| Step | Hyp | Ref
 | Expression | 
| 1 |   | txval.1 | 
. . . . . . . 8
⊢ 𝐵 = ran (𝑥 ∈ 𝑅, 𝑦 ∈ 𝑆 ↦ (𝑥 × 𝑦)) | 
| 2 |   | xpeq1 4677 | 
. . . . . . . . . 10
⊢ (𝑥 = 𝑎 → (𝑥 × 𝑦) = (𝑎 × 𝑦)) | 
| 3 |   | xpeq2 4678 | 
. . . . . . . . . 10
⊢ (𝑦 = 𝑏 → (𝑎 × 𝑦) = (𝑎 × 𝑏)) | 
| 4 | 2, 3 | cbvmpov 6002 | 
. . . . . . . . 9
⊢ (𝑥 ∈ 𝑅, 𝑦 ∈ 𝑆 ↦ (𝑥 × 𝑦)) = (𝑎 ∈ 𝑅, 𝑏 ∈ 𝑆 ↦ (𝑎 × 𝑏)) | 
| 5 | 4 | rnmpo 6033 | 
. . . . . . . 8
⊢ ran
(𝑥 ∈ 𝑅, 𝑦 ∈ 𝑆 ↦ (𝑥 × 𝑦)) = {𝑢 ∣ ∃𝑎 ∈ 𝑅 ∃𝑏 ∈ 𝑆 𝑢 = (𝑎 × 𝑏)} | 
| 6 | 1, 5 | eqtri 2217 | 
. . . . . . 7
⊢ 𝐵 = {𝑢 ∣ ∃𝑎 ∈ 𝑅 ∃𝑏 ∈ 𝑆 𝑢 = (𝑎 × 𝑏)} | 
| 7 | 6 | abeq2i 2307 | 
. . . . . 6
⊢ (𝑢 ∈ 𝐵 ↔ ∃𝑎 ∈ 𝑅 ∃𝑏 ∈ 𝑆 𝑢 = (𝑎 × 𝑏)) | 
| 8 |   | xpeq1 4677 | 
. . . . . . . . . 10
⊢ (𝑥 = 𝑐 → (𝑥 × 𝑦) = (𝑐 × 𝑦)) | 
| 9 |   | xpeq2 4678 | 
. . . . . . . . . 10
⊢ (𝑦 = 𝑑 → (𝑐 × 𝑦) = (𝑐 × 𝑑)) | 
| 10 | 8, 9 | cbvmpov 6002 | 
. . . . . . . . 9
⊢ (𝑥 ∈ 𝑅, 𝑦 ∈ 𝑆 ↦ (𝑥 × 𝑦)) = (𝑐 ∈ 𝑅, 𝑑 ∈ 𝑆 ↦ (𝑐 × 𝑑)) | 
| 11 | 10 | rnmpo 6033 | 
. . . . . . . 8
⊢ ran
(𝑥 ∈ 𝑅, 𝑦 ∈ 𝑆 ↦ (𝑥 × 𝑦)) = {𝑣 ∣ ∃𝑐 ∈ 𝑅 ∃𝑑 ∈ 𝑆 𝑣 = (𝑐 × 𝑑)} | 
| 12 | 1, 11 | eqtri 2217 | 
. . . . . . 7
⊢ 𝐵 = {𝑣 ∣ ∃𝑐 ∈ 𝑅 ∃𝑑 ∈ 𝑆 𝑣 = (𝑐 × 𝑑)} | 
| 13 | 12 | abeq2i 2307 | 
. . . . . 6
⊢ (𝑣 ∈ 𝐵 ↔ ∃𝑐 ∈ 𝑅 ∃𝑑 ∈ 𝑆 𝑣 = (𝑐 × 𝑑)) | 
| 14 | 7, 13 | anbi12i 460 | 
. . . . 5
⊢ ((𝑢 ∈ 𝐵 ∧ 𝑣 ∈ 𝐵) ↔ (∃𝑎 ∈ 𝑅 ∃𝑏 ∈ 𝑆 𝑢 = (𝑎 × 𝑏) ∧ ∃𝑐 ∈ 𝑅 ∃𝑑 ∈ 𝑆 𝑣 = (𝑐 × 𝑑))) | 
