| Step | Hyp | Ref
| Expression |
| 1 | | eqgval.r |
. 2
⊢ 𝑅 = (𝐺 ~QG 𝑆) |
| 2 | | elex 2774 |
. . . 4
⊢ (𝐺 ∈ 𝑉 → 𝐺 ∈ V) |
| 3 | 2 | adantr 276 |
. . 3
⊢ ((𝐺 ∈ 𝑉 ∧ 𝑆 ⊆ 𝑋) → 𝐺 ∈ V) |
| 4 | | eqgval.x |
. . . . . 6
⊢ 𝑋 = (Base‘𝐺) |
| 5 | | basfn 12736 |
. . . . . . 7
⊢ Base Fn
V |
| 6 | | funfvex 5575 |
. . . . . . . 8
⊢ ((Fun
Base ∧ 𝐺 ∈ dom
Base) → (Base‘𝐺)
∈ V) |
| 7 | 6 | funfni 5358 |
. . . . . . 7
⊢ ((Base Fn
V ∧ 𝐺 ∈ V) →
(Base‘𝐺) ∈
V) |
| 8 | 5, 2, 7 | sylancr 414 |
. . . . . 6
⊢ (𝐺 ∈ 𝑉 → (Base‘𝐺) ∈ V) |
| 9 | 4, 8 | eqeltrid 2283 |
. . . . 5
⊢ (𝐺 ∈ 𝑉 → 𝑋 ∈ V) |
| 10 | 9 | adantr 276 |
. . . 4
⊢ ((𝐺 ∈ 𝑉 ∧ 𝑆 ⊆ 𝑋) → 𝑋 ∈ V) |
| 11 | | simpr 110 |
. . . 4
⊢ ((𝐺 ∈ 𝑉 ∧ 𝑆 ⊆ 𝑋) → 𝑆 ⊆ 𝑋) |
| 12 | 10, 11 | ssexd 4173 |
. . 3
⊢ ((𝐺 ∈ 𝑉 ∧ 𝑆 ⊆ 𝑋) → 𝑆 ∈ V) |
| 13 | | xpexg 4777 |
. . . . 5
⊢ ((𝑋 ∈ V ∧ 𝑋 ∈ V) → (𝑋 × 𝑋) ∈ V) |
| 14 | 10, 10, 13 | syl2anc 411 |
. . . 4
⊢ ((𝐺 ∈ 𝑉 ∧ 𝑆 ⊆ 𝑋) → (𝑋 × 𝑋) ∈ V) |
| 15 | | simpl 109 |
. . . . . . . 8
⊢ (({𝑥, 𝑦} ⊆ 𝑋 ∧ ((𝑁‘𝑥) + 𝑦) ∈ 𝑆) → {𝑥, 𝑦} ⊆ 𝑋) |
| 16 | | vex 2766 |
. . . . . . . . 9
⊢ 𝑥 ∈ V |
| 17 | | vex 2766 |
. . . . . . . . 9
⊢ 𝑦 ∈ V |
| 18 | 16, 17 | prss 3778 |
. . . . . . . 8
⊢ ((𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋) ↔ {𝑥, 𝑦} ⊆ 𝑋) |
| 19 | 15, 18 | sylibr 134 |
. . . . . . 7
⊢ (({𝑥, 𝑦} ⊆ 𝑋 ∧ ((𝑁‘𝑥) + 𝑦) ∈ 𝑆) → (𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋)) |
| 20 | 19 | ssopab2i 4312 |
. . . . . 6
⊢
{〈𝑥, 𝑦〉 ∣ ({𝑥, 𝑦} ⊆ 𝑋 ∧ ((𝑁‘𝑥) + 𝑦) ∈ 𝑆)} ⊆ {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋)} |
| 21 | | df-xp 4669 |
. . . . . 6
⊢ (𝑋 × 𝑋) = {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋)} |
| 22 | 20, 21 | sseqtrri 3218 |
. . . . 5
⊢
{〈𝑥, 𝑦〉 ∣ ({𝑥, 𝑦} ⊆ 𝑋 ∧ ((𝑁‘𝑥) + 𝑦) ∈ 𝑆)} ⊆ (𝑋 × 𝑋) |
| 23 | 22 | a1i 9 |
. . . 4
⊢ ((𝐺 ∈ 𝑉 ∧ 𝑆 ⊆ 𝑋) → {〈𝑥, 𝑦〉 ∣ ({𝑥, 𝑦} ⊆ 𝑋 ∧ ((𝑁‘𝑥) + 𝑦) ∈ 𝑆)} ⊆ (𝑋 × 𝑋)) |
| 24 | 14, 23 | ssexd 4173 |
. . 3
⊢ ((𝐺 ∈ 𝑉 ∧ 𝑆 ⊆ 𝑋) → {〈𝑥, 𝑦〉 ∣ ({𝑥, 𝑦} ⊆ 𝑋 ∧ ((𝑁‘𝑥) + 𝑦) ∈ 𝑆)} ∈ V) |
| 25 | | simpl 109 |
. . . . . . . . 9
⊢ ((𝑔 = 𝐺 ∧ 𝑠 = 𝑆) → 𝑔 = 𝐺) |
| 26 | 25 | fveq2d 5562 |
. . . . . . . 8
⊢ ((𝑔 = 𝐺 ∧ 𝑠 = 𝑆) → (Base‘𝑔) = (Base‘𝐺)) |
| 27 | 26, 4 | eqtr4di 2247 |
. . . . . . 7
⊢ ((𝑔 = 𝐺 ∧ 𝑠 = 𝑆) → (Base‘𝑔) = 𝑋) |
| 28 | 27 | sseq2d 3213 |
. . . . . 6
⊢ ((𝑔 = 𝐺 ∧ 𝑠 = 𝑆) → ({𝑥, 𝑦} ⊆ (Base‘𝑔) ↔ {𝑥, 𝑦} ⊆ 𝑋)) |
| 29 | 25 | fveq2d 5562 |
. . . . . . . . 9
⊢ ((𝑔 = 𝐺 ∧ 𝑠 = 𝑆) → (+g‘𝑔) = (+g‘𝐺)) |
| 30 | | eqgval.p |
. . . . . . . . 9
⊢ + =
(+g‘𝐺) |
| 31 | 29, 30 | eqtr4di 2247 |
. . . . . . . 8
⊢ ((𝑔 = 𝐺 ∧ 𝑠 = 𝑆) → (+g‘𝑔) = + ) |
| 32 | 25 | fveq2d 5562 |
. . . . . . . . . 10
⊢ ((𝑔 = 𝐺 ∧ 𝑠 = 𝑆) → (invg‘𝑔) = (invg‘𝐺)) |
| 33 | | eqgval.n |
. . . . . . . . . 10
⊢ 𝑁 = (invg‘𝐺) |
| 34 | 32, 33 | eqtr4di 2247 |
. . . . . . . . 9
⊢ ((𝑔 = 𝐺 ∧ 𝑠 = 𝑆) → (invg‘𝑔) = 𝑁) |
| 35 | 34 | fveq1d 5560 |
. . . . . . . 8
⊢ ((𝑔 = 𝐺 ∧ 𝑠 = 𝑆) → ((invg‘𝑔)‘𝑥) = (𝑁‘𝑥)) |
| 36 | | eqidd 2197 |
. . . . . . . 8
⊢ ((𝑔 = 𝐺 ∧ 𝑠 = 𝑆) → 𝑦 = 𝑦) |
| 37 | 31, 35, 36 | oveq123d 5943 |
. . . . . . 7
⊢ ((𝑔 = 𝐺 ∧ 𝑠 = 𝑆) → (((invg‘𝑔)‘𝑥)(+g‘𝑔)𝑦) = ((𝑁‘𝑥) + 𝑦)) |
| 38 | | simpr 110 |
. . . . . . 7
⊢ ((𝑔 = 𝐺 ∧ 𝑠 = 𝑆) → 𝑠 = 𝑆) |
| 39 | 37, 38 | eleq12d 2267 |
. . . . . 6
⊢ ((𝑔 = 𝐺 ∧ 𝑠 = 𝑆) → ((((invg‘𝑔)‘𝑥)(+g‘𝑔)𝑦) ∈ 𝑠 ↔ ((𝑁‘𝑥) + 𝑦) ∈ 𝑆)) |
| 40 | 28, 39 | anbi12d 473 |
. . . . 5
⊢ ((𝑔 = 𝐺 ∧ 𝑠 = 𝑆) → (({𝑥, 𝑦} ⊆ (Base‘𝑔) ∧ (((invg‘𝑔)‘𝑥)(+g‘𝑔)𝑦) ∈ 𝑠) ↔ ({𝑥, 𝑦} ⊆ 𝑋 ∧ ((𝑁‘𝑥) + 𝑦) ∈ 𝑆))) |
| 41 | 40 | opabbidv 4099 |
. . . 4
⊢ ((𝑔 = 𝐺 ∧ 𝑠 = 𝑆) → {〈𝑥, 𝑦〉 ∣ ({𝑥, 𝑦} ⊆ (Base‘𝑔) ∧ (((invg‘𝑔)‘𝑥)(+g‘𝑔)𝑦) ∈ 𝑠)} = {〈𝑥, 𝑦〉 ∣ ({𝑥, 𝑦} ⊆ 𝑋 ∧ ((𝑁‘𝑥) + 𝑦) ∈ 𝑆)}) |
| 42 | | df-eqg 13302 |
. . . 4
⊢
~QG = (𝑔
∈ V, 𝑠 ∈ V
↦ {〈𝑥, 𝑦〉 ∣ ({𝑥, 𝑦} ⊆ (Base‘𝑔) ∧ (((invg‘𝑔)‘𝑥)(+g‘𝑔)𝑦) ∈ 𝑠)}) |
| 43 | 41, 42 | ovmpoga 6052 |
. . 3
⊢ ((𝐺 ∈ V ∧ 𝑆 ∈ V ∧ {〈𝑥, 𝑦〉 ∣ ({𝑥, 𝑦} ⊆ 𝑋 ∧ ((𝑁‘𝑥) + 𝑦) ∈ 𝑆)} ∈ V) → (𝐺 ~QG 𝑆) = {〈𝑥, 𝑦〉 ∣ ({𝑥, 𝑦} ⊆ 𝑋 ∧ ((𝑁‘𝑥) + 𝑦) ∈ 𝑆)}) |
| 44 | 3, 12, 24, 43 | syl3anc 1249 |
. 2
⊢ ((𝐺 ∈ 𝑉 ∧ 𝑆 ⊆ 𝑋) → (𝐺 ~QG 𝑆) = {〈𝑥, 𝑦〉 ∣ ({𝑥, 𝑦} ⊆ 𝑋 ∧ ((𝑁‘𝑥) + 𝑦) ∈ 𝑆)}) |
| 45 | 1, 44 | eqtrid 2241 |
1
⊢ ((𝐺 ∈ 𝑉 ∧ 𝑆 ⊆ 𝑋) → 𝑅 = {〈𝑥, 𝑦〉 ∣ ({𝑥, 𝑦} ⊆ 𝑋 ∧ ((𝑁‘𝑥) + 𝑦) ∈ 𝑆)}) |