ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  frecabex GIF version

Theorem frecabex 6249
Description: The class abstraction from df-frec 6242 exists. This is a lemma for other finite recursion proofs. (Contributed by Jim Kingdon, 13-May-2020.)
Hypotheses
Ref Expression
frecabex.sex (𝜑𝑆𝑉)
frecabex.fvex (𝜑 → ∀𝑦(𝐹𝑦) ∈ V)
frecabex.aex (𝜑𝐴𝑊)
Assertion
Ref Expression
frecabex (𝜑 → {𝑥 ∣ (∃𝑚 ∈ ω (dom 𝑆 = suc 𝑚𝑥 ∈ (𝐹‘(𝑆𝑚))) ∨ (dom 𝑆 = ∅ ∧ 𝑥𝐴))} ∈ V)
Distinct variable groups:   𝑥,𝐴   𝑥,𝐹   𝑥,𝑆,𝑦   𝜑,𝑚   𝑥,𝑚,𝑦   𝑦,𝐹
Allowed substitution hints:   𝜑(𝑥,𝑦)   𝐴(𝑦,𝑚)   𝑆(𝑚)   𝐹(𝑚)   𝑉(𝑥,𝑦,𝑚)   𝑊(𝑥,𝑦,𝑚)

Proof of Theorem frecabex
StepHypRef Expression
1 omex 4467 . . . 4 ω ∈ V
2 simpr 109 . . . . . . 7 ((dom 𝑆 = suc 𝑚𝑥 ∈ (𝐹‘(𝑆𝑚))) → 𝑥 ∈ (𝐹‘(𝑆𝑚)))
32abssi 3138 . . . . . 6 {𝑥 ∣ (dom 𝑆 = suc 𝑚𝑥 ∈ (𝐹‘(𝑆𝑚)))} ⊆ (𝐹‘(𝑆𝑚))
4 frecabex.sex . . . . . . . 8 (𝜑𝑆𝑉)
5 vex 2660 . . . . . . . 8 𝑚 ∈ V
6 fvexg 5394 . . . . . . . 8 ((𝑆𝑉𝑚 ∈ V) → (𝑆𝑚) ∈ V)
74, 5, 6sylancl 407 . . . . . . 7 (𝜑 → (𝑆𝑚) ∈ V)
8 frecabex.fvex . . . . . . 7 (𝜑 → ∀𝑦(𝐹𝑦) ∈ V)
9 fveq2 5375 . . . . . . . . 9 (𝑦 = (𝑆𝑚) → (𝐹𝑦) = (𝐹‘(𝑆𝑚)))
109eleq1d 2183 . . . . . . . 8 (𝑦 = (𝑆𝑚) → ((𝐹𝑦) ∈ V ↔ (𝐹‘(𝑆𝑚)) ∈ V))
1110spcgv 2744 . . . . . . 7 ((𝑆𝑚) ∈ V → (∀𝑦(𝐹𝑦) ∈ V → (𝐹‘(𝑆𝑚)) ∈ V))
127, 8, 11sylc 62 . . . . . 6 (𝜑 → (𝐹‘(𝑆𝑚)) ∈ V)
13 ssexg 4027 . . . . . 6 (({𝑥 ∣ (dom 𝑆 = suc 𝑚𝑥 ∈ (𝐹‘(𝑆𝑚)))} ⊆ (𝐹‘(𝑆𝑚)) ∧ (𝐹‘(𝑆𝑚)) ∈ V) → {𝑥 ∣ (dom 𝑆 = suc 𝑚𝑥 ∈ (𝐹‘(𝑆𝑚)))} ∈ V)
143, 12, 13sylancr 408 . . . . 5 (𝜑 → {𝑥 ∣ (dom 𝑆 = suc 𝑚𝑥 ∈ (𝐹‘(𝑆𝑚)))} ∈ V)
1514ralrimivw 2480 . . . 4 (𝜑 → ∀𝑚 ∈ ω {𝑥 ∣ (dom 𝑆 = suc 𝑚𝑥 ∈ (𝐹‘(𝑆𝑚)))} ∈ V)
16 abrexex2g 5972 . . . 4 ((ω ∈ V ∧ ∀𝑚 ∈ ω {𝑥 ∣ (dom 𝑆 = suc 𝑚𝑥 ∈ (𝐹‘(𝑆𝑚)))} ∈ V) → {𝑥 ∣ ∃𝑚 ∈ ω (dom 𝑆 = suc 𝑚𝑥 ∈ (𝐹‘(𝑆𝑚)))} ∈ V)
171, 15, 16sylancr 408 . . 3 (𝜑 → {𝑥 ∣ ∃𝑚 ∈ ω (dom 𝑆 = suc 𝑚𝑥 ∈ (𝐹‘(𝑆𝑚)))} ∈ V)
18 simpr 109 . . . . 5 ((dom 𝑆 = ∅ ∧ 𝑥𝐴) → 𝑥𝐴)
1918abssi 3138 . . . 4 {𝑥 ∣ (dom 𝑆 = ∅ ∧ 𝑥𝐴)} ⊆ 𝐴
20 frecabex.aex . . . 4 (𝜑𝐴𝑊)
21 ssexg 4027 . . . 4 (({𝑥 ∣ (dom 𝑆 = ∅ ∧ 𝑥𝐴)} ⊆ 𝐴𝐴𝑊) → {𝑥 ∣ (dom 𝑆 = ∅ ∧ 𝑥𝐴)} ∈ V)
2219, 20, 21sylancr 408 . . 3 (𝜑 → {𝑥 ∣ (dom 𝑆 = ∅ ∧ 𝑥𝐴)} ∈ V)
2317, 22jca 302 . 2 (𝜑 → ({𝑥 ∣ ∃𝑚 ∈ ω (dom 𝑆 = suc 𝑚𝑥 ∈ (𝐹‘(𝑆𝑚)))} ∈ V ∧ {𝑥 ∣ (dom 𝑆 = ∅ ∧ 𝑥𝐴)} ∈ V))
24 unexb 4323 . . 3 (({𝑥 ∣ ∃𝑚 ∈ ω (dom 𝑆 = suc 𝑚𝑥 ∈ (𝐹‘(𝑆𝑚)))} ∈ V ∧ {𝑥 ∣ (dom 𝑆 = ∅ ∧ 𝑥𝐴)} ∈ V) ↔ ({𝑥 ∣ ∃𝑚 ∈ ω (dom 𝑆 = suc 𝑚𝑥 ∈ (𝐹‘(𝑆𝑚)))} ∪ {𝑥 ∣ (dom 𝑆 = ∅ ∧ 𝑥𝐴)}) ∈ V)
25 unab 3309 . . . 4 ({𝑥 ∣ ∃𝑚 ∈ ω (dom 𝑆 = suc 𝑚𝑥 ∈ (𝐹‘(𝑆𝑚)))} ∪ {𝑥 ∣ (dom 𝑆 = ∅ ∧ 𝑥𝐴)}) = {𝑥 ∣ (∃𝑚 ∈ ω (dom 𝑆 = suc 𝑚𝑥 ∈ (𝐹‘(𝑆𝑚))) ∨ (dom 𝑆 = ∅ ∧ 𝑥𝐴))}
2625eleq1i 2180 . . 3 (({𝑥 ∣ ∃𝑚 ∈ ω (dom 𝑆 = suc 𝑚𝑥 ∈ (𝐹‘(𝑆𝑚)))} ∪ {𝑥 ∣ (dom 𝑆 = ∅ ∧ 𝑥𝐴)}) ∈ V ↔ {𝑥 ∣ (∃𝑚 ∈ ω (dom 𝑆 = suc 𝑚𝑥 ∈ (𝐹‘(𝑆𝑚))) ∨ (dom 𝑆 = ∅ ∧ 𝑥𝐴))} ∈ V)
2724, 26bitri 183 . 2 (({𝑥 ∣ ∃𝑚 ∈ ω (dom 𝑆 = suc 𝑚𝑥 ∈ (𝐹‘(𝑆𝑚)))} ∈ V ∧ {𝑥 ∣ (dom 𝑆 = ∅ ∧ 𝑥𝐴)} ∈ V) ↔ {𝑥 ∣ (∃𝑚 ∈ ω (dom 𝑆 = suc 𝑚𝑥 ∈ (𝐹‘(𝑆𝑚))) ∨ (dom 𝑆 = ∅ ∧ 𝑥𝐴))} ∈ V)
2823, 27sylib 121 1 (𝜑 → {𝑥 ∣ (∃𝑚 ∈ ω (dom 𝑆 = suc 𝑚𝑥 ∈ (𝐹‘(𝑆𝑚))) ∨ (dom 𝑆 = ∅ ∧ 𝑥𝐴))} ∈ V)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wo 680  wal 1312   = wceq 1314  wcel 1463  {cab 2101  wral 2390  wrex 2391  Vcvv 2657  cun 3035  wss 3037  c0 3329  suc csuc 4247  ωcom 4464  dom cdm 4499  cfv 5081
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 681  ax-5 1406  ax-7 1407  ax-gen 1408  ax-ie1 1452  ax-ie2 1453  ax-8 1465  ax-10 1466  ax-11 1467  ax-i12 1468  ax-bndl 1469  ax-4 1470  ax-13 1474  ax-14 1475  ax-17 1489  ax-i9 1493  ax-ial 1497  ax-i5r 1498  ax-ext 2097  ax-coll 4003  ax-sep 4006  ax-pow 4058  ax-pr 4091  ax-un 4315  ax-iinf 4462
This theorem depends on definitions:  df-bi 116  df-3an 947  df-tru 1317  df-nf 1420  df-sb 1719  df-eu 1978  df-mo 1979  df-clab 2102  df-cleq 2108  df-clel 2111  df-nfc 2244  df-ral 2395  df-rex 2396  df-reu 2397  df-rab 2399  df-v 2659  df-sbc 2879  df-csb 2972  df-un 3041  df-in 3043  df-ss 3050  df-pw 3478  df-sn 3499  df-pr 3500  df-op 3502  df-uni 3703  df-int 3738  df-iun 3781  df-br 3896  df-opab 3950  df-mpt 3951  df-id 4175  df-iom 4465  df-xp 4505  df-rel 4506  df-cnv 4507  df-co 4508  df-dm 4509  df-rn 4510  df-res 4511  df-ima 4512  df-iota 5046  df-fun 5083  df-fn 5084  df-f 5085  df-f1 5086  df-fo 5087  df-f1o 5088  df-fv 5089
This theorem is referenced by:  frectfr  6251
  Copyright terms: Public domain W3C validator