ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  hashennnuni GIF version

Theorem hashennnuni 10713
Description: The ordinal size of a set equinumerous to an element of ω is that element of ω. (Contributed by Jim Kingdon, 20-Feb-2022.)
Assertion
Ref Expression
hashennnuni ((𝑁 ∈ ω ∧ 𝑁𝐴) → {𝑦 ∈ (ω ∪ {ω}) ∣ 𝑦𝐴} = 𝑁)
Distinct variable groups:   𝑦,𝐴   𝑦,𝑁

Proof of Theorem hashennnuni
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 elun1 3294 . . . . 5 (𝑁 ∈ ω → 𝑁 ∈ (ω ∪ {ω}))
21adantr 274 . . . 4 ((𝑁 ∈ ω ∧ 𝑁𝐴) → 𝑁 ∈ (ω ∪ {ω}))
3 endom 6741 . . . . 5 (𝑁𝐴𝑁𝐴)
43adantl 275 . . . 4 ((𝑁 ∈ ω ∧ 𝑁𝐴) → 𝑁𝐴)
5 breq1 3992 . . . . 5 (𝑦 = 𝑁 → (𝑦𝐴𝑁𝐴))
65elrab 2886 . . . 4 (𝑁 ∈ {𝑦 ∈ (ω ∪ {ω}) ∣ 𝑦𝐴} ↔ (𝑁 ∈ (ω ∪ {ω}) ∧ 𝑁𝐴))
72, 4, 6sylanbrc 415 . . 3 ((𝑁 ∈ ω ∧ 𝑁𝐴) → 𝑁 ∈ {𝑦 ∈ (ω ∪ {ω}) ∣ 𝑦𝐴})
8 breq1 3992 . . . . . . . . . . . 12 (𝑦 = 𝑧 → (𝑦𝐴𝑧𝐴))
98elrab 2886 . . . . . . . . . . 11 (𝑧 ∈ {𝑦 ∈ (ω ∪ {ω}) ∣ 𝑦𝐴} ↔ (𝑧 ∈ (ω ∪ {ω}) ∧ 𝑧𝐴))
109biimpi 119 . . . . . . . . . 10 (𝑧 ∈ {𝑦 ∈ (ω ∪ {ω}) ∣ 𝑦𝐴} → (𝑧 ∈ (ω ∪ {ω}) ∧ 𝑧𝐴))
1110adantl 275 . . . . . . . . 9 (((𝑁 ∈ ω ∧ 𝑁𝐴) ∧ 𝑧 ∈ {𝑦 ∈ (ω ∪ {ω}) ∣ 𝑦𝐴}) → (𝑧 ∈ (ω ∪ {ω}) ∧ 𝑧𝐴))
1211simprd 113 . . . . . . . 8 (((𝑁 ∈ ω ∧ 𝑁𝐴) ∧ 𝑧 ∈ {𝑦 ∈ (ω ∪ {ω}) ∣ 𝑦𝐴}) → 𝑧𝐴)
13 simplr 525 . . . . . . . . 9 (((𝑁 ∈ ω ∧ 𝑁𝐴) ∧ 𝑧 ∈ {𝑦 ∈ (ω ∪ {ω}) ∣ 𝑦𝐴}) → 𝑁𝐴)
1413ensymd 6761 . . . . . . . 8 (((𝑁 ∈ ω ∧ 𝑁𝐴) ∧ 𝑧 ∈ {𝑦 ∈ (ω ∪ {ω}) ∣ 𝑦𝐴}) → 𝐴𝑁)
15 domentr 6769 . . . . . . . 8 ((𝑧𝐴𝐴𝑁) → 𝑧𝑁)
1612, 14, 15syl2anc 409 . . . . . . 7 (((𝑁 ∈ ω ∧ 𝑁𝐴) ∧ 𝑧 ∈ {𝑦 ∈ (ω ∪ {ω}) ∣ 𝑦𝐴}) → 𝑧𝑁)
1716adantr 274 . . . . . 6 ((((𝑁 ∈ ω ∧ 𝑁𝐴) ∧ 𝑧 ∈ {𝑦 ∈ (ω ∪ {ω}) ∣ 𝑦𝐴}) ∧ 𝑧 ∈ ω) → 𝑧𝑁)
18 simpr 109 . . . . . . 7 ((((𝑁 ∈ ω ∧ 𝑁𝐴) ∧ 𝑧 ∈ {𝑦 ∈ (ω ∪ {ω}) ∣ 𝑦𝐴}) ∧ 𝑧 ∈ ω) → 𝑧 ∈ ω)
19 simplll 528 . . . . . . 7 ((((𝑁 ∈ ω ∧ 𝑁𝐴) ∧ 𝑧 ∈ {𝑦 ∈ (ω ∪ {ω}) ∣ 𝑦𝐴}) ∧ 𝑧 ∈ ω) → 𝑁 ∈ ω)
20 nndomo 6842 . . . . . . 7 ((𝑧 ∈ ω ∧ 𝑁 ∈ ω) → (𝑧𝑁𝑧𝑁))
2118, 19, 20syl2anc 409 . . . . . 6 ((((𝑁 ∈ ω ∧ 𝑁𝐴) ∧ 𝑧 ∈ {𝑦 ∈ (ω ∪ {ω}) ∣ 𝑦𝐴}) ∧ 𝑧 ∈ ω) → (𝑧𝑁𝑧𝑁))
2217, 21mpbid 146 . . . . 5 ((((𝑁 ∈ ω ∧ 𝑁𝐴) ∧ 𝑧 ∈ {𝑦 ∈ (ω ∪ {ω}) ∣ 𝑦𝐴}) ∧ 𝑧 ∈ ω) → 𝑧𝑁)
23 nnfi 6850 . . . . . . . 8 (𝑁 ∈ ω → 𝑁 ∈ Fin)
2423ad3antrrr 489 . . . . . . 7 ((((𝑁 ∈ ω ∧ 𝑁𝐴) ∧ 𝑧 ∈ {𝑦 ∈ (ω ∪ {ω}) ∣ 𝑦𝐴}) ∧ 𝑧 ∈ {ω}) → 𝑁 ∈ Fin)
2514adantr 274 . . . . . . 7 ((((𝑁 ∈ ω ∧ 𝑁𝐴) ∧ 𝑧 ∈ {𝑦 ∈ (ω ∪ {ω}) ∣ 𝑦𝐴}) ∧ 𝑧 ∈ {ω}) → 𝐴𝑁)
26 enfii 6852 . . . . . . 7 ((𝑁 ∈ Fin ∧ 𝐴𝑁) → 𝐴 ∈ Fin)
2724, 25, 26syl2anc 409 . . . . . 6 ((((𝑁 ∈ ω ∧ 𝑁𝐴) ∧ 𝑧 ∈ {𝑦 ∈ (ω ∪ {ω}) ∣ 𝑦𝐴}) ∧ 𝑧 ∈ {ω}) → 𝐴 ∈ Fin)
2812adantr 274 . . . . . . . 8 ((((𝑁 ∈ ω ∧ 𝑁𝐴) ∧ 𝑧 ∈ {𝑦 ∈ (ω ∪ {ω}) ∣ 𝑦𝐴}) ∧ 𝑧 ∈ {ω}) → 𝑧𝐴)
29 elsni 3601 . . . . . . . . . 10 (𝑧 ∈ {ω} → 𝑧 = ω)
3029breq1d 3999 . . . . . . . . 9 (𝑧 ∈ {ω} → (𝑧𝐴 ↔ ω ≼ 𝐴))
3130adantl 275 . . . . . . . 8 ((((𝑁 ∈ ω ∧ 𝑁𝐴) ∧ 𝑧 ∈ {𝑦 ∈ (ω ∪ {ω}) ∣ 𝑦𝐴}) ∧ 𝑧 ∈ {ω}) → (𝑧𝐴 ↔ ω ≼ 𝐴))
3228, 31mpbid 146 . . . . . . 7 ((((𝑁 ∈ ω ∧ 𝑁𝐴) ∧ 𝑧 ∈ {𝑦 ∈ (ω ∪ {ω}) ∣ 𝑦𝐴}) ∧ 𝑧 ∈ {ω}) → ω ≼ 𝐴)
33 infnfi 6873 . . . . . . 7 (ω ≼ 𝐴 → ¬ 𝐴 ∈ Fin)
3432, 33syl 14 . . . . . 6 ((((𝑁 ∈ ω ∧ 𝑁𝐴) ∧ 𝑧 ∈ {𝑦 ∈ (ω ∪ {ω}) ∣ 𝑦𝐴}) ∧ 𝑧 ∈ {ω}) → ¬ 𝐴 ∈ Fin)
3527, 34pm2.21dd 615 . . . . 5 ((((𝑁 ∈ ω ∧ 𝑁𝐴) ∧ 𝑧 ∈ {𝑦 ∈ (ω ∪ {ω}) ∣ 𝑦𝐴}) ∧ 𝑧 ∈ {ω}) → 𝑧𝑁)
3611simpld 111 . . . . . 6 (((𝑁 ∈ ω ∧ 𝑁𝐴) ∧ 𝑧 ∈ {𝑦 ∈ (ω ∪ {ω}) ∣ 𝑦𝐴}) → 𝑧 ∈ (ω ∪ {ω}))
37 elun 3268 . . . . . 6 (𝑧 ∈ (ω ∪ {ω}) ↔ (𝑧 ∈ ω ∨ 𝑧 ∈ {ω}))
3836, 37sylib 121 . . . . 5 (((𝑁 ∈ ω ∧ 𝑁𝐴) ∧ 𝑧 ∈ {𝑦 ∈ (ω ∪ {ω}) ∣ 𝑦𝐴}) → (𝑧 ∈ ω ∨ 𝑧 ∈ {ω}))
3922, 35, 38mpjaodan 793 . . . 4 (((𝑁 ∈ ω ∧ 𝑁𝐴) ∧ 𝑧 ∈ {𝑦 ∈ (ω ∪ {ω}) ∣ 𝑦𝐴}) → 𝑧𝑁)
4039ralrimiva 2543 . . 3 ((𝑁 ∈ ω ∧ 𝑁𝐴) → ∀𝑧 ∈ {𝑦 ∈ (ω ∪ {ω}) ∣ 𝑦𝐴}𝑧𝑁)
41 ssunieq 3829 . . 3 ((𝑁 ∈ {𝑦 ∈ (ω ∪ {ω}) ∣ 𝑦𝐴} ∧ ∀𝑧 ∈ {𝑦 ∈ (ω ∪ {ω}) ∣ 𝑦𝐴}𝑧𝑁) → 𝑁 = {𝑦 ∈ (ω ∪ {ω}) ∣ 𝑦𝐴})
427, 40, 41syl2anc 409 . 2 ((𝑁 ∈ ω ∧ 𝑁𝐴) → 𝑁 = {𝑦 ∈ (ω ∪ {ω}) ∣ 𝑦𝐴})
4342eqcomd 2176 1 ((𝑁 ∈ ω ∧ 𝑁𝐴) → {𝑦 ∈ (ω ∪ {ω}) ∣ 𝑦𝐴} = 𝑁)
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 103  wb 104  wo 703   = wceq 1348  wcel 2141  wral 2448  {crab 2452  cun 3119  wss 3121  {csn 3583   cuni 3796   class class class wbr 3989  ωcom 4574  cen 6716  cdom 6717  Fincfn 6718
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 609  ax-in2 610  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-13 2143  ax-14 2144  ax-ext 2152  ax-sep 4107  ax-nul 4115  ax-pow 4160  ax-pr 4194  ax-un 4418  ax-setind 4521  ax-iinf 4572
This theorem depends on definitions:  df-bi 116  df-dc 830  df-3or 974  df-3an 975  df-tru 1351  df-fal 1354  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ne 2341  df-ral 2453  df-rex 2454  df-rab 2457  df-v 2732  df-sbc 2956  df-dif 3123  df-un 3125  df-in 3127  df-ss 3134  df-nul 3415  df-pw 3568  df-sn 3589  df-pr 3590  df-op 3592  df-uni 3797  df-int 3832  df-br 3990  df-opab 4051  df-tr 4088  df-id 4278  df-iord 4351  df-on 4353  df-suc 4356  df-iom 4575  df-xp 4617  df-rel 4618  df-cnv 4619  df-co 4620  df-dm 4621  df-rn 4622  df-res 4623  df-ima 4624  df-iota 5160  df-fun 5200  df-fn 5201  df-f 5202  df-f1 5203  df-fo 5204  df-f1o 5205  df-fv 5206  df-er 6513  df-en 6719  df-dom 6720  df-fin 6721
This theorem is referenced by:  hashennn  10714
  Copyright terms: Public domain W3C validator