ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  tgidm GIF version

Theorem tgidm 14748
Description: The topology generator function is idempotent. (Contributed by NM, 18-Jul-2006.) (Revised by Mario Carneiro, 2-Sep-2015.)
Assertion
Ref Expression
tgidm (𝐵𝑉 → (topGen‘(topGen‘𝐵)) = (topGen‘𝐵))

Proof of Theorem tgidm
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 tgvalex 13296 . . . . 5 (𝐵𝑉 → (topGen‘𝐵) ∈ V)
2 eltg3 14731 . . . . 5 ((topGen‘𝐵) ∈ V → (𝑥 ∈ (topGen‘(topGen‘𝐵)) ↔ ∃𝑦(𝑦 ⊆ (topGen‘𝐵) ∧ 𝑥 = 𝑦)))
31, 2syl 14 . . . 4 (𝐵𝑉 → (𝑥 ∈ (topGen‘(topGen‘𝐵)) ↔ ∃𝑦(𝑦 ⊆ (topGen‘𝐵) ∧ 𝑥 = 𝑦)))
4 uniiun 4019 . . . . . . . . . 10 𝑦 = 𝑧𝑦 𝑧
5 simpr 110 . . . . . . . . . . . . 13 ((𝐵𝑉𝑦 ⊆ (topGen‘𝐵)) → 𝑦 ⊆ (topGen‘𝐵))
65sselda 3224 . . . . . . . . . . . 12 (((𝐵𝑉𝑦 ⊆ (topGen‘𝐵)) ∧ 𝑧𝑦) → 𝑧 ∈ (topGen‘𝐵))
7 eltg4i 14729 . . . . . . . . . . . 12 (𝑧 ∈ (topGen‘𝐵) → 𝑧 = (𝐵 ∩ 𝒫 𝑧))
86, 7syl 14 . . . . . . . . . . 11 (((𝐵𝑉𝑦 ⊆ (topGen‘𝐵)) ∧ 𝑧𝑦) → 𝑧 = (𝐵 ∩ 𝒫 𝑧))
98iuneq2dv 3986 . . . . . . . . . 10 ((𝐵𝑉𝑦 ⊆ (topGen‘𝐵)) → 𝑧𝑦 𝑧 = 𝑧𝑦 (𝐵 ∩ 𝒫 𝑧))
104, 9eqtrid 2274 . . . . . . . . 9 ((𝐵𝑉𝑦 ⊆ (topGen‘𝐵)) → 𝑦 = 𝑧𝑦 (𝐵 ∩ 𝒫 𝑧))
11 iuncom4 3972 . . . . . . . . 9 𝑧𝑦 (𝐵 ∩ 𝒫 𝑧) = 𝑧𝑦 (𝐵 ∩ 𝒫 𝑧)
1210, 11eqtrdi 2278 . . . . . . . 8 ((𝐵𝑉𝑦 ⊆ (topGen‘𝐵)) → 𝑦 = 𝑧𝑦 (𝐵 ∩ 𝒫 𝑧))
13 inss1 3424 . . . . . . . . . . . 12 (𝐵 ∩ 𝒫 𝑧) ⊆ 𝐵
1413rgenw 2585 . . . . . . . . . . 11 𝑧𝑦 (𝐵 ∩ 𝒫 𝑧) ⊆ 𝐵
15 iunss 4006 . . . . . . . . . . 11 ( 𝑧𝑦 (𝐵 ∩ 𝒫 𝑧) ⊆ 𝐵 ↔ ∀𝑧𝑦 (𝐵 ∩ 𝒫 𝑧) ⊆ 𝐵)
1614, 15mpbir 146 . . . . . . . . . 10 𝑧𝑦 (𝐵 ∩ 𝒫 𝑧) ⊆ 𝐵
1716a1i 9 . . . . . . . . 9 (𝑦 ⊆ (topGen‘𝐵) → 𝑧𝑦 (𝐵 ∩ 𝒫 𝑧) ⊆ 𝐵)
18 eltg3i 14730 . . . . . . . . 9 ((𝐵𝑉 𝑧𝑦 (𝐵 ∩ 𝒫 𝑧) ⊆ 𝐵) → 𝑧𝑦 (𝐵 ∩ 𝒫 𝑧) ∈ (topGen‘𝐵))
1917, 18sylan2 286 . . . . . . . 8 ((𝐵𝑉𝑦 ⊆ (topGen‘𝐵)) → 𝑧𝑦 (𝐵 ∩ 𝒫 𝑧) ∈ (topGen‘𝐵))
2012, 19eqeltrd 2306 . . . . . . 7 ((𝐵𝑉𝑦 ⊆ (topGen‘𝐵)) → 𝑦 ∈ (topGen‘𝐵))
21 eleq1 2292 . . . . . . 7 (𝑥 = 𝑦 → (𝑥 ∈ (topGen‘𝐵) ↔ 𝑦 ∈ (topGen‘𝐵)))
2220, 21syl5ibrcom 157 . . . . . 6 ((𝐵𝑉𝑦 ⊆ (topGen‘𝐵)) → (𝑥 = 𝑦𝑥 ∈ (topGen‘𝐵)))
2322expimpd 363 . . . . 5 (𝐵𝑉 → ((𝑦 ⊆ (topGen‘𝐵) ∧ 𝑥 = 𝑦) → 𝑥 ∈ (topGen‘𝐵)))
2423exlimdv 1865 . . . 4 (𝐵𝑉 → (∃𝑦(𝑦 ⊆ (topGen‘𝐵) ∧ 𝑥 = 𝑦) → 𝑥 ∈ (topGen‘𝐵)))
253, 24sylbid 150 . . 3 (𝐵𝑉 → (𝑥 ∈ (topGen‘(topGen‘𝐵)) → 𝑥 ∈ (topGen‘𝐵)))
2625ssrdv 3230 . 2 (𝐵𝑉 → (topGen‘(topGen‘𝐵)) ⊆ (topGen‘𝐵))
27 bastg 14735 . . 3 (𝐵𝑉𝐵 ⊆ (topGen‘𝐵))
28 tgss 14737 . . 3 (((topGen‘𝐵) ∈ V ∧ 𝐵 ⊆ (topGen‘𝐵)) → (topGen‘𝐵) ⊆ (topGen‘(topGen‘𝐵)))
291, 27, 28syl2anc 411 . 2 (𝐵𝑉 → (topGen‘𝐵) ⊆ (topGen‘(topGen‘𝐵)))
3026, 29eqssd 3241 1 (𝐵𝑉 → (topGen‘(topGen‘𝐵)) = (topGen‘𝐵))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105   = wceq 1395  wex 1538  wcel 2200  wral 2508  Vcvv 2799  cin 3196  wss 3197  𝒫 cpw 3649   cuni 3888   ciun 3965  cfv 5318  topGenctg 13287
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-sep 4202  ax-pow 4258  ax-pr 4293  ax-un 4524
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ral 2513  df-rex 2514  df-v 2801  df-sbc 3029  df-un 3201  df-in 3203  df-ss 3210  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3889  df-iun 3967  df-br 4084  df-opab 4146  df-mpt 4147  df-id 4384  df-xp 4725  df-rel 4726  df-cnv 4727  df-co 4728  df-dm 4729  df-iota 5278  df-fun 5320  df-fv 5326  df-topgen 13293
This theorem is referenced by:  tgss3  14752  txbasval  14941
  Copyright terms: Public domain W3C validator