Proof of Theorem frecabex
| Step | Hyp | Ref
| Expression |
| 1 | | omex 4630 |
. . . 4
⊢ ω
∈ V |
| 2 | | simpr 110 |
. . . . . . 7
⊢ ((dom
𝑆 = suc 𝑚 ∧ 𝑥 ∈ (𝐹‘(𝑆‘𝑚))) → 𝑥 ∈ (𝐹‘(𝑆‘𝑚))) |
| 3 | 2 | abssi 3259 |
. . . . . 6
⊢ {𝑥 ∣ (dom 𝑆 = suc 𝑚 ∧ 𝑥 ∈ (𝐹‘(𝑆‘𝑚)))} ⊆ (𝐹‘(𝑆‘𝑚)) |
| 4 | | frecabex.sex |
. . . . . . . 8
⊢ (𝜑 → 𝑆 ∈ 𝑉) |
| 5 | | vex 2766 |
. . . . . . . 8
⊢ 𝑚 ∈ V |
| 6 | | fvexg 5580 |
. . . . . . . 8
⊢ ((𝑆 ∈ 𝑉 ∧ 𝑚 ∈ V) → (𝑆‘𝑚) ∈ V) |
| 7 | 4, 5, 6 | sylancl 413 |
. . . . . . 7
⊢ (𝜑 → (𝑆‘𝑚) ∈ V) |
| 8 | | frecabex.fvex |
. . . . . . 7
⊢ (𝜑 → ∀𝑦(𝐹‘𝑦) ∈ V) |
| 9 | | fveq2 5561 |
. . . . . . . . 9
⊢ (𝑦 = (𝑆‘𝑚) → (𝐹‘𝑦) = (𝐹‘(𝑆‘𝑚))) |
| 10 | 9 | eleq1d 2265 |
. . . . . . . 8
⊢ (𝑦 = (𝑆‘𝑚) → ((𝐹‘𝑦) ∈ V ↔ (𝐹‘(𝑆‘𝑚)) ∈ V)) |
| 11 | 10 | spcgv 2851 |
. . . . . . 7
⊢ ((𝑆‘𝑚) ∈ V → (∀𝑦(𝐹‘𝑦) ∈ V → (𝐹‘(𝑆‘𝑚)) ∈ V)) |
| 12 | 7, 8, 11 | sylc 62 |
. . . . . 6
⊢ (𝜑 → (𝐹‘(𝑆‘𝑚)) ∈ V) |
| 13 | | ssexg 4173 |
. . . . . 6
⊢ (({𝑥 ∣ (dom 𝑆 = suc 𝑚 ∧ 𝑥 ∈ (𝐹‘(𝑆‘𝑚)))} ⊆ (𝐹‘(𝑆‘𝑚)) ∧ (𝐹‘(𝑆‘𝑚)) ∈ V) → {𝑥 ∣ (dom 𝑆 = suc 𝑚 ∧ 𝑥 ∈ (𝐹‘(𝑆‘𝑚)))} ∈ V) |
| 14 | 3, 12, 13 | sylancr 414 |
. . . . 5
⊢ (𝜑 → {𝑥 ∣ (dom 𝑆 = suc 𝑚 ∧ 𝑥 ∈ (𝐹‘(𝑆‘𝑚)))} ∈ V) |
| 15 | 14 | ralrimivw 2571 |
. . . 4
⊢ (𝜑 → ∀𝑚 ∈ ω {𝑥 ∣ (dom 𝑆 = suc 𝑚 ∧ 𝑥 ∈ (𝐹‘(𝑆‘𝑚)))} ∈ V) |
| 16 | | abrexex2g 6186 |
. . . 4
⊢ ((ω
∈ V ∧ ∀𝑚
∈ ω {𝑥 ∣
(dom 𝑆 = suc 𝑚 ∧ 𝑥 ∈ (𝐹‘(𝑆‘𝑚)))} ∈ V) → {𝑥 ∣ ∃𝑚 ∈ ω (dom 𝑆 = suc 𝑚 ∧ 𝑥 ∈ (𝐹‘(𝑆‘𝑚)))} ∈ V) |
| 17 | 1, 15, 16 | sylancr 414 |
. . 3
⊢ (𝜑 → {𝑥 ∣ ∃𝑚 ∈ ω (dom 𝑆 = suc 𝑚 ∧ 𝑥 ∈ (𝐹‘(𝑆‘𝑚)))} ∈ V) |
| 18 | | simpr 110 |
. . . . 5
⊢ ((dom
𝑆 = ∅ ∧ 𝑥 ∈ 𝐴) → 𝑥 ∈ 𝐴) |
| 19 | 18 | abssi 3259 |
. . . 4
⊢ {𝑥 ∣ (dom 𝑆 = ∅ ∧ 𝑥 ∈ 𝐴)} ⊆ 𝐴 |
| 20 | | frecabex.aex |
. . . 4
⊢ (𝜑 → 𝐴 ∈ 𝑊) |
| 21 | | ssexg 4173 |
. . . 4
⊢ (({𝑥 ∣ (dom 𝑆 = ∅ ∧ 𝑥 ∈ 𝐴)} ⊆ 𝐴 ∧ 𝐴 ∈ 𝑊) → {𝑥 ∣ (dom 𝑆 = ∅ ∧ 𝑥 ∈ 𝐴)} ∈ V) |
| 22 | 19, 20, 21 | sylancr 414 |
. . 3
⊢ (𝜑 → {𝑥 ∣ (dom 𝑆 = ∅ ∧ 𝑥 ∈ 𝐴)} ∈ V) |
| 23 | 17, 22 | jca 306 |
. 2
⊢ (𝜑 → ({𝑥 ∣ ∃𝑚 ∈ ω (dom 𝑆 = suc 𝑚 ∧ 𝑥 ∈ (𝐹‘(𝑆‘𝑚)))} ∈ V ∧ {𝑥 ∣ (dom 𝑆 = ∅ ∧ 𝑥 ∈ 𝐴)} ∈ V)) |
| 24 | | unexb 4478 |
. . 3
⊢ (({𝑥 ∣ ∃𝑚 ∈ ω (dom 𝑆 = suc 𝑚 ∧ 𝑥 ∈ (𝐹‘(𝑆‘𝑚)))} ∈ V ∧ {𝑥 ∣ (dom 𝑆 = ∅ ∧ 𝑥 ∈ 𝐴)} ∈ V) ↔ ({𝑥 ∣ ∃𝑚 ∈ ω (dom 𝑆 = suc 𝑚 ∧ 𝑥 ∈ (𝐹‘(𝑆‘𝑚)))} ∪ {𝑥 ∣ (dom 𝑆 = ∅ ∧ 𝑥 ∈ 𝐴)}) ∈ V) |
| 25 | | unab 3431 |
. . . 4
⊢ ({𝑥 ∣ ∃𝑚 ∈ ω (dom 𝑆 = suc 𝑚 ∧ 𝑥 ∈ (𝐹‘(𝑆‘𝑚)))} ∪ {𝑥 ∣ (dom 𝑆 = ∅ ∧ 𝑥 ∈ 𝐴)}) = {𝑥 ∣ (∃𝑚 ∈ ω (dom 𝑆 = suc 𝑚 ∧ 𝑥 ∈ (𝐹‘(𝑆‘𝑚))) ∨ (dom 𝑆 = ∅ ∧ 𝑥 ∈ 𝐴))} |
| 26 | 25 | eleq1i 2262 |
. . 3
⊢ (({𝑥 ∣ ∃𝑚 ∈ ω (dom 𝑆 = suc 𝑚 ∧ 𝑥 ∈ (𝐹‘(𝑆‘𝑚)))} ∪ {𝑥 ∣ (dom 𝑆 = ∅ ∧ 𝑥 ∈ 𝐴)}) ∈ V ↔ {𝑥 ∣ (∃𝑚 ∈ ω (dom 𝑆 = suc 𝑚 ∧ 𝑥 ∈ (𝐹‘(𝑆‘𝑚))) ∨ (dom 𝑆 = ∅ ∧ 𝑥 ∈ 𝐴))} ∈ V) |
| 27 | 24, 26 | bitri 184 |
. 2
⊢ (({𝑥 ∣ ∃𝑚 ∈ ω (dom 𝑆 = suc 𝑚 ∧ 𝑥 ∈ (𝐹‘(𝑆‘𝑚)))} ∈ V ∧ {𝑥 ∣ (dom 𝑆 = ∅ ∧ 𝑥 ∈ 𝐴)} ∈ V) ↔ {𝑥 ∣ (∃𝑚 ∈ ω (dom 𝑆 = suc 𝑚 ∧ 𝑥 ∈ (𝐹‘(𝑆‘𝑚))) ∨ (dom 𝑆 = ∅ ∧ 𝑥 ∈ 𝐴))} ∈ V) |
| 28 | 23, 27 | sylib 122 |
1
⊢ (𝜑 → {𝑥 ∣ (∃𝑚 ∈ ω (dom 𝑆 = suc 𝑚 ∧ 𝑥 ∈ (𝐹‘(𝑆‘𝑚))) ∨ (dom 𝑆 = ∅ ∧ 𝑥 ∈ 𝐴))} ∈ V) |