Step | Hyp | Ref
| Expression |
1 | | xpm 5032 |
. . 3
⊢
((∃𝑥 𝑥 ∈ 𝐴 ∧ ∃𝑦 𝑦 ∈ 𝐵) ↔ ∃𝑧 𝑧 ∈ (𝐴 × 𝐵)) |
2 | | anidm 394 |
. . . . . 6
⊢
((∃𝑧 𝑧 ∈ (𝐴 × 𝐵) ∧ ∃𝑧 𝑧 ∈ (𝐴 × 𝐵)) ↔ ∃𝑧 𝑧 ∈ (𝐴 × 𝐵)) |
3 | | eleq2 2234 |
. . . . . . . 8
⊢ ((𝐴 × 𝐵) = (𝐶 × 𝐷) → (𝑧 ∈ (𝐴 × 𝐵) ↔ 𝑧 ∈ (𝐶 × 𝐷))) |
4 | 3 | exbidv 1818 |
. . . . . . 7
⊢ ((𝐴 × 𝐵) = (𝐶 × 𝐷) → (∃𝑧 𝑧 ∈ (𝐴 × 𝐵) ↔ ∃𝑧 𝑧 ∈ (𝐶 × 𝐷))) |
5 | 4 | anbi2d 461 |
. . . . . 6
⊢ ((𝐴 × 𝐵) = (𝐶 × 𝐷) → ((∃𝑧 𝑧 ∈ (𝐴 × 𝐵) ∧ ∃𝑧 𝑧 ∈ (𝐴 × 𝐵)) ↔ (∃𝑧 𝑧 ∈ (𝐴 × 𝐵) ∧ ∃𝑧 𝑧 ∈ (𝐶 × 𝐷)))) |
6 | 2, 5 | bitr3id 193 |
. . . . 5
⊢ ((𝐴 × 𝐵) = (𝐶 × 𝐷) → (∃𝑧 𝑧 ∈ (𝐴 × 𝐵) ↔ (∃𝑧 𝑧 ∈ (𝐴 × 𝐵) ∧ ∃𝑧 𝑧 ∈ (𝐶 × 𝐷)))) |
7 | | eqimss 3201 |
. . . . . . . 8
⊢ ((𝐴 × 𝐵) = (𝐶 × 𝐷) → (𝐴 × 𝐵) ⊆ (𝐶 × 𝐷)) |
8 | | ssxpbm 5046 |
. . . . . . . 8
⊢
(∃𝑧 𝑧 ∈ (𝐴 × 𝐵) → ((𝐴 × 𝐵) ⊆ (𝐶 × 𝐷) ↔ (𝐴 ⊆ 𝐶 ∧ 𝐵 ⊆ 𝐷))) |
9 | 7, 8 | syl5ibcom 154 |
. . . . . . 7
⊢ ((𝐴 × 𝐵) = (𝐶 × 𝐷) → (∃𝑧 𝑧 ∈ (𝐴 × 𝐵) → (𝐴 ⊆ 𝐶 ∧ 𝐵 ⊆ 𝐷))) |
10 | | eqimss2 3202 |
. . . . . . . 8
⊢ ((𝐴 × 𝐵) = (𝐶 × 𝐷) → (𝐶 × 𝐷) ⊆ (𝐴 × 𝐵)) |
11 | | ssxpbm 5046 |
. . . . . . . 8
⊢
(∃𝑧 𝑧 ∈ (𝐶 × 𝐷) → ((𝐶 × 𝐷) ⊆ (𝐴 × 𝐵) ↔ (𝐶 ⊆ 𝐴 ∧ 𝐷 ⊆ 𝐵))) |
12 | 10, 11 | syl5ibcom 154 |
. . . . . . 7
⊢ ((𝐴 × 𝐵) = (𝐶 × 𝐷) → (∃𝑧 𝑧 ∈ (𝐶 × 𝐷) → (𝐶 ⊆ 𝐴 ∧ 𝐷 ⊆ 𝐵))) |
