ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  frecabex GIF version

Theorem frecabex 6377
Description: The class abstraction from df-frec 6370 exists. This is a lemma for other finite recursion proofs. (Contributed by Jim Kingdon, 13-May-2020.)
Hypotheses
Ref Expression
frecabex.sex (𝜑𝑆𝑉)
frecabex.fvex (𝜑 → ∀𝑦(𝐹𝑦) ∈ V)
frecabex.aex (𝜑𝐴𝑊)
Assertion
Ref Expression
frecabex (𝜑 → {𝑥 ∣ (∃𝑚 ∈ ω (dom 𝑆 = suc 𝑚𝑥 ∈ (𝐹‘(𝑆𝑚))) ∨ (dom 𝑆 = ∅ ∧ 𝑥𝐴))} ∈ V)
Distinct variable groups:   𝑥,𝐴   𝑥,𝐹   𝑥,𝑆,𝑦   𝜑,𝑚   𝑥,𝑚,𝑦   𝑦,𝐹
Allowed substitution hints:   𝜑(𝑥,𝑦)   𝐴(𝑦,𝑚)   𝑆(𝑚)   𝐹(𝑚)   𝑉(𝑥,𝑦,𝑚)   𝑊(𝑥,𝑦,𝑚)

Proof of Theorem frecabex
StepHypRef Expression
1 omex 4577 . . . 4 ω ∈ V
2 simpr 109 . . . . . . 7 ((dom 𝑆 = suc 𝑚𝑥 ∈ (𝐹‘(𝑆𝑚))) → 𝑥 ∈ (𝐹‘(𝑆𝑚)))
32abssi 3222 . . . . . 6 {𝑥 ∣ (dom 𝑆 = suc 𝑚𝑥 ∈ (𝐹‘(𝑆𝑚)))} ⊆ (𝐹‘(𝑆𝑚))
4 frecabex.sex . . . . . . . 8 (𝜑𝑆𝑉)
5 vex 2733 . . . . . . . 8 𝑚 ∈ V
6 fvexg 5515 . . . . . . . 8 ((𝑆𝑉𝑚 ∈ V) → (𝑆𝑚) ∈ V)
74, 5, 6sylancl 411 . . . . . . 7 (𝜑 → (𝑆𝑚) ∈ V)
8 frecabex.fvex . . . . . . 7 (𝜑 → ∀𝑦(𝐹𝑦) ∈ V)
9 fveq2 5496 . . . . . . . . 9 (𝑦 = (𝑆𝑚) → (𝐹𝑦) = (𝐹‘(𝑆𝑚)))
109eleq1d 2239 . . . . . . . 8 (𝑦 = (𝑆𝑚) → ((𝐹𝑦) ∈ V ↔ (𝐹‘(𝑆𝑚)) ∈ V))
1110spcgv 2817 . . . . . . 7 ((𝑆𝑚) ∈ V → (∀𝑦(𝐹𝑦) ∈ V → (𝐹‘(𝑆𝑚)) ∈ V))
127, 8, 11sylc 62 . . . . . 6 (𝜑 → (𝐹‘(𝑆𝑚)) ∈ V)
13 ssexg 4128 . . . . . 6 (({𝑥 ∣ (dom 𝑆 = suc 𝑚𝑥 ∈ (𝐹‘(𝑆𝑚)))} ⊆ (𝐹‘(𝑆𝑚)) ∧ (𝐹‘(𝑆𝑚)) ∈ V) → {𝑥 ∣ (dom 𝑆 = suc 𝑚𝑥 ∈ (𝐹‘(𝑆𝑚)))} ∈ V)
143, 12, 13sylancr 412 . . . . 5 (𝜑 → {𝑥 ∣ (dom 𝑆 = suc 𝑚𝑥 ∈ (𝐹‘(𝑆𝑚)))} ∈ V)
1514ralrimivw 2544 . . . 4 (𝜑 → ∀𝑚 ∈ ω {𝑥 ∣ (dom 𝑆 = suc 𝑚𝑥 ∈ (𝐹‘(𝑆𝑚)))} ∈ V)
16 abrexex2g 6099 . . . 4 ((ω ∈ V ∧ ∀𝑚 ∈ ω {𝑥 ∣ (dom 𝑆 = suc 𝑚𝑥 ∈ (𝐹‘(𝑆𝑚)))} ∈ V) → {𝑥 ∣ ∃𝑚 ∈ ω (dom 𝑆 = suc 𝑚𝑥 ∈ (𝐹‘(𝑆𝑚)))} ∈ V)
171, 15, 16sylancr 412 . . 3 (𝜑 → {𝑥 ∣ ∃𝑚 ∈ ω (dom 𝑆 = suc 𝑚𝑥 ∈ (𝐹‘(𝑆𝑚)))} ∈ V)
18 simpr 109 . . . . 5 ((dom 𝑆 = ∅ ∧ 𝑥𝐴) → 𝑥𝐴)
1918abssi 3222 . . . 4 {𝑥 ∣ (dom 𝑆 = ∅ ∧ 𝑥𝐴)} ⊆ 𝐴
20 frecabex.aex . . . 4 (𝜑𝐴𝑊)
21 ssexg 4128 . . . 4 (({𝑥 ∣ (dom 𝑆 = ∅ ∧ 𝑥𝐴)} ⊆ 𝐴𝐴𝑊) → {𝑥 ∣ (dom 𝑆 = ∅ ∧ 𝑥𝐴)} ∈ V)