| 15 |   | reeanv 2667 | 
. . . . 5
⊢
(∃𝑎 ∈
𝑅 ∃𝑐 ∈ 𝑅 (∃𝑏 ∈ 𝑆 𝑢 = (𝑎 × 𝑏) ∧ ∃𝑑 ∈ 𝑆 𝑣 = (𝑐 × 𝑑)) ↔ (∃𝑎 ∈ 𝑅 ∃𝑏 ∈ 𝑆 𝑢 = (𝑎 × 𝑏) ∧ ∃𝑐 ∈ 𝑅 ∃𝑑 ∈ 𝑆 𝑣 = (𝑐 × 𝑑))) | 
| 16 | 14, 15 | bitr4i 187 | 
. . . 4
⊢ ((𝑢 ∈ 𝐵 ∧ 𝑣 ∈ 𝐵) ↔ ∃𝑎 ∈ 𝑅 ∃𝑐 ∈ 𝑅 (∃𝑏 ∈ 𝑆 𝑢 = (𝑎 × 𝑏) ∧ ∃𝑑 ∈ 𝑆 𝑣 = (𝑐 × 𝑑))) | 
| 17 |   | reeanv 2667 | 
. . . . . 6
⊢
(∃𝑏 ∈
𝑆 ∃𝑑 ∈ 𝑆 (𝑢 = (𝑎 × 𝑏) ∧ 𝑣 = (𝑐 × 𝑑)) ↔ (∃𝑏 ∈ 𝑆 𝑢 = (𝑎 × 𝑏) ∧ ∃𝑑 ∈ 𝑆 𝑣 = (𝑐 × 𝑑))) | 
| 18 |   | basis2 14284 | 
. . . . . . . . . . . . . . . 16
⊢ (((𝑅 ∈ TopBases ∧ 𝑎 ∈ 𝑅) ∧ (𝑐 ∈ 𝑅 ∧ 𝑢 ∈ (𝑎 ∩ 𝑐))) → ∃𝑥 ∈ 𝑅 (𝑢 ∈ 𝑥 ∧ 𝑥 ⊆ (𝑎 ∩ 𝑐))) | 
| 19 | 18 | exp43 372 | 
. . . . . . . . . . . . . . 15
⊢ (𝑅 ∈ TopBases → (𝑎 ∈ 𝑅 → (𝑐 ∈ 𝑅 → (𝑢 ∈ (𝑎 ∩ 𝑐) → ∃𝑥 ∈ 𝑅 (𝑢 ∈ 𝑥 ∧ 𝑥 ⊆ (𝑎 ∩ 𝑐)))))) | 
| 20 | 19 | imp42 354 | 
. . . . . . . . . . . . . 14
⊢ (((𝑅 ∈ TopBases ∧ (𝑎 ∈ 𝑅 ∧ 𝑐 ∈ 𝑅)) ∧ 𝑢 ∈ (𝑎 ∩ 𝑐)) → ∃𝑥 ∈ 𝑅 (𝑢 ∈ 𝑥 ∧ 𝑥 ⊆ (𝑎 ∩ 𝑐))) | 
| 21 |   | basis2 14284 | 
. . . . . . . . . . . . . . . 16
⊢ (((𝑆 ∈ TopBases ∧ 𝑏 ∈ 𝑆) ∧ (𝑑 ∈ 𝑆 ∧ 𝑣 ∈ (𝑏 ∩ 𝑑))) → ∃𝑦 ∈ 𝑆 (𝑣 ∈ 𝑦 ∧ 𝑦 ⊆ (𝑏 ∩ 𝑑))) | 
| 22 | 21 | exp43 372 | 
. . . . . . . . . . . . . . 15
⊢ (𝑆 ∈ TopBases → (𝑏 ∈ 𝑆 → (𝑑 ∈ 𝑆 → (𝑣 ∈ (𝑏 ∩ 𝑑) → ∃𝑦 ∈ 𝑆 (𝑣 ∈ 𝑦 ∧ 𝑦 ⊆ (𝑏 ∩ 𝑑)))))) | 
| 23 | 22 | imp42 354 | 
. . . . . . . . . . . . . 14
⊢ (((𝑆 ∈ TopBases ∧ (𝑏 ∈ 𝑆 ∧ 𝑑 ∈ 𝑆)) ∧ 𝑣 ∈ (𝑏 ∩ 𝑑)) → ∃𝑦 ∈ 𝑆 (𝑣 ∈ 𝑦 ∧ 𝑦 ⊆ (𝑏 ∩ 𝑑))) | 
| 24 |   | reeanv 2667 | 
. . . . . . . . . . . . . . 15
