Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > unicld | GIF version |
Description: A finite union of closed sets is closed. (Contributed by Mario Carneiro, 19-Sep-2015.) |
Ref | Expression |
---|---|
clscld.1 | ⊢ 𝑋 = ∪ 𝐽 |
Ref | Expression |
---|---|
unicld | ⊢ ((𝐽 ∈ Top ∧ 𝐴 ∈ Fin ∧ 𝐴 ⊆ (Clsd‘𝐽)) → ∪ 𝐴 ∈ (Clsd‘𝐽)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | uniiun 3902 | . 2 ⊢ ∪ 𝐴 = ∪ 𝑥 ∈ 𝐴 𝑥 | |
2 | dfss3 3118 | . . 3 ⊢ (𝐴 ⊆ (Clsd‘𝐽) ↔ ∀𝑥 ∈ 𝐴 𝑥 ∈ (Clsd‘𝐽)) | |
3 | clscld.1 | . . . 4 ⊢ 𝑋 = ∪ 𝐽 | |
4 | 3 | iuncld 12486 | . . 3 ⊢ ((𝐽 ∈ Top ∧ 𝐴 ∈ Fin ∧ ∀𝑥 ∈ 𝐴 𝑥 ∈ (Clsd‘𝐽)) → ∪ 𝑥 ∈ 𝐴 𝑥 ∈ (Clsd‘𝐽)) |
5 | 2, 4 | syl3an3b 1258 | . 2 ⊢ ((𝐽 ∈ Top ∧ 𝐴 ∈ Fin ∧ 𝐴 ⊆ (Clsd‘𝐽)) → ∪ 𝑥 ∈ 𝐴 𝑥 ∈ (Clsd‘𝐽)) |
6 | 1, 5 | eqeltrid 2244 | 1 ⊢ ((𝐽 ∈ Top ∧ 𝐴 ∈ Fin ∧ 𝐴 ⊆ (Clsd‘𝐽)) → ∪ 𝐴 ∈ (Clsd‘𝐽)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ w3a 963 = wceq 1335 ∈ wcel 2128 ∀wral 2435 ⊆ wss 3102 ∪ cuni 3772 ∪ ciun 3849 ‘cfv 5169 Fincfn 6682 Topctop 12366 Clsdccld 12463 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1427 ax-7 1428 ax-gen 1429 ax-ie1 1473 ax-ie2 1474 ax-8 1484 ax-10 1485 ax-11 1486 ax-i12 1487 ax-bndl 1489 ax-4 1490 ax-17 1506 ax-i9 1510 ax-ial 1514 ax-i5r 1515 ax-13 2130 ax-14 2131 ax-ext 2139 ax-coll 4079 ax-sep 4082 ax-nul 4090 ax-pow 4135 ax-pr 4169 ax-un 4393 ax-setind 4495 ax-iinf 4546 |
This theorem depends on definitions: df-bi 116 df-dc 821 df-3or 964 df-3an 965 df-tru 1338 df-fal 1341 df-nf 1441 df-sb 1743 df-eu 2009 df-mo 2010 df-clab 2144 df-cleq 2150 df-clel 2153 df-nfc 2288 df-ne 2328 df-ral 2440 df-rex 2441 df-reu 2442 df-rab 2444 df-v 2714 df-sbc 2938 df-csb 3032 df-dif 3104 df-un 3106 df-in 3108 df-ss 3115 df-nul 3395 df-if 3506 df-pw 3545 df-sn 3566 df-pr 3567 df-op 3569 df-uni 3773 df-int 3808 df-iun 3851 df-br 3966 df-opab 4026 df-mpt 4027 df-tr 4063 df-id 4253 df-iord 4326 df-on 4328 df-suc 4331 df-iom 4549 df-xp 4591 df-rel 4592 df-cnv 4593 df-co 4594 df-dm 4595 df-rn 4596 df-res 4597 df-ima 4598 df-iota 5134 df-fun 5171 df-fn 5172 df-f 5173 df-f1 5174 df-fo 5175 df-f1o 5176 df-fv 5177 df-er 6477 df-en 6683 df-fin 6685 df-top 12367 df-cld 12466 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |