ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  hashennnuni GIF version

Theorem hashennnuni 11009
Description: The ordinal size of a set equinumerous to an element of ω is that element of ω. (Contributed by Jim Kingdon, 20-Feb-2022.)
Assertion
Ref Expression
hashennnuni ((𝑁 ∈ ω ∧ 𝑁𝐴) → {𝑦 ∈ (ω ∪ {ω}) ∣ 𝑦𝐴} = 𝑁)
Distinct variable groups:   𝑦,𝐴   𝑦,𝑁

Proof of Theorem hashennnuni
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 elun1 3371 . . . . 5 (𝑁 ∈ ω → 𝑁 ∈ (ω ∪ {ω}))
21adantr 276 . . . 4 ((𝑁 ∈ ω ∧ 𝑁𝐴) → 𝑁 ∈ (ω ∪ {ω}))
3 endom 6922 . . . . 5 (𝑁𝐴𝑁𝐴)
43adantl 277 . . . 4 ((𝑁 ∈ ω ∧ 𝑁𝐴) → 𝑁𝐴)
5 breq1 4086 . . . . 5 (𝑦 = 𝑁 → (𝑦𝐴𝑁𝐴))
65elrab 2959 . . . 4 (𝑁 ∈ {𝑦 ∈ (ω ∪ {ω}) ∣ 𝑦𝐴} ↔ (𝑁 ∈ (ω ∪ {ω}) ∧ 𝑁𝐴))
72, 4, 6sylanbrc 417 . . 3 ((𝑁 ∈ ω ∧ 𝑁𝐴) → 𝑁 ∈ {𝑦 ∈ (ω ∪ {ω}) ∣ 𝑦𝐴})
8 breq1 4086 . . . . . . . . . . . 12 (𝑦 = 𝑧 → (𝑦𝐴𝑧𝐴))
98elrab 2959 . . . . . . . . . . 11 (𝑧 ∈ {𝑦 ∈ (ω ∪ {ω}) ∣ 𝑦𝐴} ↔ (𝑧 ∈ (ω ∪ {ω}) ∧ 𝑧𝐴))
109biimpi 120 . . . . . . . . . 10 (𝑧 ∈ {𝑦 ∈ (ω ∪ {ω}) ∣ 𝑦𝐴} → (𝑧 ∈ (ω ∪ {ω}) ∧ 𝑧𝐴))
1110adantl 277 . . . . . . . . 9 (((𝑁 ∈ ω ∧ 𝑁𝐴) ∧ 𝑧 ∈ {𝑦 ∈ (ω ∪ {ω}) ∣ 𝑦𝐴}) → (𝑧 ∈ (ω ∪ {ω}) ∧ 𝑧𝐴))
1211simprd 114 . . . . . . . 8 (((𝑁 ∈ ω ∧ 𝑁𝐴) ∧ 𝑧 ∈ {𝑦 ∈ (ω ∪ {ω}) ∣ 𝑦𝐴}) → 𝑧𝐴)
13 simplr 528 . . . . . . . . 9 (((𝑁 ∈ ω ∧ 𝑁𝐴) ∧ 𝑧 ∈ {𝑦 ∈ (ω ∪ {ω}) ∣ 𝑦𝐴}) → 𝑁𝐴)
1413ensymd 6943 . . . . . . . 8 (((𝑁 ∈ ω ∧ 𝑁𝐴) ∧ 𝑧 ∈ {𝑦 ∈ (ω ∪ {ω}) ∣ 𝑦𝐴}) → 𝐴𝑁)
15 domentr 6951 . . . . . . . 8 ((𝑧𝐴𝐴𝑁) → 𝑧𝑁)
1612, 14, 15syl2anc 411 . . . . . . 7 (((𝑁 ∈ ω ∧ 𝑁𝐴) ∧ 𝑧 ∈ {𝑦 ∈ (ω ∪ {ω}) ∣ 𝑦𝐴}) → 𝑧𝑁)
1716adantr 276 . . . . . 6 ((((𝑁 ∈ ω ∧ 𝑁𝐴) ∧ 𝑧 ∈ {𝑦 ∈ (ω ∪ {ω}) ∣ 𝑦𝐴}) ∧ 𝑧 ∈ ω) → 𝑧𝑁)