⊢
(∃𝑥 ∈
𝑅 ∃𝑦 ∈ 𝑆 ((𝑢 ∈ 𝑥 ∧ 𝑥 ⊆ (𝑎 ∩ 𝑐)) ∧ (𝑣 ∈ 𝑦 ∧ 𝑦 ⊆ (𝑏 ∩ 𝑑))) ↔ (∃𝑥 ∈ 𝑅 (𝑢 ∈ 𝑥 ∧ 𝑥 ⊆ (𝑎 ∩ 𝑐)) ∧ ∃𝑦 ∈ 𝑆 (𝑣 ∈ 𝑦 ∧ 𝑦 ⊆ (𝑏 ∩ 𝑑)))) | 
| 25 |   | opelxpi 4695 | 
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝑢 ∈ 𝑥 ∧ 𝑣 ∈ 𝑦) → 〈𝑢, 𝑣〉 ∈ (𝑥 × 𝑦)) | 
| 26 |   | xpss12 4770 | 
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝑥 ⊆ (𝑎 ∩ 𝑐) ∧ 𝑦 ⊆ (𝑏 ∩ 𝑑)) → (𝑥 × 𝑦) ⊆ ((𝑎 ∩ 𝑐) × (𝑏 ∩ 𝑑))) | 
| 27 | 25, 26 | anim12i 338 | 
. . . . . . . . . . . . . . . . . 18
⊢ (((𝑢 ∈ 𝑥 ∧ 𝑣 ∈ 𝑦) ∧ (𝑥 ⊆ (𝑎 ∩ 𝑐) ∧ 𝑦 ⊆ (𝑏 ∩ 𝑑))) → (〈𝑢, 𝑣〉 ∈ (𝑥 × 𝑦) ∧ (𝑥 × 𝑦) ⊆ ((𝑎 ∩ 𝑐) × (𝑏 ∩ 𝑑)))) | 
| 28 | 27 | an4s 588 | 
. . . . . . . . . . . . . . . . 17
⊢ (((𝑢 ∈ 𝑥 ∧ 𝑥 ⊆ (𝑎 ∩ 𝑐)) ∧ (𝑣 ∈ 𝑦 ∧ 𝑦 ⊆ (𝑏 ∩ 𝑑))) → (〈𝑢, 𝑣〉 ∈ (𝑥 × 𝑦) ∧ (𝑥 × 𝑦) ⊆ ((𝑎 ∩ 𝑐) × (𝑏 ∩ 𝑑)))) | 
| 29 | 28 | reximi 2594 | 
. . . . . . . . . . . . . . . 16
⊢
(∃𝑦 ∈
𝑆 ((𝑢 ∈ 𝑥 ∧ 𝑥 ⊆ (𝑎 ∩ 𝑐)) ∧ (𝑣 ∈ 𝑦 ∧ 𝑦 ⊆ (𝑏 ∩ 𝑑))) → ∃𝑦 ∈ 𝑆 (〈𝑢, 𝑣〉 ∈ (𝑥 × 𝑦) ∧ (𝑥 × 𝑦) ⊆ ((𝑎 ∩ 𝑐) × (𝑏 ∩ 𝑑)))) | 
| 30 | 29 | reximi 2594 | 
. . . . . . . . . . . . . . 15
⊢
(∃𝑥 ∈
𝑅 ∃𝑦 ∈ 𝑆 ((𝑢 ∈ 𝑥 ∧ 𝑥 ⊆ (𝑎 ∩ 𝑐)) ∧ (𝑣 ∈ 𝑦 ∧ 𝑦 ⊆ (𝑏 ∩ 𝑑))) → ∃𝑥 ∈ 𝑅 ∃𝑦 ∈ 𝑆 (〈𝑢, 𝑣〉 ∈ (𝑥 × 𝑦) ∧ (𝑥 × 𝑦) ⊆ ((𝑎 ∩ 𝑐) × (𝑏 ∩ 𝑑)))) | 
| 31 | 24, 30 | sylbir 135 | 
. . . . . . . . . . . . . 14
⊢
((∃𝑥 ∈
𝑅 (𝑢 ∈ 𝑥 ∧ 𝑥 ⊆ (𝑎 ∩ 𝑐)) ∧ ∃𝑦 ∈ 𝑆 (𝑣 ∈ 𝑦 ∧ 𝑦 ⊆ (𝑏 ∩ 𝑑))) → ∃𝑥 ∈ 𝑅 ∃𝑦 ∈ 𝑆 (〈𝑢, 𝑣〉 ∈ (𝑥 × 𝑦) ∧ (𝑥 × 𝑦) ⊆ ((𝑎 ∩ 𝑐) × (𝑏 ∩ 𝑑)))) | 
