ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  hashennnuni GIF version

Theorem hashennnuni 10850
Description: The ordinal size of a set equinumerous to an element of ω is that element of ω. (Contributed by Jim Kingdon, 20-Feb-2022.)
Assertion
Ref Expression
hashennnuni ((𝑁 ∈ ω ∧ 𝑁𝐴) → {𝑦 ∈ (ω ∪ {ω}) ∣ 𝑦𝐴} = 𝑁)
Distinct variable groups:   𝑦,𝐴   𝑦,𝑁

Proof of Theorem hashennnuni
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 elun1 3326 . . . . 5 (𝑁 ∈ ω → 𝑁 ∈ (ω ∪ {ω}))
21adantr 276 . . . 4 ((𝑁 ∈ ω ∧ 𝑁𝐴) → 𝑁 ∈ (ω ∪ {ω}))
3 endom 6817 . . . . 5 (𝑁𝐴𝑁𝐴)
43adantl 277 . . . 4 ((𝑁 ∈ ω ∧ 𝑁𝐴) → 𝑁𝐴)
5 breq1 4032 . . . . 5 (𝑦 = 𝑁 → (𝑦𝐴𝑁𝐴))
65elrab 2916 . . . 4 (𝑁 ∈ {𝑦 ∈ (ω ∪ {ω}) ∣ 𝑦𝐴} ↔ (𝑁 ∈ (ω ∪ {ω}) ∧ 𝑁𝐴))
72, 4, 6sylanbrc 417 . . 3 ((𝑁 ∈ ω ∧ 𝑁𝐴) → 𝑁 ∈ {𝑦 ∈ (ω ∪ {ω}) ∣ 𝑦𝐴})
8 breq1 4032 . . . . . . . . . . . 12 (𝑦 = 𝑧 → (𝑦𝐴𝑧𝐴))
98elrab 2916 . . . . . . . . . . 11 (𝑧 ∈ {𝑦 ∈ (ω ∪ {ω}) ∣ 𝑦𝐴} ↔ (𝑧 ∈ (ω ∪ {ω}) ∧ 𝑧𝐴))
109biimpi 120 . . . . . . . . . 10 (𝑧 ∈ {𝑦 ∈ (ω ∪ {ω}) ∣ 𝑦𝐴} → (𝑧 ∈ (ω ∪ {ω}) ∧ 𝑧𝐴))
1110adantl 277 . . . . . . . . 9 (((𝑁 ∈ ω ∧ 𝑁𝐴) ∧ 𝑧 ∈ {𝑦 ∈ (ω ∪ {ω}) ∣ 𝑦𝐴}) → (𝑧 ∈ (ω ∪ {ω}) ∧ 𝑧𝐴))
1211simprd 114 . . . . . . . 8 (((𝑁 ∈ ω ∧ 𝑁𝐴) ∧ 𝑧 ∈ {𝑦 ∈ (ω ∪ {ω}) ∣ 𝑦𝐴}) → 𝑧𝐴)
13 simplr 528 . . . . . . . . 9 (((𝑁 ∈ ω ∧ 𝑁𝐴) ∧ 𝑧 ∈ {𝑦 ∈ (ω ∪ {ω}) ∣ 𝑦𝐴}) → 𝑁𝐴)
1413ensymd 6837 . . . . . . . 8 (((𝑁 ∈ ω ∧ 𝑁𝐴) ∧ 𝑧 ∈ {𝑦 ∈ (ω ∪ {ω}) ∣ 𝑦𝐴}) → 𝐴𝑁)
15 domentr 6845 . . . . . . . 8 ((𝑧𝐴𝐴𝑁) → 𝑧𝑁)
1612, 14, 15syl2anc 411 . . . . . . 7 (((𝑁 ∈ ω ∧ 𝑁𝐴) ∧ 𝑧 ∈ {𝑦 ∈ (ω ∪ {ω}) ∣ 𝑦𝐴}) → 𝑧𝑁)
1716adantr 276 . . . . . 6 ((((𝑁 ∈ ω ∧ 𝑁𝐴) ∧ 𝑧 ∈ {𝑦 ∈ (ω ∪ {ω}) ∣ 𝑦𝐴}) ∧ 𝑧 ∈ ω) → 𝑧𝑁)
