ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  xp11m GIF version

Theorem xp11m 4947
Description: The cross product of inhabited classes is one-to-one. (Contributed by Jim Kingdon, 13-Dec-2018.)
Assertion
Ref Expression
xp11m ((∃𝑥 𝑥𝐴 ∧ ∃𝑦 𝑦𝐵) → ((𝐴 × 𝐵) = (𝐶 × 𝐷) ↔ (𝐴 = 𝐶𝐵 = 𝐷)))
Distinct variable groups:   𝑥,𝐴   𝑦,𝐵
Allowed substitution hints:   𝐴(𝑦)   𝐵(𝑥)   𝐶(𝑥,𝑦)   𝐷(𝑥,𝑦)

Proof of Theorem xp11m
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 xpm 4930 . . 3 ((∃𝑥 𝑥𝐴 ∧ ∃𝑦 𝑦𝐵) ↔ ∃𝑧 𝑧 ∈ (𝐴 × 𝐵))
2 anidm 393 . . . . . 6 ((∃𝑧 𝑧 ∈ (𝐴 × 𝐵) ∧ ∃𝑧 𝑧 ∈ (𝐴 × 𝐵)) ↔ ∃𝑧 𝑧 ∈ (𝐴 × 𝐵))
3 eleq2 2181 . . . . . . . 8 ((𝐴 × 𝐵) = (𝐶 × 𝐷) → (𝑧 ∈ (𝐴 × 𝐵) ↔ 𝑧 ∈ (𝐶 × 𝐷)))
43exbidv 1781 . . . . . . 7 ((𝐴 × 𝐵) = (𝐶 × 𝐷) → (∃𝑧 𝑧 ∈ (𝐴 × 𝐵) ↔ ∃𝑧 𝑧 ∈ (𝐶 × 𝐷)))
54anbi2d 459 . . . . . 6 ((𝐴 × 𝐵) = (𝐶 × 𝐷) → ((∃𝑧 𝑧 ∈ (𝐴 × 𝐵) ∧ ∃𝑧 𝑧 ∈ (𝐴 × 𝐵)) ↔ (∃𝑧 𝑧 ∈ (𝐴 × 𝐵) ∧ ∃𝑧 𝑧 ∈ (𝐶 × 𝐷))))
62, 5syl5bbr 193 . . . . 5 ((𝐴 × 𝐵) = (𝐶 × 𝐷) → (∃𝑧 𝑧 ∈ (𝐴 × 𝐵) ↔ (∃𝑧 𝑧 ∈ (𝐴 × 𝐵) ∧ ∃𝑧 𝑧 ∈ (𝐶 × 𝐷))))
7 eqimss 3121 . . . . . . . 8 ((𝐴 × 𝐵) = (𝐶 × 𝐷) → (𝐴 × 𝐵) ⊆ (𝐶 × 𝐷))
8 ssxpbm 4944 . . . . . . . 8 (∃𝑧 𝑧 ∈ (𝐴 × 𝐵) → ((𝐴 × 𝐵) ⊆ (𝐶 × 𝐷) ↔ (𝐴𝐶𝐵𝐷)))
97, 8syl5ibcom 154 . . . . . . 7 ((𝐴 × 𝐵) = (𝐶 × 𝐷) → (∃𝑧 𝑧 ∈ (𝐴 × 𝐵) → (𝐴𝐶𝐵𝐷)))
10 eqimss2 3122 . . . . . . . 8 ((𝐴 × 𝐵) = (𝐶 × 𝐷) → (𝐶 × 𝐷) ⊆ (𝐴 × 𝐵))
11 ssxpbm 4944 . . . . . . . 8 (∃𝑧 𝑧 ∈ (𝐶 × 𝐷) → ((𝐶 × 𝐷) ⊆ (𝐴 × 𝐵) ↔ (𝐶𝐴𝐷𝐵)))
1210, 11syl5ibcom 154 . . . . . . 7 ((𝐴 × 𝐵) = (𝐶 × 𝐷) → (∃𝑧 𝑧 ∈ (𝐶 × 𝐷) → (𝐶𝐴𝐷𝐵)))
139, 12anim12d 333 . . . . . 6 ((𝐴 × 𝐵) = (𝐶 × 𝐷) → ((∃𝑧 𝑧 ∈ (𝐴 × 𝐵) ∧ ∃𝑧 𝑧 ∈ (𝐶 × 𝐷)) → ((𝐴𝐶𝐵𝐷) ∧ (𝐶𝐴𝐷𝐵))))
14 an4 560 . . . . . . 7 (((𝐴𝐶𝐵𝐷) ∧ (𝐶𝐴𝐷𝐵)) ↔ ((𝐴𝐶𝐶𝐴) ∧ (𝐵𝐷𝐷𝐵)))
15 eqss 3082 . . . . . . . 8 (𝐴 = 𝐶 ↔ (𝐴𝐶𝐶𝐴))
16 eqss 3082 . . . . . . . 8 (𝐵 = 𝐷 ↔ (𝐵𝐷𝐷𝐵))
1715, 16anbi12i 455 . . . . . . 7 ((𝐴 = 𝐶𝐵 = 𝐷) ↔ ((𝐴𝐶𝐶𝐴) ∧ (𝐵𝐷𝐷𝐵)))
1814, 17bitr4i 186 . . . . . 6 (((𝐴𝐶𝐵𝐷) ∧ (𝐶𝐴𝐷𝐵)) ↔ (𝐴 = 𝐶𝐵 = 𝐷))
1913, 18syl6ib 160 . . . . 5 ((𝐴 × 𝐵) = (𝐶 × 𝐷) → ((∃𝑧 𝑧 ∈ (𝐴 × 𝐵) ∧ ∃𝑧 𝑧 ∈ (𝐶 × 𝐷)) → (𝐴 = 𝐶𝐵 = 𝐷)))
206, 19sylbid 149 . . . 4 ((𝐴 × 𝐵) = (𝐶 × 𝐷) → (∃𝑧 𝑧 ∈ (𝐴 × 𝐵) → (𝐴 = 𝐶𝐵 = 𝐷)))
2120com12 30 . . 3 (∃𝑧 𝑧 ∈ (𝐴 × 𝐵) → ((𝐴 × 𝐵) = (𝐶 × 𝐷) → (𝐴 = 𝐶𝐵 = 𝐷)))
221, 21sylbi 120 . 2 ((∃𝑥 𝑥𝐴 ∧ ∃𝑦 𝑦𝐵) → ((𝐴 × 𝐵) = (𝐶 × 𝐷) → (𝐴 = 𝐶𝐵 = 𝐷)))
23 xpeq12 4528 . 2 ((𝐴 = 𝐶𝐵 = 𝐷) → (𝐴 × 𝐵) = (𝐶 × 𝐷))
2422, 23impbid1 141 1 ((∃𝑥 𝑥𝐴 ∧ ∃𝑦 𝑦𝐵) → ((𝐴 × 𝐵) = (𝐶 × 𝐷) ↔ (𝐴 = 𝐶𝐵 = 𝐷)))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wb 104   = wceq 1316  wex 1453  wcel 1465  wss 3041   × cxp 4507
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 683  ax-5 1408  ax-7 1409  ax-gen 1410  ax-ie1 1454  ax-ie2 1455  ax-8 1467  ax-10 1468  ax-11 1469  ax-i12 1470  ax-bndl 1471  ax-4 1472  ax-14 1477  ax-17 1491  ax-i9 1495  ax-ial 1499  ax-i5r 1500  ax-ext 2099  ax-sep 4016  ax-pow 4068  ax-pr 4101
This theorem depends on definitions:  df-bi 116  df-3an 949  df-tru 1319  df-nf 1422  df-sb 1721  df-eu 1980  df-mo 1981  df-clab 2104  df-cleq 2110  df-clel 2113  df-nfc 2247  df-ral 2398  df-rex 2399  df-v 2662  df-un 3045  df-in 3047  df-ss 3054  df-pw 3482  df-sn 3503  df-pr 3504  df-op 3506  df-br 3900  df-opab 3960  df-xp 4515  df-rel 4516  df-cnv 4517  df-dm 4519  df-rn 4520
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator