Proof of Theorem frecabex
Step | Hyp | Ref
| Expression |
1 | | omex 4570 |
. . . 4
⊢ ω
∈ V |
2 | | simpr 109 |
. . . . . . 7
⊢ ((dom
𝑆 = suc 𝑚 ∧ 𝑥 ∈ (𝐹‘(𝑆‘𝑚))) → 𝑥 ∈ (𝐹‘(𝑆‘𝑚))) |
3 | 2 | abssi 3217 |
. . . . . 6
⊢ {𝑥 ∣ (dom 𝑆 = suc 𝑚 ∧ 𝑥 ∈ (𝐹‘(𝑆‘𝑚)))} ⊆ (𝐹‘(𝑆‘𝑚)) |
4 | | frecabex.sex |
. . . . . . . 8
⊢ (𝜑 → 𝑆 ∈ 𝑉) |
5 | | vex 2729 |
. . . . . . . 8
⊢ 𝑚 ∈ V |
6 | | fvexg 5505 |
. . . . . . . 8
⊢ ((𝑆 ∈ 𝑉 ∧ 𝑚 ∈ V) → (𝑆‘𝑚) ∈ V) |
7 | 4, 5, 6 | sylancl 410 |
. . . . . . 7
⊢ (𝜑 → (𝑆‘𝑚) ∈ V) |
8 | | frecabex.fvex |
. . . . . . 7
⊢ (𝜑 → ∀𝑦(𝐹‘𝑦) ∈ V) |
9 | | fveq2 5486 |
. . . . . . . . 9
⊢ (𝑦 = (𝑆‘𝑚) → (𝐹‘𝑦) = (𝐹‘(𝑆‘𝑚))) |
10 | 9 | eleq1d 2235 |
. . . . . . . 8
⊢ (𝑦 = (𝑆‘𝑚) → ((𝐹‘𝑦) ∈ V ↔ (𝐹‘(𝑆‘𝑚)) ∈ V)) |
11 | 10 | spcgv 2813 |
. . . . . . 7
⊢ ((𝑆‘𝑚) ∈ V → (∀𝑦(𝐹‘𝑦) ∈ V → (𝐹‘(𝑆‘𝑚)) ∈ V)) |
12 | 7, 8, 11 | sylc 62 |
. . . . . 6
⊢ (𝜑 → (𝐹‘(𝑆‘𝑚)) ∈ V) |
13 | | ssexg 4121 |
. . . . . 6
⊢ (({𝑥 ∣ (dom 𝑆 = suc 𝑚 ∧ 𝑥 ∈ (𝐹‘(𝑆‘𝑚)))} ⊆ (𝐹‘(𝑆‘𝑚)) ∧ (𝐹‘(𝑆‘𝑚)) ∈ V) → {𝑥 ∣ (dom 𝑆 = suc 𝑚 ∧ 𝑥 ∈ (𝐹‘(𝑆‘𝑚)))} ∈ V) |
14 | 3, 12, 13 | sylancr 411 |
. . . . 5
⊢ (𝜑 → {𝑥 ∣ (dom 𝑆 = suc 𝑚 ∧ 𝑥 ∈ (𝐹‘(𝑆‘𝑚)))} ∈ V) |
15 | 14 | ralrimivw 2540 |
. . . 4
⊢ (𝜑 → ∀𝑚 ∈ ω {𝑥 ∣ (dom 𝑆 = suc 𝑚 ∧ 𝑥 ∈ (𝐹‘(𝑆‘𝑚)))} ∈ V) |
16 | | abrexex2g 6088 |
. . . 4
⊢ ((ω
∈ V ∧ ∀𝑚
∈ ω {𝑥 ∣
(dom 𝑆 = suc 𝑚 ∧ 𝑥 ∈ (𝐹‘(𝑆‘𝑚)))} ∈ V) → {𝑥 ∣ ∃𝑚 ∈ ω (dom 𝑆 = suc 𝑚 ∧ 𝑥 ∈ (𝐹‘(𝑆‘𝑚)))} ∈ V) |
17 | 1, 15, 16 | sylancr 411 |
. . 3
⊢ (𝜑 → {𝑥 ∣ ∃𝑚 ∈ ω (dom 𝑆 = suc 𝑚 ∧ 𝑥 ∈ (𝐹‘(𝑆‘𝑚)))} ∈ V) |
18 | | simpr 109 |
. . . . 5
⊢ ((dom
𝑆 = ∅ ∧ 𝑥 ∈ 𝐴) → 𝑥 ∈ 𝐴) |
19 | 18 | abssi 3217 |
. . . 4
⊢ {𝑥 ∣ (dom 𝑆 = ∅ ∧ 𝑥 ∈ 𝐴)} ⊆ 𝐴 |
20 | | frecabex.aex |
. . . 4
⊢ (𝜑 → 𝐴 ∈ 𝑊) |
21 | | ssexg 4121 |
. . . 4
⊢ (({𝑥 ∣ (dom 𝑆 = ∅ ∧ 𝑥 ∈ 𝐴)} ⊆ 𝐴 ∧ 𝐴 ∈ 𝑊) → {𝑥 ∣ (dom 𝑆 = ∅ ∧ 𝑥 ∈ 𝐴)} ∈ V) |
22 | 19, 20, 21 | sylancr 411 |
. . 3
⊢ (𝜑 → {𝑥 ∣ (dom 𝑆 = ∅ ∧ 𝑥 ∈ 𝐴)} ∈ V) |
23 | 17, 22 | jca 304 |
. 2
⊢ (𝜑 → ({𝑥 ∣ ∃𝑚 ∈ ω (dom 𝑆 = suc 𝑚 ∧ 𝑥 ∈ (𝐹‘(𝑆‘𝑚)))} ∈ V ∧ {𝑥 ∣ (dom 𝑆 = ∅ ∧ 𝑥 ∈ 𝐴)} ∈ V)) |
24 | | unexb 4420 |
. . 3
⊢ (({𝑥 ∣ ∃𝑚 ∈ ω (dom 𝑆 = suc 𝑚 ∧ 𝑥 ∈ (𝐹‘(𝑆‘𝑚)))} ∈ V ∧ {𝑥 ∣ (dom 𝑆 = ∅ ∧ 𝑥 ∈ 𝐴)} ∈ V) ↔ ({𝑥 ∣ ∃𝑚 ∈ ω (dom 𝑆 = suc 𝑚 ∧ 𝑥 ∈ (𝐹‘(𝑆‘𝑚)))} ∪ {𝑥 ∣ (dom 𝑆 = ∅ ∧ 𝑥 ∈ 𝐴)}) ∈ V) |
25 | | unab 3389 |
. . . 4
⊢ ({𝑥 ∣ ∃𝑚 ∈ ω (dom 𝑆 = suc 𝑚 ∧ 𝑥 ∈ (𝐹‘(𝑆‘𝑚)))} ∪ {𝑥 ∣ (dom 𝑆 = ∅ ∧ 𝑥 ∈ 𝐴)}) = {𝑥 ∣ (∃𝑚 ∈ ω (dom 𝑆 = suc 𝑚 ∧ 𝑥 ∈ (𝐹‘(𝑆‘𝑚))) ∨ (dom 𝑆 = ∅ ∧ 𝑥 ∈ 𝐴))} |
26 | 25 | eleq1i 2232 |
. . 3
⊢ (({𝑥 ∣ ∃𝑚 ∈ ω (dom 𝑆 = suc 𝑚 ∧ 𝑥 ∈ (𝐹‘(𝑆‘𝑚)))} ∪ {𝑥 ∣ (dom 𝑆 = ∅ ∧ 𝑥 ∈ 𝐴)}) ∈ V ↔ {𝑥 ∣ (∃𝑚 ∈ ω (dom 𝑆 = suc 𝑚 ∧ 𝑥 ∈ (𝐹‘(𝑆‘𝑚))) ∨ (dom 𝑆 = ∅ ∧ 𝑥 ∈ 𝐴))} ∈ V) |
27 | 24, 26 | bitri 183 |
. 2
⊢ (({𝑥 ∣ ∃𝑚 ∈ ω (dom 𝑆 = suc 𝑚 ∧ 𝑥 ∈ (𝐹‘(𝑆‘𝑚)))} ∈ V ∧ {𝑥 ∣ (dom 𝑆 = ∅ ∧ 𝑥 ∈ 𝐴)} ∈ V) ↔ {𝑥 ∣ (∃𝑚 ∈ ω (dom 𝑆 = suc 𝑚 ∧ 𝑥 ∈ (𝐹‘(𝑆‘𝑚))) ∨ (dom 𝑆 = ∅ ∧ 𝑥 ∈ 𝐴))} ∈ V) |
28 | 23, 27 | sylib 121 |
1
⊢ (𝜑 → {𝑥 ∣ (∃𝑚 ∈ ω (dom 𝑆 = suc 𝑚 ∧ 𝑥 ∈ (𝐹‘(𝑆‘𝑚))) ∨ (dom 𝑆 = ∅ ∧ 𝑥 ∈ 𝐴))} ∈ V) |