Step | Hyp | Ref
| Expression |
1 | | topontop 13517 |
. . 3
β’ (π
β (TopOnβπ) β π
β Top) |
2 | | topontop 13517 |
. . 3
β’ (π β (TopOnβπ) β π β Top) |
3 | | txtop 13763 |
. . 3
β’ ((π
β Top β§ π β Top) β (π
Γt π) β Top) |
4 | 1, 2, 3 | syl2an 289 |
. 2
β’ ((π
β (TopOnβπ) β§ π β (TopOnβπ)) β (π
Γt π) β Top) |
5 | | eqid 2177 |
. . . . 5
β’ ran
(π’ β π
, π£ β π β¦ (π’ Γ π£)) = ran (π’ β π
, π£ β π β¦ (π’ Γ π£)) |
6 | | eqid 2177 |
. . . . 5
β’ βͺ π
=
βͺ π
|
7 | | eqid 2177 |
. . . . 5
β’ βͺ π =
βͺ π |
8 | 5, 6, 7 | txuni2 13759 |
. . . 4
β’ (βͺ π
Γ βͺ π) = βͺ ran (π’ β π
, π£ β π β¦ (π’ Γ π£)) |
9 | | toponuni 13518 |
. . . . 5
β’ (π
β (TopOnβπ) β π = βͺ π
) |
10 | | toponuni 13518 |
. . . . 5
β’ (π β (TopOnβπ) β π = βͺ π) |
11 | | xpeq12 4646 |
. . . . 5
β’ ((π = βͺ
π
β§ π = βͺ π) β (π Γ π) = (βͺ π
Γ βͺ π)) |
12 | 9, 10, 11 | syl2an 289 |
. . . 4
β’ ((π
β (TopOnβπ) β§ π β (TopOnβπ)) β (π Γ π) = (βͺ π
Γ βͺ π)) |
13 | 5 | txbasex 13760 |
. . . . 5
β’ ((π
β (TopOnβπ) β§ π β (TopOnβπ)) β ran (π’ β π
, π£ β π β¦ (π’ Γ π£)) β V) |
14 | | unitg 13565 |
. . . . 5
β’ (ran
(π’ β π
, π£ β π β¦ (π’ Γ π£)) β V β βͺ (topGenβran (π’ β π
, π£ β π β¦ (π’ Γ π£))) = βͺ ran (π’ β π
, π£ β π β¦ (π’ Γ π£))) |
15 | 13, 14 | syl 14 |
. . . 4
β’ ((π
β (TopOnβπ) β§ π β (TopOnβπ)) β βͺ
(topGenβran (π’ β
π
, π£ β π β¦ (π’ Γ π£))) = βͺ ran (π’ β π
, π£ β π β¦ (π’ Γ π£))) |
16 | 8, 12, 15 | 3eqtr4a 2236 |
. . 3
β’ ((π
β (TopOnβπ) β§ π β (TopOnβπ)) β (π Γ π) = βͺ
(topGenβran (π’ β
π
, π£ β π β¦ (π’ Γ π£)))) |
17 | 5 | txval 13758 |
. . . 4
β’ ((π
β (TopOnβπ) β§ π β (TopOnβπ)) β (π
Γt π) = (topGenβran (π’ β π
, π£ β π β¦ (π’ Γ π£)))) |
18 | 17 | unieqd 3821 |
. . 3
β’ ((π
β (TopOnβπ) β§ π β (TopOnβπ)) β βͺ
(π
Γt
π) = βͺ (topGenβran (π’ β π
, π£ β π β¦ (π’ Γ π£)))) |
19 | 16, 18 | eqtr4d 2213 |
. 2
β’ ((π
β (TopOnβπ) β§ π β (TopOnβπ)) β (π Γ π) = βͺ (π
Γt π)) |
20 | | istopon 13516 |
. 2
β’ ((π
Γt π) β (TopOnβ(π Γ π)) β ((π
Γt π) β Top β§ (π Γ π) = βͺ (π
Γt π))) |
21 | 4, 19, 20 | sylanbrc 417 |
1
β’ ((π
β (TopOnβπ) β§ π β (TopOnβπ)) β (π
Γt π) β (TopOnβ(π Γ π))) |