| 32 | 20, 23, 31 | syl2an 289 | 
. . . . . . . . . . . . 13
⊢ ((((𝑅 ∈ TopBases ∧ (𝑎 ∈ 𝑅 ∧ 𝑐 ∈ 𝑅)) ∧ 𝑢 ∈ (𝑎 ∩ 𝑐)) ∧ ((𝑆 ∈ TopBases ∧ (𝑏 ∈ 𝑆 ∧ 𝑑 ∈ 𝑆)) ∧ 𝑣 ∈ (𝑏 ∩ 𝑑))) → ∃𝑥 ∈ 𝑅 ∃𝑦 ∈ 𝑆 (〈𝑢, 𝑣〉 ∈ (𝑥 × 𝑦) ∧ (𝑥 × 𝑦) ⊆ ((𝑎 ∩ 𝑐) × (𝑏 ∩ 𝑑)))) | 
| 33 | 32 | an4s 588 | 
. . . . . . . . . . . 12
⊢ ((((𝑅 ∈ TopBases ∧ (𝑎 ∈ 𝑅 ∧ 𝑐 ∈ 𝑅)) ∧ (𝑆 ∈ TopBases ∧ (𝑏 ∈ 𝑆 ∧ 𝑑 ∈ 𝑆))) ∧ (𝑢 ∈ (𝑎 ∩ 𝑐) ∧ 𝑣 ∈ (𝑏 ∩ 𝑑))) → ∃𝑥 ∈ 𝑅 ∃𝑦 ∈ 𝑆 (〈𝑢, 𝑣〉 ∈ (𝑥 × 𝑦) ∧ (𝑥 × 𝑦) ⊆ ((𝑎 ∩ 𝑐) × (𝑏 ∩ 𝑑)))) | 
| 34 | 33 | ralrimivva 2579 | 
. . . . . . . . . . 11
⊢ (((𝑅 ∈ TopBases ∧ (𝑎 ∈ 𝑅 ∧ 𝑐 ∈ 𝑅)) ∧ (𝑆 ∈ TopBases ∧ (𝑏 ∈ 𝑆 ∧ 𝑑 ∈ 𝑆))) → ∀𝑢 ∈ (𝑎 ∩ 𝑐)∀𝑣 ∈ (𝑏 ∩ 𝑑)∃𝑥 ∈ 𝑅 ∃𝑦 ∈ 𝑆 (〈𝑢, 𝑣〉 ∈ (𝑥 × 𝑦) ∧ (𝑥 × 𝑦) ⊆ ((𝑎 ∩ 𝑐) × (𝑏 ∩ 𝑑)))) | 
| 35 |   | eleq1 2259 | 
. . . . . . . . . . . . . 14
⊢ (𝑝 = 〈𝑢, 𝑣〉 → (𝑝 ∈ (𝑥 × 𝑦) ↔ 〈𝑢, 𝑣〉 ∈ (𝑥 × 𝑦))) | 
| 36 | 35 | anbi1d 465 | 
. . . . . . . . . . . . 13
⊢ (𝑝 = 〈𝑢, 𝑣〉 → ((𝑝 ∈ (𝑥 × 𝑦) ∧ (𝑥 × 𝑦) ⊆ ((𝑎 ∩ 𝑐) × (𝑏 ∩ 𝑑))) ↔ (〈𝑢, 𝑣〉 ∈ (𝑥 × 𝑦) ∧ (𝑥 × 𝑦) ⊆ ((𝑎 ∩ 𝑐) × (𝑏 ∩ 𝑑))))) | 
| 37 | 36 | 2rexbidv 2522 | 
. . . . . . . . . . . 12
⊢ (𝑝 = 〈𝑢, 𝑣〉 → (∃𝑥 ∈ 𝑅 ∃𝑦 ∈ 𝑆 (𝑝 ∈ (𝑥 × 𝑦) ∧ (𝑥 × 𝑦) ⊆ ((𝑎 ∩ 𝑐) × (𝑏 ∩ 𝑑))) ↔ ∃𝑥 ∈ 𝑅 ∃𝑦 ∈ 𝑆 (〈𝑢, 𝑣〉 ∈ (𝑥 × 𝑦) ∧ (𝑥 × 𝑦) ⊆ ((𝑎 ∩ 𝑐) × (𝑏 ∩ 𝑑))))) | 
| 38 | 37 | ralxp 4809 | 
. . . . . . . . . . 11
⊢
(∀𝑝 ∈
