ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  tgidm GIF version

Theorem tgidm 12282
Description: The topology generator function is idempotent. (Contributed by NM, 18-Jul-2006.) (Revised by Mario Carneiro, 2-Sep-2015.)
Assertion
Ref Expression
tgidm (𝐵𝑉 → (topGen‘(topGen‘𝐵)) = (topGen‘𝐵))

Proof of Theorem tgidm
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 tgvalex 12258 . . . . 5 (𝐵𝑉 → (topGen‘𝐵) ∈ V)
2 eltg3 12265 . . . . 5 ((topGen‘𝐵) ∈ V → (𝑥 ∈ (topGen‘(topGen‘𝐵)) ↔ ∃𝑦(𝑦 ⊆ (topGen‘𝐵) ∧ 𝑥 = 𝑦)))
31, 2syl 14 . . . 4 (𝐵𝑉 → (𝑥 ∈ (topGen‘(topGen‘𝐵)) ↔ ∃𝑦(𝑦 ⊆ (topGen‘𝐵) ∧ 𝑥 = 𝑦)))
4 uniiun 3874 . . . . . . . . . 10 𝑦 = 𝑧𝑦 𝑧
5 simpr 109 . . . . . . . . . . . . 13 ((𝐵𝑉𝑦 ⊆ (topGen‘𝐵)) → 𝑦 ⊆ (topGen‘𝐵))
65sselda 3102 . . . . . . . . . . . 12 (((𝐵𝑉𝑦 ⊆ (topGen‘𝐵)) ∧ 𝑧𝑦) → 𝑧 ∈ (topGen‘𝐵))
7 eltg4i 12263 . . . . . . . . . . . 12 (𝑧 ∈ (topGen‘𝐵) → 𝑧 = (𝐵 ∩ 𝒫 𝑧))
86, 7syl 14 . . . . . . . . . . 11 (((𝐵𝑉𝑦 ⊆ (topGen‘𝐵)) ∧ 𝑧𝑦) → 𝑧 = (𝐵 ∩ 𝒫 𝑧))
98iuneq2dv 3842 . . . . . . . . . 10 ((𝐵𝑉𝑦 ⊆ (topGen‘𝐵)) → 𝑧𝑦 𝑧 = 𝑧𝑦 (𝐵 ∩ 𝒫 𝑧))
104, 9syl5eq 2185 . . . . . . . . 9 ((𝐵𝑉𝑦 ⊆ (topGen‘𝐵)) → 𝑦 = 𝑧𝑦 (𝐵 ∩ 𝒫 𝑧))
11 iuncom4 3828 . . . . . . . . 9 𝑧𝑦 (𝐵 ∩ 𝒫 𝑧) = 𝑧𝑦 (𝐵 ∩ 𝒫 𝑧)
1210, 11eqtrdi 2189 . . . . . . . 8 ((𝐵𝑉𝑦 ⊆ (topGen‘𝐵)) → 𝑦 = 𝑧𝑦 (𝐵 ∩ 𝒫 𝑧))
13 inss1 3301 . . . . . . . . . . . 12 (𝐵 ∩ 𝒫 𝑧) ⊆ 𝐵
1413rgenw 2490 . . . . . . . . . . 11 𝑧𝑦 (𝐵 ∩ 𝒫 𝑧) ⊆ 𝐵
15 iunss 3862 . . . . . . . . . . 11 ( 𝑧𝑦 (𝐵 ∩ 𝒫 𝑧) ⊆ 𝐵 ↔ ∀𝑧𝑦 (𝐵 ∩ 𝒫 𝑧) ⊆ 𝐵)
1614, 15mpbir 145 . . . . . . . . . 10 𝑧𝑦 (𝐵 ∩ 𝒫 𝑧) ⊆ 𝐵
1716a1i 9 . . . . . . . . 9 (𝑦 ⊆ (topGen‘𝐵) → 𝑧𝑦 (𝐵 ∩ 𝒫 𝑧) ⊆ 𝐵)
18 eltg3i 12264 . . . . . . . . 9 ((𝐵𝑉 𝑧𝑦 (𝐵 ∩ 𝒫 𝑧) ⊆ 𝐵) → 𝑧𝑦 (𝐵 ∩ 𝒫 𝑧) ∈ (topGen‘𝐵))
1917, 18sylan2 284 . . . . . . . 8 ((𝐵𝑉𝑦 ⊆ (topGen‘𝐵)) → 𝑧𝑦 (𝐵 ∩ 𝒫 𝑧) ∈ (topGen‘𝐵))
2012, 19eqeltrd 2217 . . . . . . 7 ((𝐵𝑉𝑦 ⊆ (topGen‘𝐵)) → 𝑦 ∈ (topGen‘𝐵))
