ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  xp11m GIF version

Theorem xp11m 5063
Description: The cross product of inhabited classes is one-to-one. (Contributed by Jim Kingdon, 13-Dec-2018.)
Assertion
Ref Expression
xp11m ((∃𝑥 𝑥𝐴 ∧ ∃𝑦 𝑦𝐵) → ((𝐴 × 𝐵) = (𝐶 × 𝐷) ↔ (𝐴 = 𝐶𝐵 = 𝐷)))
Distinct variable groups:   𝑥,𝐴   𝑦,𝐵
Allowed substitution hints:   𝐴(𝑦)   𝐵(𝑥)   𝐶(𝑥,𝑦)   𝐷(𝑥,𝑦)

Proof of Theorem xp11m
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 xpm 5046 . . 3 ((∃𝑥 𝑥𝐴 ∧ ∃𝑦 𝑦𝐵) ↔ ∃𝑧 𝑧 ∈ (𝐴 × 𝐵))
2 anidm 396 . . . . . 6 ((∃𝑧 𝑧 ∈ (𝐴 × 𝐵) ∧ ∃𝑧 𝑧 ∈ (𝐴 × 𝐵)) ↔ ∃𝑧 𝑧 ∈ (𝐴 × 𝐵))
3 eleq2 2241 . . . . . . . 8 ((𝐴 × 𝐵) = (𝐶 × 𝐷) → (𝑧 ∈ (𝐴 × 𝐵) ↔ 𝑧 ∈ (𝐶 × 𝐷)))
43exbidv 1825 . . . . . . 7 ((𝐴 × 𝐵) = (𝐶 × 𝐷) → (∃𝑧 𝑧 ∈ (𝐴 × 𝐵) ↔ ∃𝑧 𝑧 ∈ (𝐶 × 𝐷)))
54anbi2d 464 . . . . . 6 ((𝐴 × 𝐵) = (𝐶 × 𝐷) → ((∃𝑧 𝑧 ∈ (𝐴 × 𝐵) ∧ ∃𝑧 𝑧 ∈ (𝐴 × 𝐵)) ↔ (∃𝑧 𝑧 ∈ (𝐴 × 𝐵) ∧ ∃𝑧 𝑧 ∈ (𝐶 × 𝐷))))
62, 5bitr3id 194 . . . . 5 ((𝐴 × 𝐵) = (𝐶 × 𝐷) → (∃𝑧 𝑧 ∈ (𝐴 × 𝐵) ↔ (∃𝑧 𝑧 ∈ (𝐴 × 𝐵) ∧ ∃𝑧 𝑧 ∈ (𝐶 × 𝐷))))
7 eqimss 3209 . . . . . . . 8 ((𝐴 × 𝐵) = (𝐶 × 𝐷) → (𝐴 × 𝐵) ⊆ (𝐶 × 𝐷))
8 ssxpbm 5060 . . . . . . . 8 (∃𝑧 𝑧 ∈ (𝐴 × 𝐵) → ((𝐴 × 𝐵) ⊆ (𝐶 × 𝐷) ↔ (𝐴𝐶𝐵𝐷)))
97, 8syl5ibcom 155 . . . . . . 7 ((𝐴 × 𝐵) = (𝐶 × 𝐷) → (∃𝑧 𝑧 ∈ (𝐴 × 𝐵) → (𝐴𝐶𝐵𝐷)))
10 eqimss2 3210 . . . . . . . 8 ((𝐴 × 𝐵) = (𝐶 × 𝐷) → (𝐶 × 𝐷) ⊆ (𝐴 × 𝐵))
11 ssxpbm 5060 . . . . . . . 8 (∃𝑧 𝑧 ∈ (𝐶 × 𝐷) → ((𝐶 × 𝐷) ⊆ (𝐴 × 𝐵) ↔ (𝐶𝐴𝐷𝐵)))
1210, 11syl5ibcom 155 . . . . . . 7 ((𝐴 × 𝐵) = (𝐶 × 𝐷) → (∃𝑧 𝑧 ∈ (𝐶 × 𝐷) → (𝐶𝐴𝐷𝐵)))
