ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  xpid11 GIF version

Theorem xpid11 4827
Description: The Cartesian product of a class with itself is one-to-one. (Contributed by NM, 5-Nov-2006.) (Proof shortened by Andrew Salmon, 27-Aug-2011.)
Assertion
Ref Expression
xpid11 ((𝐴 × 𝐴) = (𝐵 × 𝐵) ↔ 𝐴 = 𝐵)

Proof of Theorem xpid11
StepHypRef Expression
1 dmeq 4804 . . 3 ((𝐴 × 𝐴) = (𝐵 × 𝐵) → dom (𝐴 × 𝐴) = dom (𝐵 × 𝐵))
2 dmxpid 4825 . . 3 dom (𝐴 × 𝐴) = 𝐴
3 dmxpid 4825 . . 3 dom (𝐵 × 𝐵) = 𝐵
41, 2, 33eqtr3g 2222 . 2 ((𝐴 × 𝐴) = (𝐵 × 𝐵) → 𝐴 = 𝐵)
5 xpeq12 4623 . . 3 ((𝐴 = 𝐵𝐴 = 𝐵) → (𝐴 × 𝐴) = (𝐵 × 𝐵))
65anidms 395 . 2 (𝐴 = 𝐵 → (𝐴 × 𝐴) = (𝐵 × 𝐵))
74, 6impbii 125 1 ((𝐴 × 𝐴) = (𝐵 × 𝐵) ↔ 𝐴 = 𝐵)
Colors of variables: wff set class
Syntax hints:  wb 104   = wceq 1343   × cxp 4602  dom cdm 4604
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-14 2139  ax-ext 2147  ax-sep 4100  ax-pow 4153  ax-pr 4187
This theorem depends on definitions:  df-bi 116  df-3an 970  df-tru 1346  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ral 2449  df-v 2728  df-un 3120  df-in 3122  df-ss 3129  df-pw 3561  df-sn 3582  df-pr 3583  df-op 3585  df-br 3983  df-opab 4044  df-xp 4610  df-dm 4614
This theorem is referenced by:  intopsn  12598
  Copyright terms: Public domain W3C validator