18 simpr 110 . . . . . . 7 ((((𝑁 ∈ ω ∧ 𝑁𝐴) ∧ 𝑧 ∈ {𝑦 ∈ (ω ∪ {ω}) ∣ 𝑦𝐴}) ∧ 𝑧 ∈ ω) → 𝑧 ∈ ω)
19 simplll 533 . . . . . . 7 ((((𝑁 ∈ ω ∧ 𝑁𝐴) ∧ 𝑧 ∈ {𝑦 ∈ (ω ∪ {ω}) ∣ 𝑦𝐴}) ∧ 𝑧 ∈ ω) → 𝑁 ∈ ω)
20 nndomo 7033 . . . . . . 7 ((𝑧 ∈ ω ∧ 𝑁 ∈ ω) → (𝑧𝑁𝑧𝑁))
2118, 19, 20syl2anc 411 . . . . . 6 ((((𝑁 ∈ ω ∧ 𝑁𝐴) ∧ 𝑧 ∈ {𝑦 ∈ (ω ∪ {ω}) ∣ 𝑦𝐴}) ∧ 𝑧 ∈ ω) → (𝑧𝑁𝑧𝑁))
2217, 21mpbid 147 . . . . 5 ((((𝑁 ∈ ω ∧ 𝑁𝐴) ∧ 𝑧 ∈ {𝑦 ∈ (ω ∪ {ω}) ∣ 𝑦𝐴}) ∧ 𝑧 ∈ ω) → 𝑧𝑁)
23 nnfi 7042 . . . . . . . 8 (𝑁 ∈ ω → 𝑁 ∈ Fin)
2423ad3antrrr 492 . . . . . . 7 ((((𝑁 ∈ ω ∧ 𝑁𝐴) ∧ 𝑧 ∈ {𝑦 ∈ (ω ∪ {ω}) ∣ 𝑦𝐴}) ∧ 𝑧 ∈ {ω}) → 𝑁 ∈ Fin)
2514adantr 276 . . . . . . 7 ((((𝑁 ∈ ω ∧ 𝑁𝐴) ∧ 𝑧 ∈ {𝑦 ∈ (ω ∪ {ω}) ∣ 𝑦𝐴}) ∧ 𝑧 ∈ {ω}) → 𝐴𝑁)
26 enfii 7044 . . . . . . 7 ((𝑁 ∈ Fin ∧ 𝐴𝑁) → 𝐴 ∈ Fin)
2724, 25, 26syl2anc 411 . . . . . 6 ((((𝑁 ∈ ω ∧ 𝑁𝐴) ∧ 𝑧 ∈ {𝑦 ∈ (ω ∪ {ω}) ∣ 𝑦𝐴}) ∧ 𝑧 ∈ {ω}) → 𝐴 ∈ Fin)
2812adantr 276 . . . . . . . 8 ((((𝑁 ∈ ω ∧ 𝑁𝐴) ∧ 𝑧 ∈ {𝑦 ∈ (ω ∪ {ω}) ∣ 𝑦𝐴}) ∧ 𝑧 ∈ {ω}) → 𝑧𝐴)
29 elsni 3684 . . . . . . . . . 10 (𝑧 ∈ {ω} → 𝑧 = ω)
3029breq1d 4093 . . . . . . . . 9 (𝑧 ∈ {ω} → (𝑧𝐴 ↔ ω ≼ 𝐴))
3130adantl 277 . . . . . . . 8 ((((𝑁 ∈ ω ∧ 𝑁𝐴) ∧ 𝑧 ∈ {𝑦 ∈ (ω ∪ {ω}) ∣ 𝑦𝐴}) ∧ 𝑧 ∈ {ω}) → (𝑧𝐴 ↔ ω ≼ 𝐴))
3228, 31mpbid 147 . . . . . . 7 ((((𝑁 ∈ ω ∧ 𝑁𝐴) ∧ 𝑧 ∈ {𝑦 ∈ (ω ∪ {ω}) ∣ 𝑦𝐴}) ∧ 𝑧 ∈ {ω}) → ω ≼ 𝐴)
33 infnfi 7065 . . . . . . 7 (ω ≼ 𝐴 → ¬ 𝐴 ∈ Fin)
3432, 33syl 14 . . . . . 6 ((((𝑁 ∈ ω ∧ 𝑁𝐴) ∧ 𝑧 ∈ {𝑦 ∈ (ω ∪ {ω}) ∣ 𝑦𝐴}) ∧ 𝑧 ∈ {ω}) → ¬ 𝐴 ∈ Fin)
3527, 34pm2.21dd 623 . . . . 5 ((((𝑁 ∈ ω ∧ 𝑁𝐴) ∧ 𝑧 ∈ {𝑦 ∈ (ω ∪ {ω}) ∣ 𝑦𝐴}) ∧ 𝑧 ∈ {ω}) → 𝑧𝑁)
3611simpld 112 . . . . . 6 (((𝑁 ∈ ω ∧ 𝑁𝐴) ∧ 𝑧 ∈ {𝑦 ∈ (ω ∪ {ω}) ∣ 𝑦𝐴}) → 𝑧 ∈ (ω ∪ {ω}))
37 elun 3345 . . . . . 6 (𝑧 ∈ (ω ∪ {ω}) ↔ (𝑧 ∈ ω ∨ 𝑧 ∈ {ω}))
