ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  xp11m GIF version

Theorem xp11m 5108
Description: The cross product of inhabited classes is one-to-one. (Contributed by Jim Kingdon, 13-Dec-2018.)
Assertion
Ref Expression
xp11m ((∃𝑥 𝑥𝐴 ∧ ∃𝑦 𝑦𝐵) → ((𝐴 × 𝐵) = (𝐶 × 𝐷) ↔ (𝐴 = 𝐶𝐵 = 𝐷)))
Distinct variable groups:   𝑥,𝐴   𝑦,𝐵
Allowed substitution hints:   𝐴(𝑦)   𝐵(𝑥)   𝐶(𝑥,𝑦)   𝐷(𝑥,𝑦)

Proof of Theorem xp11m
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 xpm 5091 . . 3 ((∃𝑥 𝑥𝐴 ∧ ∃𝑦 𝑦𝐵) ↔ ∃𝑧 𝑧 ∈ (𝐴 × 𝐵))
2 anidm 396 . . . . . 6 ((∃𝑧 𝑧 ∈ (𝐴 × 𝐵) ∧ ∃𝑧 𝑧 ∈ (𝐴 × 𝐵)) ↔ ∃𝑧 𝑧 ∈ (𝐴 × 𝐵))
3 eleq2 2260 . . . . . . . 8 ((𝐴 × 𝐵) = (𝐶 × 𝐷) → (𝑧 ∈ (𝐴 × 𝐵) ↔ 𝑧 ∈ (𝐶 × 𝐷)))
43exbidv 1839 . . . . . . 7 ((𝐴 × 𝐵) = (𝐶 × 𝐷) → (∃𝑧 𝑧 ∈ (𝐴 × 𝐵) ↔ ∃𝑧 𝑧 ∈ (𝐶 × 𝐷)))
54anbi2d 464 . . . . . 6 ((𝐴 × 𝐵) = (𝐶 × 𝐷) → ((∃𝑧 𝑧 ∈ (𝐴 × 𝐵) ∧ ∃𝑧 𝑧 ∈ (𝐴 × 𝐵)) ↔ (∃𝑧 𝑧 ∈ (𝐴 × 𝐵) ∧ ∃𝑧 𝑧 ∈ (𝐶 × 𝐷))))
62, 5bitr3id 194 . . . . 5 ((𝐴 × 𝐵) = (𝐶 × 𝐷) → (∃𝑧 𝑧 ∈ (𝐴 × 𝐵) ↔ (∃𝑧 𝑧 ∈ (𝐴 × 𝐵) ∧ ∃𝑧 𝑧 ∈ (𝐶 × 𝐷))))
7 eqimss 3237 . . . . . . . 8 ((𝐴 × 𝐵) = (𝐶 × 𝐷) → (𝐴 × 𝐵) ⊆ (𝐶 × 𝐷))
8 ssxpbm 5105 . . . . . . . 8 (∃𝑧 𝑧 ∈ (𝐴 × 𝐵) → ((𝐴 × 𝐵) ⊆ (𝐶 × 𝐷) ↔ (𝐴𝐶𝐵𝐷)))
97, 8syl5ibcom 155 . . . . . . 7 ((𝐴 × 𝐵) = (𝐶 × 𝐷) → (∃𝑧 𝑧 ∈ (𝐴 × 𝐵) → (𝐴𝐶𝐵𝐷)))
10 eqimss2 3238 . . . . . . . 8 ((𝐴 × 𝐵) = (𝐶 × 𝐷) → (𝐶 × 𝐷) ⊆ (𝐴 × 𝐵))
11 ssxpbm 5105 . . . . . . . 8 (∃𝑧 𝑧 ∈ (𝐶 × 𝐷) → ((𝐶 × 𝐷) ⊆ (𝐴 × 𝐵) ↔ (𝐶𝐴𝐷𝐵)))
1210, 11syl5ibcom 155 . . . . . . 7 ((𝐴 × 𝐵) = (𝐶 × 𝐷) → (∃𝑧 𝑧 ∈ (𝐶 × 𝐷) → (𝐶𝐴𝐷𝐵)))
139, 12anim12d 335 . . . . . 6 ((𝐴 × 𝐵) = (𝐶 × 𝐷) → ((∃𝑧 𝑧 ∈ (𝐴 × 𝐵) ∧ ∃𝑧 𝑧 ∈ (𝐶 × 𝐷)) → ((𝐴𝐶𝐵𝐷) ∧ (𝐶𝐴𝐷𝐵))))
14 an4 586 . . . . . . 7 (((𝐴𝐶𝐵𝐷) ∧ (𝐶𝐴𝐷𝐵)) ↔ ((𝐴𝐶𝐶𝐴) ∧ (𝐵𝐷𝐷𝐵)))
15 eqss 3198 . . . . . . . 8 (𝐴 = 𝐶 ↔ (𝐴𝐶𝐶𝐴))
16 eqss 3198 . . . . . . . 8 (𝐵 = 𝐷 ↔ (𝐵𝐷𝐷𝐵))
1715, 16anbi12i 460 . . . . . . 7 ((𝐴 = 𝐶𝐵 = 𝐷) ↔ ((𝐴𝐶𝐶𝐴) ∧ (𝐵𝐷𝐷𝐵)))
1814, 17bitr4i 187 . . . . . 6 (((𝐴𝐶𝐵𝐷) ∧ (𝐶𝐴𝐷𝐵)) ↔ (𝐴 = 𝐶𝐵 = 𝐷))
1913, 18imbitrdi 161 . . . . 5 ((𝐴 × 𝐵) = (𝐶 × 𝐷) → ((∃𝑧 𝑧 ∈ (𝐴 × 𝐵) ∧ ∃𝑧 𝑧 ∈ (𝐶 × 𝐷)) → (𝐴 = 𝐶𝐵 = 𝐷)))
206, 19sylbid 150 . . . 4 ((𝐴 × 𝐵) = (𝐶 × 𝐷) → (∃𝑧 𝑧 ∈ (𝐴 × 𝐵) → (𝐴 = 𝐶𝐵 = 𝐷)))
2120com12 30 . . 3 (∃𝑧 𝑧 ∈ (𝐴 × 𝐵) → ((𝐴 × 𝐵) = (𝐶 × 𝐷) → (𝐴 = 𝐶𝐵 = 𝐷)))
221, 21sylbi 121 . 2 ((∃𝑥 𝑥𝐴 ∧ ∃𝑦 𝑦𝐵) → ((𝐴 × 𝐵) = (𝐶 × 𝐷) → (𝐴 = 𝐶𝐵 = 𝐷)))
23 xpeq12 4682 . 2 ((𝐴 = 𝐶𝐵 = 𝐷) → (𝐴 × 𝐵) = (𝐶 × 𝐷))
2422, 23impbid1 142 1 ((∃𝑥 𝑥𝐴 ∧ ∃𝑦 𝑦𝐵) → ((𝐴 × 𝐵) = (𝐶 × 𝐷) ↔ (𝐴 = 𝐶𝐵 = 𝐷)))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105   = wceq 1364  wex 1506  wcel 2167  wss 3157   × cxp 4661
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-14 2170  ax-ext 2178  ax-sep 4151  ax-pow 4207  ax-pr 4242
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ral 2480  df-rex 2481  df-v 2765  df-un 3161  df-in 3163  df-ss 3170  df-pw 3607  df-sn 3628  df-pr 3629  df-op 3631  df-br 4034  df-opab 4095  df-xp 4669  df-rel 4670  df-cnv 4671  df-dm 4673  df-rn 4674
This theorem is referenced by:  cc2lem  7333  lmodfopnelem1  13880
  Copyright terms: Public domain W3C validator