18 simpr 110 . . . . . . 7 ((((𝑁 ∈ ω ∧ 𝑁𝐴) ∧ 𝑧 ∈ {𝑦 ∈ (ω ∪ {ω}) ∣ 𝑦𝐴}) ∧ 𝑧 ∈ ω) → 𝑧 ∈ ω)
19 simplll 533 . . . . . . 7 ((((𝑁 ∈ ω ∧ 𝑁𝐴) ∧ 𝑧 ∈ {𝑦 ∈ (ω ∪ {ω}) ∣ 𝑦𝐴}) ∧ 𝑧 ∈ ω) → 𝑁 ∈ ω)
20 nndomo 6920 . . . . . . 7 ((𝑧 ∈ ω ∧ 𝑁 ∈ ω) → (𝑧𝑁𝑧𝑁))
2118, 19, 20syl2anc 411 . . . . . 6 ((((𝑁 ∈ ω ∧ 𝑁𝐴) ∧ 𝑧 ∈ {𝑦 ∈ (ω ∪ {ω}) ∣ 𝑦𝐴}) ∧ 𝑧 ∈ ω) → (𝑧𝑁𝑧𝑁))
2217, 21mpbid 147 . . . . 5 ((((𝑁 ∈ ω ∧ 𝑁𝐴) ∧ 𝑧 ∈ {𝑦 ∈ (ω ∪ {ω}) ∣ 𝑦𝐴}) ∧ 𝑧 ∈ ω) → 𝑧𝑁)
23 nnfi 6928 . . . . . . . 8 (𝑁 ∈ ω → 𝑁 ∈ Fin)
2423ad3antrrr 492 . . . . . . 7 ((((𝑁 ∈ ω ∧ 𝑁𝐴) ∧ 𝑧 ∈ {𝑦 ∈ (ω ∪ {ω}) ∣ 𝑦𝐴}) ∧ 𝑧 ∈ {ω}) → 𝑁 ∈ Fin)
2514adantr 276 . . . . . . 7 ((((𝑁 ∈ ω ∧ 𝑁𝐴) ∧ 𝑧 ∈ {𝑦 ∈ (ω ∪ {ω}) ∣ 𝑦𝐴}) ∧ 𝑧 ∈ {ω}) → 𝐴𝑁)
26 enfii 6930 . . . . . . 7 ((𝑁 ∈ Fin ∧ 𝐴𝑁) → 𝐴 ∈ Fin)
2724, 25, 26syl2anc 411 . . . . . 6 ((((𝑁 ∈ ω ∧ 𝑁𝐴) ∧ 𝑧 ∈ {𝑦 ∈ (ω ∪ {ω}) ∣ 𝑦𝐴}) ∧ 𝑧 ∈ {ω}) → 𝐴 ∈ Fin)
2812adantr 276 . . . . . . . 8 ((((𝑁 ∈ ω ∧ 𝑁𝐴) ∧ 𝑧 ∈ {𝑦 ∈ (ω ∪ {ω}) ∣ 𝑦𝐴}) ∧ 𝑧 ∈ {ω}) → 𝑧𝐴)
29 elsni 3636 . . . . . . . . . 10 (𝑧 ∈ {ω} → 𝑧 = ω)
3029breq1d 4039 . . . . . . . . 9 (𝑧 ∈ {ω} → (𝑧𝐴 ↔ ω ≼ 𝐴))
3130adantl 277 . . . . . . . 8 ((((𝑁 ∈ ω ∧ 𝑁𝐴) ∧ 𝑧 ∈ {𝑦 ∈ (ω ∪ {ω}) ∣ 𝑦𝐴}) ∧ 𝑧 ∈ {ω}) → (𝑧𝐴 ↔ ω ≼ 𝐴))
3228, 31mpbid 147 . . . . . . 7 ((((𝑁 ∈ ω ∧ 𝑁𝐴) ∧ 𝑧 ∈ {𝑦 ∈ (ω ∪ {ω}) ∣ 𝑦𝐴}) ∧ 𝑧 ∈ {ω}) → ω ≼ 𝐴)
33 infnfi 6951 . . . . . . 7 (ω ≼ 𝐴 → ¬ 𝐴 ∈ Fin)
3432, 33syl 14 . . . . . 6 ((((𝑁 ∈ ω ∧ 𝑁𝐴) ∧ 𝑧 ∈ {𝑦 ∈ (ω ∪ {ω}) ∣ 𝑦𝐴}) ∧ 𝑧 ∈ {ω}) → ¬ 𝐴 ∈ Fin)
3527, 34pm2.21dd 621 . . . . 5 ((((𝑁 ∈ ω ∧ 𝑁𝐴) ∧ 𝑧 ∈ {𝑦 ∈ (ω ∪ {ω}) ∣ 𝑦𝐴}) ∧ 𝑧 ∈ {ω}) → 𝑧𝑁)
3611simpld 112 . . . . . 6 (((𝑁 ∈ ω ∧ 𝑁𝐴) ∧ 𝑧 ∈ {𝑦 ∈ (ω ∪ {ω}) ∣ 𝑦𝐴}) → 𝑧 ∈ (ω ∪ {ω}))
37 elun 3300 . . . . . 6 (𝑧 ∈ (ω ∪ {ω}) ↔ (𝑧 ∈ ω ∨ 𝑧 ∈ {ω}))
3836, 37sylib 122 . . . . 5 (((𝑁 ∈ ω ∧ 𝑁𝐴) ∧ 𝑧 ∈ {𝑦 ∈ (ω ∪ {ω}) ∣ 𝑦𝐴}) → (𝑧 ∈ ω ∨ 𝑧 ∈ {ω}))
3922, 35, 38mpjaodan 799 . . . 4 (((𝑁 ∈ ω ∧ 𝑁𝐴) ∧ 𝑧 ∈ {𝑦 ∈ (ω ∪ {ω}) ∣ 𝑦𝐴}) → 𝑧𝑁)
4039ralrimiva 2567 . . 3 ((𝑁 ∈ ω ∧ 𝑁𝐴) → ∀𝑧 ∈ {𝑦 ∈ (ω ∪ {ω}) ∣ 𝑦𝐴}𝑧𝑁)
41 ssunieq 3868 . . 3 ((𝑁 ∈ {𝑦 ∈ (ω ∪ {ω}) ∣ 𝑦𝐴} ∧ ∀𝑧 ∈ {𝑦 ∈ (ω ∪ {ω}) ∣ 𝑦𝐴}𝑧𝑁) → 𝑁 = {𝑦 ∈ (ω ∪ {ω}) ∣ 𝑦𝐴})
427, 40, 41syl2anc 411 . 2 ((𝑁 ∈ ω ∧ 𝑁𝐴) → 𝑁 = {𝑦 ∈ (ω ∪ {ω}) ∣ 𝑦𝐴})
4342eqcomd 2199 1 ((𝑁 ∈ ω ∧ 𝑁𝐴) → {𝑦 ∈ (ω ∪ {ω}) ∣ 𝑦𝐴} = 𝑁)
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 104  wb 105  wo 709   = wceq 1364  wcel 2164  wral 2472  {crab 2476  cun 3151  wss 3153  {csn 3618   cuni 3835   class class class wbr 4029  ωcom 4622  cen 6792  cdom 6793  Fincfn 6794
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-sep 4147  ax-nul 4155  ax-pow 4203  ax-pr 4238  ax-un 4464  ax-setind 4569  ax-iinf 4620
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-ral 2477  df-rex 2478  df-rab 2481  df-v 2762  df-sbc 2986  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-nul 3447  df-pw 3603  df-sn 3624  df-pr 3625  df-op 3627  df-uni 3836  df-int 3871  df-br 4030  df-opab 4091  df-tr 4128  df-id 4324  df-iord 4397  df-on 4399  df-suc 4402  df-iom 4623  df-xp 4665  df-rel 4666  df-cnv 4667  df-co 4668  df-dm 4669  df-rn 4670  df-res 4671  df-ima 4672  df-iota 5215  df-fun 5256  df-fn 5257  df-f 5258  df-f1 5259  df-fo 5260  df-f1o 5261  df-fv 5262  df-er 6587  df-en 6795  df-dom 6796  df-fin 6797
This theorem is referenced by:  hashennn  10851
  Copyright terms: Public domain W3C validator