((𝑎 ∩ 𝑐) × (𝑏 ∩ 𝑑))∃𝑥 ∈ 𝑅 ∃𝑦 ∈ 𝑆 (𝑝 ∈ (𝑥 × 𝑦) ∧ (𝑥 × 𝑦) ⊆ ((𝑎 ∩ 𝑐) × (𝑏 ∩ 𝑑))) ↔ ∀𝑢 ∈ (𝑎 ∩ 𝑐)∀𝑣 ∈ (𝑏 ∩ 𝑑)∃𝑥 ∈ 𝑅 ∃𝑦 ∈ 𝑆 (〈𝑢, 𝑣〉 ∈ (𝑥 × 𝑦) ∧ (𝑥 × 𝑦) ⊆ ((𝑎 ∩ 𝑐) × (𝑏 ∩ 𝑑)))) | 
| 39 | 34, 38 | sylibr 134 | 
. . . . . . . . . 10
⊢ (((𝑅 ∈ TopBases ∧ (𝑎 ∈ 𝑅 ∧ 𝑐 ∈ 𝑅)) ∧ (𝑆 ∈ TopBases ∧ (𝑏 ∈ 𝑆 ∧ 𝑑 ∈ 𝑆))) → ∀𝑝 ∈ ((𝑎 ∩ 𝑐) × (𝑏 ∩ 𝑑))∃𝑥 ∈ 𝑅 ∃𝑦 ∈ 𝑆 (𝑝 ∈ (𝑥 × 𝑦) ∧ (𝑥 × 𝑦) ⊆ ((𝑎 ∩ 𝑐) × (𝑏 ∩ 𝑑)))) | 
| 40 | 39 | an4s 588 | 
. . . . . . . . 9
⊢ (((𝑅 ∈ TopBases ∧ 𝑆 ∈ TopBases) ∧ ((𝑎 ∈ 𝑅 ∧ 𝑐 ∈ 𝑅) ∧ (𝑏 ∈ 𝑆 ∧ 𝑑 ∈ 𝑆))) → ∀𝑝 ∈ ((𝑎 ∩ 𝑐) × (𝑏 ∩ 𝑑))∃𝑥 ∈ 𝑅 ∃𝑦 ∈ 𝑆 (𝑝 ∈ (𝑥 × 𝑦) ∧ (𝑥 × 𝑦) ⊆ ((𝑎 ∩ 𝑐) × (𝑏 ∩ 𝑑)))) | 
| 41 | 40 | anassrs 400 | 
. . . . . . . 8
⊢ ((((𝑅 ∈ TopBases ∧ 𝑆 ∈ TopBases) ∧ (𝑎 ∈ 𝑅 ∧ 𝑐 ∈ 𝑅)) ∧ (𝑏 ∈ 𝑆 ∧ 𝑑 ∈ 𝑆)) → ∀𝑝 ∈ ((𝑎 ∩ 𝑐) × (𝑏 ∩ 𝑑))∃𝑥 ∈ 𝑅 ∃𝑦 ∈ 𝑆 (𝑝 ∈ (𝑥 × 𝑦) ∧ (𝑥 × 𝑦) ⊆ ((𝑎 ∩ 𝑐) × (𝑏 ∩ 𝑑)))) | 
| 42 |   | ineq12 3359 | 
. . . . . . . . . 10
⊢ ((𝑢 = (𝑎 × 𝑏) ∧ 𝑣 = (𝑐 × 𝑑)) → (𝑢 ∩ 𝑣) = ((𝑎 × 𝑏) ∩ (𝑐 × 𝑑))) | 
| 43 |   | inxp 4800 | 
. . . . . . . . . 10
⊢ ((𝑎 × 𝑏) ∩ (𝑐 × 𝑑)) = ((𝑎 ∩ 𝑐) × (𝑏 ∩ 𝑑)) | 
| 44 | 42, 43 | eqtrdi 2245 | 
. . . . . . . . 9
⊢ ((𝑢 = (𝑎 × 𝑏) ∧ 𝑣 = (𝑐 × 𝑑)) → (𝑢 ∩ 𝑣) = ((𝑎 ∩ 𝑐) × (𝑏 ∩ 𝑑))) | 
| 45 | 44 | sseq2d 3213 | 
. . . . . . . . . . . 12
⊢ ((𝑢 = (𝑎 × 𝑏) ∧ 𝑣 = (𝑐 × 𝑑)) → (𝑡 ⊆ (𝑢 ∩ 𝑣) ↔ 𝑡 ⊆ ((𝑎 ∩ 𝑐) × (𝑏 ∩ 𝑑)))) | 
| 46 | 45 | anbi2d 464 | 
. . . . . . . . . . 11
⊢ ((𝑢 = (𝑎 × 𝑏) ∧ 𝑣 = (𝑐 × 𝑑)) → ((𝑝 ∈ 𝑡 ∧ 𝑡 ⊆ (𝑢 ∩ 𝑣)) ↔ (𝑝 ∈ 𝑡 ∧ 𝑡 ⊆ ((𝑎 ∩ 𝑐) × (𝑏 ∩ 𝑑))))) | 
