ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  eqgfval GIF version

Theorem eqgfval 13754
Description: Value of the subgroup left coset equivalence relation. (Contributed by Mario Carneiro, 15-Jan-2015.)
Hypotheses
Ref Expression
eqgval.x 𝑋 = (Base‘𝐺)
eqgval.n 𝑁 = (invg𝐺)
eqgval.p + = (+g𝐺)
eqgval.r 𝑅 = (𝐺 ~QG 𝑆)
Assertion
Ref Expression
eqgfval ((𝐺𝑉𝑆𝑋) → 𝑅 = {⟨𝑥, 𝑦⟩ ∣ ({𝑥, 𝑦} ⊆ 𝑋 ∧ ((𝑁𝑥) + 𝑦) ∈ 𝑆)})
Distinct variable groups:   𝑥,𝑦,𝐺   𝑥,𝑁,𝑦   𝑥,𝑆,𝑦   𝑥, + ,𝑦   𝑥,𝑋,𝑦
Allowed substitution hints:   𝑅(𝑥,𝑦)   𝑉(𝑥,𝑦)

Proof of Theorem eqgfval
Dummy variables 𝑔 𝑠 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqgval.r . 2 𝑅 = (𝐺 ~QG 𝑆)
2 elex 2811 . . . 4 (𝐺𝑉𝐺 ∈ V)
32adantr 276 . . 3 ((𝐺𝑉𝑆𝑋) → 𝐺 ∈ V)
4 eqgval.x . . . . . 6 𝑋 = (Base‘𝐺)
5 basfn 13086 . . . . . . 7 Base Fn V
6 funfvex 5643 . . . . . . . 8 ((Fun Base ∧ 𝐺 ∈ dom Base) → (Base‘𝐺) ∈ V)
76funfni 5422 . . . . . . 7 ((Base Fn V ∧ 𝐺 ∈ V) → (Base‘𝐺) ∈ V)
85, 2, 7sylancr 414 . . . . . 6 (𝐺𝑉 → (Base‘𝐺) ∈ V)
94, 8eqeltrid 2316 . . . . 5 (𝐺𝑉𝑋 ∈ V)
109adantr 276 . . . 4 ((𝐺𝑉𝑆𝑋) → 𝑋 ∈ V)
11 simpr 110 . . . 4 ((𝐺𝑉𝑆𝑋) → 𝑆𝑋)
1210, 11ssexd 4223 . . 3 ((𝐺𝑉𝑆𝑋) → 𝑆 ∈ V)
13 xpexg 4832 . . . . 5 ((𝑋 ∈ V ∧ 𝑋 ∈ V) → (𝑋 × 𝑋) ∈ V)
1410, 10, 13syl2anc 411 . . . 4 ((𝐺𝑉𝑆𝑋) → (𝑋 × 𝑋) ∈ V)
15 simpl 109 . . . . . . . 8 (({𝑥, 𝑦} ⊆ 𝑋 ∧ ((𝑁𝑥) + 𝑦) ∈ 𝑆) → {𝑥, 𝑦} ⊆ 𝑋)
16 vex 2802 . . . . . . . . 9 𝑥 ∈ V
17 vex 2802 . . . . . . . . 9 𝑦 ∈ V
1816, 17prss 3823 . . . . . . . 8 ((𝑥𝑋𝑦𝑋) ↔ {𝑥, 𝑦} ⊆ 𝑋)
1915, 18sylibr 134 . . . . . . 7 (({𝑥, 𝑦} ⊆ 𝑋 ∧ ((𝑁𝑥) + 𝑦) ∈ 𝑆) → (𝑥𝑋𝑦𝑋))
2019ssopab2i 4365 . . . . . 6 {⟨𝑥, 𝑦⟩ ∣ ({𝑥, 𝑦} ⊆ 𝑋 ∧ ((𝑁𝑥) + 𝑦) ∈ 𝑆)} ⊆ {⟨𝑥, 𝑦⟩ ∣ (𝑥𝑋𝑦𝑋)}
21 df-xp 4724 . . . . . 6 (𝑋 × 𝑋) = {⟨𝑥, 𝑦⟩ ∣ (𝑥𝑋𝑦𝑋)}
2220, 21sseqtrri 3259 . . . . 5 {⟨𝑥, 𝑦⟩ ∣ ({𝑥, 𝑦} ⊆ 𝑋 ∧ ((𝑁𝑥) + 𝑦) ∈ 𝑆)} ⊆ (𝑋 × 𝑋)
2322a1i 9 . . . 4 ((𝐺𝑉𝑆𝑋) → {⟨𝑥, 𝑦⟩ ∣ ({𝑥, 𝑦} ⊆ 𝑋 ∧ ((𝑁𝑥) + 𝑦) ∈ 𝑆)} ⊆ (𝑋 × 𝑋))
2414, 23ssexd 4223 . . 3 ((𝐺𝑉𝑆𝑋) → {⟨𝑥, 𝑦⟩ ∣ ({𝑥, 𝑦} ⊆ 𝑋 ∧ ((𝑁𝑥) + 𝑦) ∈ 𝑆)} ∈ V)
25 simpl 109 . . . . . . . . 9 ((𝑔 = 𝐺𝑠 = 𝑆) → 𝑔 = 𝐺)
2625fveq2d 5630 . . . . . . . 8 ((𝑔 = 𝐺𝑠 = 𝑆) → (Base‘𝑔) = (Base‘𝐺))
2726, 4eqtr4di 2280 . . . . . . 7 ((𝑔 = 𝐺𝑠 = 𝑆) → (Base‘𝑔) = 𝑋)
2827sseq2d 3254 . . . . . 6 ((𝑔 = 𝐺𝑠 = 𝑆) → ({𝑥, 𝑦} ⊆ (Base‘𝑔) ↔ {𝑥, 𝑦} ⊆ 𝑋))
2925fveq2d 5630 . . . . . . . . 9 ((𝑔 = 𝐺𝑠 = 𝑆) → (+g𝑔) = (+g𝐺))
30 eqgval.p . . . . . . . . 9 + = (+g𝐺)