13 | 9, 12 | anim12d 333 |
. . . . . 6
⊢ ((𝐴 × 𝐵) = (𝐶 × 𝐷) → ((∃𝑧 𝑧 ∈ (𝐴 × 𝐵) ∧ ∃𝑧 𝑧 ∈ (𝐶 × 𝐷)) → ((𝐴 ⊆ 𝐶 ∧ 𝐵 ⊆ 𝐷) ∧ (𝐶 ⊆ 𝐴 ∧ 𝐷 ⊆ 𝐵)))) |
14 | | an4 581 |
. . . . . . 7
⊢ (((𝐴 ⊆ 𝐶 ∧ 𝐵 ⊆ 𝐷) ∧ (𝐶 ⊆ 𝐴 ∧ 𝐷 ⊆ 𝐵)) ↔ ((𝐴 ⊆ 𝐶 ∧ 𝐶 ⊆ 𝐴) ∧ (𝐵 ⊆ 𝐷 ∧ 𝐷 ⊆ 𝐵))) |
15 | | eqss 3162 |
. . . . . . . 8
⊢ (𝐴 = 𝐶 ↔ (𝐴 ⊆ 𝐶 ∧ 𝐶 ⊆ 𝐴)) |
16 | | eqss 3162 |
. . . . . . . 8
⊢ (𝐵 = 𝐷 ↔ (𝐵 ⊆ 𝐷 ∧ 𝐷 ⊆ 𝐵)) |
17 | 15, 16 | anbi12i 457 |
. . . . . . 7
⊢ ((𝐴 = 𝐶 ∧ 𝐵 = 𝐷) ↔ ((𝐴 ⊆ 𝐶 ∧ 𝐶 ⊆ 𝐴) ∧ (𝐵 ⊆ 𝐷 ∧ 𝐷 ⊆ 𝐵))) |
18 | 14, 17 | bitr4i 186 |
. . . . . 6
⊢ (((𝐴 ⊆ 𝐶 ∧ 𝐵 ⊆ 𝐷) ∧ (𝐶 ⊆ 𝐴 ∧ 𝐷 ⊆ 𝐵)) ↔ (𝐴 = 𝐶 ∧ 𝐵 = 𝐷)) |
19 | 13, 18 | syl6ib 160 |
. . . . 5
⊢ ((𝐴 × 𝐵) = (𝐶 × 𝐷) → ((∃𝑧 𝑧 ∈ (𝐴 × 𝐵) ∧ ∃𝑧 𝑧 ∈ (𝐶 × 𝐷)) → (𝐴 = 𝐶 ∧ 𝐵 = 𝐷))) |
20 | 6, 19 | sylbid 149 |
. . . 4
⊢ ((𝐴 × 𝐵) = (𝐶 × 𝐷) → (∃𝑧 𝑧 ∈ (𝐴 × 𝐵) → (𝐴 = 𝐶 ∧ 𝐵 = 𝐷))) |
21 | 20 | com12 30 |
. . 3
⊢
(∃𝑧 𝑧 ∈ (𝐴 × 𝐵) → ((𝐴 × 𝐵) = (𝐶 × 𝐷) → (𝐴 = 𝐶 ∧ 𝐵 = 𝐷))) |
22 | 1, 21 | sylbi 120 |
. 2
⊢
((∃𝑥 𝑥 ∈ 𝐴 ∧ ∃𝑦 𝑦 ∈ 𝐵) → ((𝐴 × 𝐵) = (𝐶 × 𝐷) → (𝐴 = 𝐶 ∧ 𝐵 = 𝐷))) |
23 | | xpeq12 4630 |
. 2
⊢ ((𝐴 = 𝐶 ∧ 𝐵 = 𝐷) → (𝐴 × 𝐵) = (𝐶 × 𝐷)) |
24 | 22, 23 | impbid1 141 |
1
⊢
((∃𝑥 𝑥 ∈ 𝐴 ∧ ∃𝑦 𝑦 ∈ 𝐵) → ((𝐴 × 𝐵) = (𝐶 × 𝐷) ↔ (𝐴 = 𝐶 ∧ 𝐵 = 𝐷))) |