| 47 | 46 | rexbidv 2498 | 
. . . . . . . . . 10
⊢ ((𝑢 = (𝑎 × 𝑏) ∧ 𝑣 = (𝑐 × 𝑑)) → (∃𝑡 ∈ 𝐵 (𝑝 ∈ 𝑡 ∧ 𝑡 ⊆ (𝑢 ∩ 𝑣)) ↔ ∃𝑡 ∈ 𝐵 (𝑝 ∈ 𝑡 ∧ 𝑡 ⊆ ((𝑎 ∩ 𝑐) × (𝑏 ∩ 𝑑))))) | 
| 48 | 1 | rexeqi 2698 | 
. . . . . . . . . . 11
⊢
(∃𝑡 ∈
𝐵 (𝑝 ∈ 𝑡 ∧ 𝑡 ⊆ ((𝑎 ∩ 𝑐) × (𝑏 ∩ 𝑑))) ↔ ∃𝑡 ∈ ran (𝑥 ∈ 𝑅, 𝑦 ∈ 𝑆 ↦ (𝑥 × 𝑦))(𝑝 ∈ 𝑡 ∧ 𝑡 ⊆ ((𝑎 ∩ 𝑐) × (𝑏 ∩ 𝑑)))) | 
| 49 |   | 1stexg 6225 | 
. . . . . . . . . . . . . . 15
⊢ (𝑧 ∈ V → (1st
‘𝑧) ∈
V) | 
| 50 | 49 | elv 2767 | 
. . . . . . . . . . . . . 14
⊢
(1st ‘𝑧) ∈ V | 
| 51 |   | 2ndexg 6226 | 
. . . . . . . . . . . . . . 15
⊢ (𝑧 ∈ V → (2nd
‘𝑧) ∈
V) | 
| 52 | 51 | elv 2767 | 
. . . . . . . . . . . . . 14
⊢
(2nd ‘𝑧) ∈ V | 
| 53 | 50, 52 | xpex 4778 | 
. . . . . . . . . . . . 13
⊢
((1st ‘𝑧) × (2nd ‘𝑧)) ∈ V | 
| 54 | 53 | rgenw 2552 | 
. . . . . . . . . . . 12
⊢
∀𝑧 ∈
(𝑅 × 𝑆)((1st ‘𝑧) × (2nd
‘𝑧)) ∈
V | 
| 55 |   | vex 2766 | 
. . . . . . . . . . . . . . . . 17
⊢ 𝑥 ∈ V | 
| 56 |   | vex 2766 | 
. . . . . . . . . . . . . . . . 17
⊢ 𝑦 ∈ V | 
| 57 | 55, 56 | op1std 6206 | 
. . . . . . . . . . . . . . . 16
⊢ (𝑧 = 〈𝑥, 𝑦〉 → (1st ‘𝑧) = 𝑥) | 
| 58 | 55, 56 | op2ndd 6207 | 
. . . . . . . . . . . . . . . 16
⊢ (𝑧 = 〈𝑥, 𝑦〉 → (2nd ‘𝑧) = 𝑦) | 
| 59 | 57, 58 | xpeq12d 4688 | 
. . . . . . . . . . . . . . 15
⊢ (𝑧 = 〈𝑥, 𝑦〉 → ((1st ‘𝑧) × (2nd
‘𝑧)) = (𝑥 × 𝑦)) | 