21 eleq1 2203 . . . . . . 7 (𝑥 = 𝑦 → (𝑥 ∈ (topGen‘𝐵) ↔ 𝑦 ∈ (topGen‘𝐵)))
2220, 21syl5ibrcom 156 . . . . . 6 ((𝐵𝑉𝑦 ⊆ (topGen‘𝐵)) → (𝑥 = 𝑦𝑥 ∈ (topGen‘𝐵)))
2322expimpd 361 . . . . 5 (𝐵𝑉 → ((𝑦 ⊆ (topGen‘𝐵) ∧ 𝑥 = 𝑦) → 𝑥 ∈ (topGen‘𝐵)))
2423exlimdv 1792 . . . 4 (𝐵𝑉 → (∃𝑦(𝑦 ⊆ (topGen‘𝐵) ∧ 𝑥 = 𝑦) → 𝑥 ∈ (topGen‘𝐵)))
253, 24sylbid 149 . . 3 (𝐵𝑉 → (𝑥 ∈ (topGen‘(topGen‘𝐵)) → 𝑥 ∈ (topGen‘𝐵)))
2625ssrdv 3108 . 2 (𝐵𝑉 → (topGen‘(topGen‘𝐵)) ⊆ (topGen‘𝐵))
27 bastg 12269 . . 3 (𝐵𝑉𝐵 ⊆ (topGen‘𝐵))
28 tgss 12271 . . 3 (((topGen‘𝐵) ∈ V ∧ 𝐵 ⊆ (topGen‘𝐵)) → (topGen‘𝐵) ⊆ (topGen‘(topGen‘𝐵)))
291, 27, 28syl2anc 409 . 2 (𝐵𝑉 → (topGen‘𝐵) ⊆ (topGen‘(topGen‘𝐵)))
3026, 29eqssd 3119 1 (𝐵𝑉 → (topGen‘(topGen‘𝐵)) = (topGen‘𝐵))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wb 104   = wceq 1332  wex 1469  wcel 1481  wral 2417  Vcvv 2689  cin 3075  wss 3076  𝒫 cpw 3515   cuni 3744   ciun 3821  cfv 5131  topGenctg 12174
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1424  ax-7 1425  ax-gen 1426  ax-ie1 1470  ax-ie2 1471  ax-8 1483  ax-10 1484  ax-11 1485  ax-i12 1486  ax-bndl 1487  ax-4 1488  ax-13 1492  ax-14 1493  ax-17 1507  ax-i9 1511  ax-ial 1515  ax-i5r 1516  ax-ext 2122  ax-sep 4054  ax-pow 4106  ax-pr 4139  ax-un 4363
This theorem depends on definitions:  df-bi 116  df-3an 965  df-tru 1335  df-nf 1438  df-sb 1737  df-eu 2003  df-mo 2004  df-clab 2127  df-cleq 2133  df-clel 2136  df-nfc 2271  df-ral 2422  df-rex 2423  df-v 2691  df-sbc 2914  df-un 3080  df-in 3082  df-ss 3089  df-pw 3517  df-sn 3538  df-pr 3539  df-op 3541  df-uni 3745  df-iun 3823  df-br 3938  df-opab 3998  df-mpt 3999  df-id 4223  df-xp 4553  df-rel 4554  df-cnv 4555  df-co 4556  df-dm 4557  df-iota 5096  df-fun 5133  df-fv 5139  df-topgen 12180
This theorem is referenced by:  tgss3  12286  txbasval  12475
  Copyright terms: Public domain W3C validator