑠) ↔ ({𝑥, 𝑦} ⊆ 𝑋 ∧ ((𝑁𝑥) + 𝑦) ∈ 𝑆)))
4140opabbidv 4099 . . . 4 ((𝑔 = 𝐺𝑠 = 𝑆) → {⟨𝑥, 𝑦⟩ ∣ ({𝑥, 𝑦} ⊆ (Base‘𝑔) ∧ (((invg𝑔)‘𝑥)(+g𝑔)𝑦) ∈ 𝑠)} = {⟨𝑥, 𝑦⟩ ∣ ({𝑥, 𝑦} ⊆ 𝑋 ∧ ((𝑁𝑥) + 𝑦) ∈ 𝑆)})
42 df-eqg 13302 . . . 4 ~QG = (𝑔 ∈ V, 𝑠 ∈ V ↦ {⟨𝑥, 𝑦⟩ ∣ ({𝑥, 𝑦} ⊆ (Base‘𝑔) ∧ (((invg𝑔)‘𝑥)(+g𝑔)𝑦) ∈ 𝑠)})
4341, 42ovmpoga 6052 . . 3 ((𝐺 ∈ V ∧ 𝑆 ∈ V ∧ {⟨𝑥, 𝑦⟩ ∣ ({𝑥, 𝑦} ⊆ 𝑋 ∧ ((𝑁𝑥) + 𝑦) ∈ 𝑆)} ∈ V) → (𝐺 ~QG 𝑆) = {⟨𝑥, 𝑦⟩ ∣ ({𝑥, 𝑦} ⊆ 𝑋 ∧ ((𝑁𝑥) + 𝑦) ∈ 𝑆)})
443, 12, 24, 43syl3anc 1249 . 2 ((𝐺𝑉𝑆𝑋) → (𝐺 ~QG 𝑆) = {⟨𝑥, 𝑦⟩ ∣ ({𝑥, 𝑦} ⊆ 𝑋 ∧ ((𝑁𝑥) + 𝑦) ∈ 𝑆)})
451, 44eqtrid 2241 1 ((𝐺𝑉𝑆𝑋) → 𝑅 = {⟨𝑥, 𝑦⟩ ∣ ({𝑥, 𝑦} ⊆ 𝑋 ∧ ((𝑁𝑥) + 𝑦) ∈ 𝑆)})
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104   = wceq 1364  wcel 2167  Vcvv 2763  wss 3157  {cpr 3623  {copab 4093   × cxp 4661   Fn wfn 5253  cfv 5258  (class class class)co 5922  Basecbs 12678  +gcplusg 12755  invgcminusg 13133   ~QG cqg 13299
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-sep 4151  ax-pow 4207  ax-pr 4242  ax-un 4468  ax-setind 4573  ax-cnex 7970  ax-resscn 7971  ax-1re 7973  ax-addrcl 7976
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-ral 2480  df-rex 2481  df-v 2765  df-sbc 2990  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-pw 3607  df-sn 3628  df-pr 3629  df-op 3631  df-uni 3840  df-int 3875  df-br 4034  df-opab 4095  df-mpt 4096  df-id 4328  df-xp 4669  df-rel 4670  df-cnv 4671  df-co 4672  df-dm 4673  df-rn 4674  df-res 4675  df-iota 5219  df-fun 5260  df-fn 5261  df-fv 5266  df-ov 5925  df-oprab 5926  df-mpo 5927  df-inn 8991  df-ndx 12681  df-slot 12682  df-base 12684  df-eqg 13302
This theorem is referenced by:  eqgval  13353
  Copyright terms: Public domain W3C validator