3129, 30eqtr4di 2280 . . . . . . . 8 ((𝑔 = 𝐺𝑠 = 𝑆) → (+g𝑔) = + )
3225fveq2d 5630 . . . . . . . . . 10 ((𝑔 = 𝐺𝑠 = 𝑆) → (invg𝑔) = (invg𝐺))
33 eqgval.n . . . . . . . . . 10 𝑁 = (invg𝐺)
3432, 33eqtr4di 2280 . . . . . . . . 9 ((𝑔 = 𝐺𝑠 = 𝑆) → (invg𝑔) = 𝑁)
3534fveq1d 5628 . . . . . . . 8 ((𝑔 = 𝐺𝑠 = 𝑆) → ((invg𝑔)‘𝑥) = (𝑁𝑥))
36 eqidd 2230 . . . . . . . 8 ((𝑔 = 𝐺𝑠 = 𝑆) → 𝑦 = 𝑦)
3731, 35, 36oveq123d 6021 . . . . . . 7 ((𝑔 = 𝐺𝑠 = 𝑆) → (((invg𝑔)‘𝑥)(+g𝑔)𝑦) = ((𝑁𝑥) + 𝑦))
38 simpr 110 . . . . . . 7 ((𝑔 = 𝐺𝑠 = 𝑆) → 𝑠 = 𝑆)
3937, 38eleq12d 2300 . . . . . 6 ((𝑔 = 𝐺𝑠 = 𝑆) → ((((invg𝑔)‘𝑥)(+g𝑔)𝑦) ∈ 𝑠 ↔ ((𝑁𝑥) + 𝑦) ∈ 𝑆))
4028, 39anbi12d 473 . . . . 5 ((𝑔 = 𝐺𝑠 = 𝑆) → (({𝑥, 𝑦} ⊆ (Base‘𝑔) ∧ (((invg𝑔)‘𝑥)(+g𝑔)𝑦) ∈ 𝑠) ↔ ({𝑥, 𝑦} ⊆ 𝑋 ∧ ((𝑁𝑥) + 𝑦) ∈ 𝑆)))
4140opabbidv 4149 . . . 4 ((𝑔 = 𝐺𝑠 = 𝑆) → {⟨𝑥, 𝑦⟩ ∣ ({𝑥, 𝑦} ⊆ (Base‘𝑔) ∧ (((invg𝑔)‘𝑥)(+g𝑔)𝑦) ∈ 𝑠)} = {⟨𝑥, 𝑦⟩ ∣ ({𝑥, 𝑦} ⊆ 𝑋 ∧ ((𝑁𝑥) + 𝑦) ∈ 𝑆)})
42 df-eqg 13704 . . . 4 ~QG = (𝑔 ∈ V, 𝑠 ∈ V ↦ {⟨𝑥, 𝑦⟩ ∣ ({𝑥, 𝑦} ⊆ (Base‘𝑔) ∧ (((invg𝑔)‘𝑥)(+g𝑔)𝑦) ∈ 𝑠)})
4341, 42ovmpoga 6133 . . 3 ((𝐺 ∈ V ∧ 𝑆 ∈ V ∧ {⟨𝑥, 𝑦⟩ ∣ ({𝑥, 𝑦} ⊆ 𝑋 ∧ ((𝑁𝑥) + 𝑦) ∈ 𝑆)} ∈ V) → (𝐺 ~QG 𝑆) = {⟨𝑥, 𝑦⟩ ∣ ({𝑥, 𝑦} ⊆ 𝑋 ∧ ((𝑁𝑥) + 𝑦) ∈ 𝑆)})
443, 12, 24, 43syl3anc 1271 . 2 ((𝐺𝑉𝑆𝑋) → (𝐺 ~QG 𝑆) = {⟨𝑥, 𝑦⟩ ∣ ({𝑥, 𝑦} ⊆ 𝑋 ∧ ((𝑁𝑥) + 𝑦) ∈ 𝑆)})
451, 44eqtrid 2274 1 ((𝐺𝑉𝑆𝑋) → 𝑅 = {⟨𝑥, 𝑦⟩ ∣ ({𝑥, 𝑦} ⊆ 𝑋 ∧ ((𝑁𝑥) + 𝑦) ∈ 𝑆)})
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104   = wceq 1395  wcel 2200  Vcvv 2799  wss 3197  {cpr 3667  {copab 4143   × cxp 4716   Fn wfn 5312  cfv 5317  (class class class)co 6000  Basecbs 13027  +gcplusg 13105  invgcminusg 13529   ~QG cqg 13701
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-sep 4201  ax-pow 4257  ax-pr 4292  ax-un 4523  ax-setind 4628  ax-cnex 8086  ax-resscn 8087  ax-1re 8089  ax-addrcl 8092
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-ral 2513  df-rex 2514  df-v 2801  df-sbc 3029  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3888  df-int 3923  df-br 4083  df-opab 4145  df-mpt 4146  df-id 4383  df-xp 4724  df-rel 4725  df-cnv 4726  df-co 4727  df-dm 4728  df-rn 4729  df-res 4730  df-iota 5277  df-fun 5319  df-fn 5320  df-fv 5325  df-ov 6003  df-oprab 6004  df-mpo 6005  df-inn 9107  df-ndx 13030  df-slot 13031  df-base 13033  df-eqg 13704
This theorem is referenced by:  eqgval  13755
  Copyright terms: Public domain W3C validator