ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  frecabex GIF version

Theorem frecabex 6542
Description: The class abstraction from df-frec 6535 exists. This is a lemma for other finite recursion proofs. (Contributed by Jim Kingdon, 13-May-2020.)
Hypotheses
Ref Expression
frecabex.sex (𝜑𝑆𝑉)
frecabex.fvex (𝜑 → ∀𝑦(𝐹𝑦) ∈ V)
frecabex.aex (𝜑𝐴𝑊)
Assertion
Ref Expression
frecabex (𝜑 → {𝑥 ∣ (∃𝑚 ∈ ω (dom 𝑆 = suc 𝑚𝑥 ∈ (𝐹‘(𝑆𝑚))) ∨ (dom 𝑆 = ∅ ∧ 𝑥𝐴))} ∈ V)
Distinct variable groups:   𝑥,𝐴   𝑥,𝐹   𝑥,𝑆,𝑦   𝜑,𝑚   𝑥,𝑚,𝑦   𝑦,𝐹
Allowed substitution hints:   𝜑(𝑥,𝑦)   𝐴(𝑦,𝑚)   𝑆(𝑚)   𝐹(𝑚)   𝑉(𝑥,𝑦,𝑚)   𝑊(𝑥,𝑦,𝑚)

Proof of Theorem frecabex
StepHypRef Expression
1 omex 4684 . . . 4 ω ∈ V
2 simpr 110 . . . . . . 7 ((dom 𝑆 = suc 𝑚𝑥 ∈ (𝐹‘(𝑆𝑚))) → 𝑥 ∈ (𝐹‘(𝑆𝑚)))
32abssi 3299 . . . . . 6 {𝑥 ∣ (dom 𝑆 = suc 𝑚𝑥 ∈ (𝐹‘(𝑆𝑚)))} ⊆ (𝐹‘(𝑆𝑚))
4 frecabex.sex . . . . . . . 8 (𝜑𝑆𝑉)
5 vex 2802 . . . . . . . 8 𝑚 ∈ V
6 fvexg 5645 . . . . . . . 8 ((𝑆𝑉𝑚 ∈ V) → (𝑆𝑚) ∈ V)
74, 5, 6sylancl 413 . . . . . . 7 (𝜑 → (𝑆𝑚) ∈ V)
8 frecabex.fvex . . . . . . 7 (𝜑 → ∀𝑦(𝐹𝑦) ∈ V)
9 fveq2 5626 . . . . . . . . 9 (𝑦 = (𝑆𝑚) → (𝐹𝑦) = (𝐹‘(𝑆𝑚)))
109eleq1d 2298 . . . . . . . 8 (𝑦 = (𝑆𝑚) → ((𝐹𝑦) ∈ V ↔ (𝐹‘(𝑆𝑚)) ∈ V))
1110spcgv 2890 . . . . . . 7 ((𝑆𝑚) ∈ V → (∀𝑦(𝐹𝑦) ∈ V → (𝐹‘(𝑆𝑚)) ∈ V))
127, 8, 11sylc 62 . . . . . 6 (𝜑 → (𝐹‘(𝑆𝑚)) ∈ V)
13 ssexg 4222 . . . . . 6 (({𝑥 ∣ (dom 𝑆 = suc 𝑚𝑥 ∈ (𝐹‘(𝑆𝑚)))} ⊆ (𝐹‘(𝑆𝑚)) ∧ (𝐹‘(𝑆𝑚)) ∈ V) → {𝑥 ∣ (dom 𝑆 = suc 𝑚𝑥 ∈ (𝐹‘(𝑆𝑚)))} ∈ V)
143, 12, 13sylancr 414 . . . . 5 (𝜑 → {𝑥 ∣ (dom 𝑆 = suc 𝑚𝑥 ∈ (𝐹‘(𝑆𝑚)))} ∈ V)
1514ralrimivw 2604 . . . 4 (𝜑 → ∀𝑚 ∈ ω {𝑥 ∣ (dom 𝑆 = suc 𝑚𝑥 ∈ (𝐹‘(𝑆𝑚)))} ∈ V)
16 abrexex2g 6263 . . . 4 ((ω ∈ V ∧ ∀𝑚 ∈ ω {𝑥 ∣ (dom 𝑆 = suc 𝑚𝑥 ∈ (𝐹‘(𝑆𝑚)))} ∈ V) → {𝑥 ∣ ∃𝑚 ∈ ω (dom 𝑆 = suc 𝑚𝑥 ∈ (𝐹‘(𝑆𝑚)))} ∈ V)
171, 15, 16sylancr 414 . . 3 (𝜑 → {𝑥 ∣ ∃𝑚 ∈ ω (dom 𝑆 = suc 𝑚𝑥 ∈ (𝐹‘(𝑆𝑚)))} ∈ V)
18 simpr 110 . . . . 5 ((dom 𝑆 = ∅ ∧ 𝑥𝐴) → 𝑥𝐴)
1918abssi 3299 . . . 4 {𝑥 ∣ (dom 𝑆 = ∅ ∧ 𝑥𝐴)} ⊆ 𝐴
20 frecabex.aex . . . 4 (𝜑𝐴𝑊)
21 ssexg 4222 . . . 4 (({𝑥 ∣ (dom 𝑆 = ∅ ∧ 𝑥𝐴)} ⊆ 𝐴𝐴𝑊) → {𝑥 ∣ (dom 𝑆 = ∅ ∧ 𝑥𝐴)} ∈ V)
2219, 20, 21sylancr 414 . . 3 (𝜑 → {𝑥 ∣ (dom 𝑆 = ∅ ∧ 𝑥𝐴)} ∈ V)
2317, 22jca 306 . 2 (𝜑 → ({𝑥 ∣ ∃𝑚 ∈ ω (dom 𝑆 = suc 𝑚𝑥 ∈ (𝐹‘(𝑆𝑚)))} ∈ V ∧ {𝑥 ∣ (dom 𝑆 = ∅ ∧ 𝑥𝐴)} ∈ V))
24 unexb 4532 . . 3 (({𝑥 ∣ ∃𝑚 ∈ ω (dom 𝑆 = suc 𝑚𝑥 ∈ (𝐹‘(𝑆𝑚)))} ∈ V ∧ {𝑥 ∣ (dom 𝑆 = ∅ ∧ 𝑥𝐴)} ∈ V) ↔ ({𝑥 ∣ ∃𝑚 ∈ ω (dom 𝑆 = suc 𝑚𝑥 ∈ (𝐹‘(𝑆𝑚)))} ∪ {𝑥 ∣ (dom 𝑆 = ∅ ∧ 𝑥𝐴)}) ∈ V)
25 unab 3471 . . . 4 ({𝑥 ∣ ∃𝑚 ∈ ω (dom 𝑆 = suc 𝑚𝑥 ∈ (𝐹‘(𝑆𝑚)))} ∪ {𝑥 ∣ (dom 𝑆 = ∅ ∧ 𝑥𝐴)}) = {𝑥 ∣ (∃𝑚 ∈ ω (dom 𝑆 = suc 𝑚𝑥 ∈ (𝐹‘(𝑆𝑚))) ∨ (dom 𝑆 = ∅ ∧ 𝑥𝐴))}
2625eleq1i 2295 . . 3 (({𝑥 ∣ ∃𝑚 ∈ ω (dom 𝑆 = suc 𝑚𝑥 ∈ (𝐹‘(𝑆𝑚)))} ∪ {𝑥 ∣ (dom 𝑆 = ∅ ∧ 𝑥𝐴)}) ∈ V ↔ {𝑥 ∣ (∃𝑚 ∈ ω (dom 𝑆 = suc 𝑚𝑥 ∈ (𝐹‘(𝑆𝑚))) ∨ (dom 𝑆 = ∅ ∧ 𝑥𝐴))} ∈ V)
2724, 26bitri 184 . 2 (({𝑥 ∣ ∃𝑚 ∈ ω (dom 𝑆 = suc 𝑚𝑥 ∈ (𝐹‘(𝑆𝑚)))} ∈ V ∧ {𝑥 ∣ (dom 𝑆 = ∅ ∧ 𝑥𝐴)} ∈ V) ↔ {𝑥 ∣ (∃𝑚 ∈ ω (dom 𝑆 = suc 𝑚𝑥 ∈ (𝐹‘(𝑆𝑚))) ∨ (dom 𝑆 = ∅ ∧ 𝑥𝐴))} ∈ V)
2823, 27sylib 122 1 (𝜑 → {𝑥 ∣ (∃𝑚 ∈ ω (dom 𝑆 = suc 𝑚𝑥 ∈ (𝐹‘(𝑆𝑚))) ∨ (dom 𝑆 = ∅ ∧ 𝑥𝐴))} ∈ V)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wo 713  wal 1393   = wceq 1395  wcel 2200  {cab 2215  wral 2508  wrex 2509  Vcvv 2799  cun 3195  wss 3197  c0 3491  suc csuc 4455  ωcom 4681  dom cdm 4718  cfv 5317
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-coll 4198  ax-sep 4201  ax-pow 4257  ax-pr 4292  ax-un 4523  ax-iinf 4679
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ral 2513  df-rex 2514  df-reu 2515  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-un 3201  df-in 3203  df-ss 3210  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3888  df-int 3923  df-iun 3966  df-br 4083  df-opab 4145  df-mpt 4146  df-id 4383  df-iom 4682  df-xp 4724  df-rel 4725  df-cnv 4726  df-co 4727  df-dm 4728  df-rn 4729  df-res 4730  df-ima 4731  df-iota 5277  df-fun 5319  df-fn 5320  df-f 5321  df-f1 5322  df-fo 5323  df-f1o 5324  df-fv 5325
This theorem is referenced by:  frectfr  6544
  Copyright terms: Public domain W3C validator