2219, 20, 21sylancr 412 . . 3 (𝜑 → {𝑥 ∣ (dom 𝑆 = ∅ ∧ 𝑥𝐴)} ∈ V)
2317, 22jca 304 . 2 (𝜑 → ({𝑥 ∣ ∃𝑚 ∈ ω (dom 𝑆 = suc 𝑚𝑥 ∈ (𝐹‘(𝑆𝑚)))} ∈ V ∧ {𝑥 ∣ (dom 𝑆 = ∅ ∧ 𝑥𝐴)} ∈ V))
24 unexb 4427 . . 3 (({𝑥 ∣ ∃𝑚 ∈ ω (dom 𝑆 = suc 𝑚𝑥 ∈ (𝐹‘(𝑆𝑚)))} ∈ V ∧ {𝑥 ∣ (dom 𝑆 = ∅ ∧ 𝑥𝐴)} ∈ V) ↔ ({𝑥 ∣ ∃𝑚 ∈ ω (dom 𝑆 = suc 𝑚𝑥 ∈ (𝐹‘(𝑆𝑚)))} ∪ {𝑥 ∣ (dom 𝑆 = ∅ ∧ 𝑥𝐴)}) ∈ V)
25 unab 3394 . . . 4 ({𝑥 ∣ ∃𝑚 ∈ ω (dom 𝑆 = suc 𝑚𝑥 ∈ (𝐹‘(𝑆𝑚)))} ∪ {𝑥 ∣ (dom 𝑆 = ∅ ∧ 𝑥𝐴)}) = {𝑥 ∣ (∃𝑚 ∈ ω (dom 𝑆 = suc 𝑚𝑥 ∈ (𝐹‘(𝑆𝑚))) ∨ (dom 𝑆 = ∅ ∧ 𝑥𝐴))}
2625eleq1i 2236 . . 3 (({𝑥 ∣ ∃𝑚 ∈ ω (dom 𝑆 = suc 𝑚𝑥 ∈ (𝐹‘(𝑆𝑚)))} ∪ {𝑥 ∣ (dom 𝑆 = ∅ ∧ 𝑥𝐴)}) ∈ V ↔ {𝑥 ∣ (∃𝑚 ∈ ω (dom 𝑆 = suc 𝑚𝑥 ∈ (𝐹‘(𝑆𝑚))) ∨ (dom 𝑆 = ∅ ∧ 𝑥𝐴))} ∈ V)
2724, 26bitri 183 . 2 (({𝑥 ∣ ∃𝑚 ∈ ω (dom 𝑆 = suc 𝑚𝑥 ∈ (𝐹‘(𝑆𝑚)))} ∈ V ∧ {𝑥 ∣ (dom 𝑆 = ∅ ∧ 𝑥𝐴)} ∈ V) ↔ {𝑥 ∣ (∃𝑚 ∈ ω (dom 𝑆 = suc 𝑚𝑥 ∈ (𝐹‘(𝑆𝑚))) ∨ (dom 𝑆 = ∅ ∧ 𝑥𝐴))} ∈ V)
2823, 27sylib 121 1 (𝜑 → {𝑥 ∣ (∃𝑚 ∈ ω (dom 𝑆 = suc 𝑚𝑥 ∈ (𝐹‘(𝑆𝑚))) ∨ (dom 𝑆 = ∅ ∧ 𝑥𝐴))} ∈ V)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wo 703  wal 1346   = wceq 1348  wcel 2141  {cab 2156  wral 2448  wrex 2449  Vcvv 2730  cun 3119  wss 3121  c0 3414  suc csuc 4350  ωcom 4574  dom cdm 4611  cfv 5198
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-13 2143  ax-14 2144  ax-ext 2152  ax-coll 4104  ax-sep 4107  ax-pow 4160  ax-pr 4194  ax-un 4418  ax-iinf 4572
This theorem depends on definitions:  df-bi 116  df-3an 975  df-tru 1351  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ral 2453  df-rex 2454  df-reu 2455  df-rab 2457  df-v 2732  df-sbc 2956  df-csb 3050  df-un 3125  df-in 3127  df-ss 3134  df-pw 3568  df-sn 3589  df-pr 3590  df-op 3592  df-uni 3797  df-int 3832  df-iun 3875  df-br 3990  df-opab 4051  df-mpt 4052  df-id 4278  df-iom 4575  df-xp 4617  df-rel 4618  df-cnv 4619  df-co 4620  df-dm 4621  df-rn 4622  df-res 4623  df-ima 4624  df-iota 5160  df-fun 5200  df-fn 5201  df-f 5202  df-f1 5203  df-fo 5204  df-f1o 5205  df-fv 5206
This theorem is referenced by:  frectfr  6379
  Copyright terms: Public domain W3C validator