3836, 37sylib 122 . . . . 5 (((𝑁 ∈ ω ∧ 𝑁𝐴) ∧ 𝑧 ∈ {𝑦 ∈ (ω ∪ {ω}) ∣ 𝑦𝐴}) → (𝑧 ∈ ω ∨ 𝑧 ∈ {ω}))
3922, 35, 38mpjaodan 803 . . . 4 (((𝑁 ∈ ω ∧ 𝑁𝐴) ∧ 𝑧 ∈ {𝑦 ∈ (ω ∪ {ω}) ∣ 𝑦𝐴}) → 𝑧𝑁)
4039ralrimiva 2603 . . 3 ((𝑁 ∈ ω ∧ 𝑁𝐴) → ∀𝑧 ∈ {𝑦 ∈ (ω ∪ {ω}) ∣ 𝑦𝐴}𝑧𝑁)
41 ssunieq 3921 . . 3 ((𝑁 ∈ {𝑦 ∈ (ω ∪ {ω}) ∣ 𝑦𝐴} ∧ ∀𝑧 ∈ {𝑦 ∈ (ω ∪ {ω}) ∣ 𝑦𝐴}𝑧𝑁) → 𝑁 = {𝑦 ∈ (ω ∪ {ω}) ∣ 𝑦𝐴})
427, 40, 41syl2anc 411 . 2 ((𝑁 ∈ ω ∧ 𝑁𝐴) → 𝑁 = {𝑦 ∈ (ω ∪ {ω}) ∣ 𝑦𝐴})
4342eqcomd 2235 1 ((𝑁 ∈ ω ∧ 𝑁𝐴) → {𝑦 ∈ (ω ∪ {ω}) ∣ 𝑦𝐴} = 𝑁)
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 104  wb 105  wo 713   = wceq 1395  wcel 2200  wral 2508  {crab 2512  cun 3195  wss 3197  {csn 3666   cuni 3888   class class class wbr 4083  ωcom 4682  cen 6893  cdom 6894  Fincfn 6895
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-sep 4202  ax-nul 4210  ax-pow 4258  ax-pr 4293  ax-un 4524  ax-setind 4629  ax-iinf 4680
This theorem depends on definitions:  df-bi 117  df-dc 840  df-3or 1003  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-ral 2513  df-rex 2514  df-rab 2517  df-v 2801  df-sbc 3029  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-nul 3492  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3889  df-int 3924  df-br 4084  df-opab 4146  df-tr 4183  df-id 4384  df-iord 4457  df-on 4459  df-suc 4462  df-iom 4683  df-xp 4725  df-rel 4726  df-cnv 4727  df-co 4728  df-dm 4729  df-rn 4730  df-res 4731  df-ima 4732  df-iota 5278  df-fun 5320  df-fn 5321  df-f 5322  df-f1 5323  df-fo 5324  df-f1o 5325  df-fv 5326  df-er 6688  df-en 6896  df-dom 6897  df-fin 6898
This theorem is referenced by:  hashennn  11010
  Copyright terms: Public domain W3C validator