ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  txtopon GIF version

Theorem txtopon 12803
Description: The underlying set of the product of two topologies. (Contributed by Mario Carneiro, 22-Aug-2015.) (Revised by Mario Carneiro, 2-Sep-2015.)
Assertion
Ref Expression
txtopon ((𝑅 ∈ (TopOn‘𝑋) ∧ 𝑆 ∈ (TopOn‘𝑌)) → (𝑅 ×t 𝑆) ∈ (TopOn‘(𝑋 × 𝑌)))

Proof of Theorem txtopon
Dummy variables 𝑣 𝑢 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 topontop 12553 . . 3 (𝑅 ∈ (TopOn‘𝑋) → 𝑅 ∈ Top)
2 topontop 12553 . . 3 (𝑆 ∈ (TopOn‘𝑌) → 𝑆 ∈ Top)
3 txtop 12801 . . 3 ((𝑅 ∈ Top ∧ 𝑆 ∈ Top) → (𝑅 ×t 𝑆) ∈ Top)
41, 2, 3syl2an 287 . 2 ((𝑅 ∈ (TopOn‘𝑋) ∧ 𝑆 ∈ (TopOn‘𝑌)) → (𝑅 ×t 𝑆) ∈ Top)
5 eqid 2164 . . . . 5 ran (𝑢𝑅, 𝑣𝑆 ↦ (𝑢 × 𝑣)) = ran (𝑢𝑅, 𝑣𝑆 ↦ (𝑢 × 𝑣))
6 eqid 2164 . . . . 5 𝑅 = 𝑅
7 eqid 2164 . . . . 5 𝑆 = 𝑆
85, 6, 7txuni2 12797 . . . 4 ( 𝑅 × 𝑆) = ran (𝑢𝑅, 𝑣𝑆 ↦ (𝑢 × 𝑣))
9 toponuni 12554 . . . . 5 (𝑅 ∈ (TopOn‘𝑋) → 𝑋 = 𝑅)
10 toponuni 12554 . . . . 5 (𝑆 ∈ (TopOn‘𝑌) → 𝑌 = 𝑆)
11 xpeq12 4617 . . . . 5 ((𝑋 = 𝑅𝑌 = 𝑆) → (𝑋 × 𝑌) = ( 𝑅 × 𝑆))
129, 10, 11syl2an 287 . . . 4 ((𝑅 ∈ (TopOn‘𝑋) ∧ 𝑆 ∈ (TopOn‘𝑌)) → (𝑋 × 𝑌) = ( 𝑅 × 𝑆))
135txbasex 12798 . . . . 5 ((𝑅 ∈ (TopOn‘𝑋) ∧ 𝑆 ∈ (TopOn‘𝑌)) → ran (𝑢𝑅, 𝑣𝑆 ↦ (𝑢 × 𝑣)) ∈ V)
14 unitg 12603 . . . . 5 (ran (𝑢𝑅, 𝑣𝑆 ↦ (𝑢 × 𝑣)) ∈ V → (topGen‘ran (𝑢𝑅, 𝑣𝑆 ↦ (𝑢 × 𝑣))) = ran (𝑢𝑅, 𝑣𝑆 ↦ (𝑢 × 𝑣)))
1513, 14syl 14 . . . 4 ((𝑅 ∈ (TopOn‘𝑋) ∧ 𝑆 ∈ (TopOn‘𝑌)) → (topGen‘ran (𝑢𝑅, 𝑣𝑆 ↦ (𝑢 × 𝑣))) = ran (𝑢𝑅, 𝑣𝑆 ↦ (𝑢 × 𝑣)))
168, 12, 153eqtr4a 2223 . . 3 ((𝑅 ∈ (TopOn‘𝑋) ∧ 𝑆 ∈ (TopOn‘𝑌)) → (𝑋 × 𝑌) = (topGen‘ran (𝑢𝑅, 𝑣𝑆 ↦ (𝑢 × 𝑣))))
175txval 12796 . . . 4 ((𝑅 ∈ (TopOn‘𝑋) ∧ 𝑆 ∈ (TopOn‘𝑌)) → (𝑅 ×t 𝑆) = (topGen‘ran (𝑢𝑅, 𝑣𝑆 ↦ (𝑢 × 𝑣))))
1817unieqd 3794 . . 3 ((𝑅 ∈ (TopOn‘𝑋) ∧ 𝑆 ∈ (TopOn‘𝑌)) → (𝑅 ×t 𝑆) = (topGen‘ran (𝑢𝑅, 𝑣𝑆 ↦ (𝑢 × 𝑣))))
1916, 18eqtr4d 2200 . 2 ((𝑅 ∈ (TopOn‘𝑋) ∧ 𝑆 ∈ (TopOn‘𝑌)) → (𝑋 × 𝑌) = (𝑅 ×t 𝑆))
20 istopon 12552 . 2 ((𝑅 ×t 𝑆) ∈ (TopOn‘(𝑋 × 𝑌)) ↔ ((𝑅 ×t 𝑆) ∈ Top ∧ (𝑋 × 𝑌) = (𝑅 ×t 𝑆)))
214, 19, 20sylanbrc 414 1 ((𝑅 ∈ (TopOn‘𝑋) ∧ 𝑆 ∈ (TopOn‘𝑌)) → (𝑅 ×t 𝑆) ∈ (TopOn‘(𝑋 × 𝑌)))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103   = wceq 1342  wcel 2135  Vcvv 2721   cuni 3783   × cxp 4596  ran crn 4599  cfv 5182  (class class class)co 5836  cmpo 5838  topGenctg 12507  Topctop 12536  TopOnctopon 12549   ×t ctx 12793
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1434  ax-7 1435  ax-gen 1436  ax-ie1 1480  ax-ie2 1481  ax-8 1491  ax-10 1492  ax-11 1493  ax-i12 1494  ax-bndl 1496  ax-4 1497  ax-17 1513  ax-i9 1517  ax-ial 1521  ax-i5r 1522  ax-13 2137  ax-14 2138  ax-ext 2146  ax-coll 4091  ax-sep 4094  ax-pow 4147  ax-pr 4181  ax-un 4405  ax-setind 4508
This theorem depends on definitions:  df-bi 116  df-3an 969  df-tru 1345  df-fal 1348  df-nf 1448  df-sb 1750  df-eu 2016  df-mo 2017  df-clab 2151  df-cleq 2157  df-clel 2160  df-nfc 2295  df-ne 2335  df-ral 2447  df-rex 2448  df-reu 2449  df-rab 2451  df-v 2723  df-sbc 2947  df-csb 3041  df-dif 3113  df-un 3115  df-in 3117  df-ss 3124  df-pw 3555  df-sn 3576  df-pr 3577  df-op 3579  df-uni 3784  df-iun 3862  df-br 3977  df-opab 4038  df-mpt 4039  df-id 4265  df-xp 4604  df-rel 4605  df-cnv 4606  df-co 4607  df-dm 4608  df-rn 4609  df-res 4610  df-ima 4611  df-iota 5147  df-fun 5184  df-fn 5185  df-f 5186  df-f1 5187  df-fo 5188  df-f1o 5189  df-fv 5190  df-ov 5839  df-oprab 5840  df-mpo 5841  df-1st 6100  df-2nd 6101  df-topgen 12513  df-top 12537  df-topon 12550  df-bases 12582  df-tx 12794
This theorem is referenced by:  txuni  12804  tx1cn  12810  tx2cn  12811  txcnp  12812  txcnmpt  12814  txdis1cn  12819  txlm  12820  lmcn2  12821  cnmpt12  12828  cnmpt2c  12831  cnmpt21  12832  cnmpt2t  12834  cnmpt22  12835  cnmpt22f  12836  cnmpt2res  12838  cnmptcom  12839  txmetcn  13060  limccnp2lem  13186  limccnp2cntop  13187  dvcnp2cntop  13204  dvaddxxbr  13206  dvmulxxbr  13207  dvcoapbr  13212
  Copyright terms: Public domain W3C validator