139, 12anim12d 335 . . . . . 6 ((𝐴 × 𝐵) = (𝐶 × 𝐷) → ((∃𝑧 𝑧 ∈ (𝐴 × 𝐵) ∧ ∃𝑧 𝑧 ∈ (𝐶 × 𝐷)) → ((𝐴𝐶𝐵𝐷) ∧ (𝐶𝐴𝐷𝐵))))
14 an4 586 . . . . . . 7 (((𝐴𝐶𝐵𝐷) ∧ (𝐶𝐴𝐷𝐵)) ↔ ((𝐴𝐶𝐶𝐴) ∧ (𝐵𝐷𝐷𝐵)))
15 eqss 3170 . . . . . . . 8 (𝐴 = 𝐶 ↔ (𝐴𝐶𝐶𝐴))
16 eqss 3170 . . . . . . . 8 (𝐵 = 𝐷 ↔ (𝐵𝐷𝐷𝐵))
1715, 16anbi12i 460 . . . . . . 7 ((𝐴 = 𝐶𝐵 = 𝐷) ↔ ((𝐴𝐶𝐶𝐴) ∧ (𝐵𝐷𝐷𝐵)))
1814, 17bitr4i 187 . . . . . 6 (((𝐴𝐶𝐵𝐷) ∧ (𝐶𝐴𝐷𝐵)) ↔ (𝐴 = 𝐶𝐵 = 𝐷))
1913, 18syl6ib 161 . . . . 5 ((𝐴 × 𝐵) = (𝐶 × 𝐷) → ((∃𝑧 𝑧 ∈ (𝐴 × 𝐵) ∧ ∃𝑧 𝑧 ∈ (𝐶 × 𝐷)) → (𝐴 = 𝐶𝐵 = 𝐷)))
206, 19sylbid 150 . . . 4 ((𝐴 × 𝐵) = (𝐶 × 𝐷) → (∃𝑧 𝑧 ∈ (𝐴 × 𝐵) → (𝐴 = 𝐶𝐵 = 𝐷)))
2120com12 30 . . 3 (∃𝑧 𝑧 ∈ (𝐴 × 𝐵) → ((𝐴 × 𝐵) = (𝐶 × 𝐷) → (𝐴 = 𝐶𝐵 = 𝐷)))
221, 21sylbi 121 . 2 ((∃𝑥 𝑥𝐴 ∧ ∃𝑦 𝑦𝐵) → ((𝐴 × 𝐵) = (𝐶 × 𝐷) → (𝐴 = 𝐶𝐵 = 𝐷)))
23 xpeq12 4642 . 2 ((𝐴 = 𝐶𝐵 = 𝐷) → (𝐴 × 𝐵) = (𝐶 × 𝐷))
2422, 23impbid1 142 1 ((∃𝑥 𝑥𝐴 ∧ ∃𝑦 𝑦𝐵) → ((𝐴 × 𝐵) = (𝐶 × 𝐷) ↔ (𝐴 = 𝐶𝐵 = 𝐷)))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105   = wceq 1353  wex 1492  wcel 2148  wss 3129   × cxp 4621
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-14 2151  ax-ext 2159  ax-sep 4118  ax-pow 4171  ax-pr 4206
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ral 2460  df-rex 2461  df-v 2739  df-un 3133  df-in 3135  df-ss 3142  df-pw 3576  df-sn 3597  df-pr 3598  df-op 3600  df-br 4001  df-opab 4062  df-xp 4629  df-rel 4630  df-cnv 4631  df-dm 4633  df-rn 4634
This theorem is referenced by:  cc2lem  7256
  Copyright terms: Public domain W3C validator