| 60 | 59 | mpompt 6014 | 
. . . . . . . . . . . . . 14
⊢ (𝑧 ∈ (𝑅 × 𝑆) ↦ ((1st ‘𝑧) × (2nd
‘𝑧))) = (𝑥 ∈ 𝑅, 𝑦 ∈ 𝑆 ↦ (𝑥 × 𝑦)) | 
| 61 | 60 | eqcomi 2200 | 
. . . . . . . . . . . . 13
⊢ (𝑥 ∈ 𝑅, 𝑦 ∈ 𝑆 ↦ (𝑥 × 𝑦)) = (𝑧 ∈ (𝑅 × 𝑆) ↦ ((1st ‘𝑧) × (2nd
‘𝑧))) | 
| 62 |   | eleq2 2260 | 
. . . . . . . . . . . . . 14
⊢ (𝑡 = ((1st ‘𝑧) × (2nd
‘𝑧)) → (𝑝 ∈ 𝑡 ↔ 𝑝 ∈ ((1st ‘𝑧) × (2nd
‘𝑧)))) | 
| 63 |   | sseq1 3206 | 
. . . . . . . . . . . . . 14
⊢ (𝑡 = ((1st ‘𝑧) × (2nd
‘𝑧)) → (𝑡 ⊆ ((𝑎 ∩ 𝑐) × (𝑏 ∩ 𝑑)) ↔ ((1st ‘𝑧) × (2nd
‘𝑧)) ⊆ ((𝑎 ∩ 𝑐) × (𝑏 ∩ 𝑑)))) | 
| 64 | 62, 63 | anbi12d 473 | 
. . . . . . . . . . . . 13
⊢ (𝑡 = ((1st ‘𝑧) × (2nd
‘𝑧)) → ((𝑝 ∈ 𝑡 ∧ 𝑡 ⊆ ((𝑎 ∩ 𝑐) × (𝑏 ∩ 𝑑))) ↔ (𝑝 ∈ ((1st ‘𝑧) × (2nd
‘𝑧)) ∧
((1st ‘𝑧)
× (2nd ‘𝑧)) ⊆ ((𝑎 ∩ 𝑐) × (𝑏 ∩ 𝑑))))) | 
| 65 | 61, 64 | rexrnmpt 5705 | 
. . . . . . . . . . . 12
⊢
(∀𝑧 ∈
(𝑅 × 𝑆)((1st ‘𝑧) × (2nd
‘𝑧)) ∈ V →
(∃𝑡 ∈ ran (𝑥 ∈ 𝑅, 𝑦 ∈ 𝑆 ↦ (𝑥 × 𝑦))(𝑝 ∈ 𝑡 ∧ 𝑡 ⊆ ((𝑎 ∩ 𝑐) × (𝑏 ∩ 𝑑))) ↔ ∃𝑧 ∈ (𝑅 × 𝑆)(𝑝 ∈ ((1st ‘𝑧) × (2nd
‘𝑧)) ∧
((1st ‘𝑧)
× (2nd ‘𝑧)) ⊆ ((𝑎 ∩ 𝑐) × (𝑏 ∩ 𝑑))))) | 
| 66 | 54, 65 | ax-mp 5 | 
. . . . . . . . . . 11
⊢
(∃𝑡 ∈ ran
(𝑥 ∈ 𝑅, 𝑦 ∈ 𝑆 ↦ (𝑥 × 𝑦))(𝑝 ∈ 𝑡 ∧ 𝑡 ⊆ ((𝑎 ∩ 𝑐) × (𝑏 ∩ 𝑑))) ↔ ∃𝑧 ∈ (𝑅 × 𝑆)(𝑝 ∈ ((1st ‘𝑧) × (2nd
‘𝑧)) ∧
((1st ‘𝑧)
× (2nd ‘𝑧)) ⊆ ((𝑎 ∩ 𝑐) × (𝑏 ∩ 𝑑)))) | 
| 67 | 59 | eleq2d 2266 | 
. . . . . . . . . . . . 13
⊢ (𝑧 = 〈𝑥, 𝑦〉 → (𝑝 ∈ ((1st ‘𝑧) × (2nd
‘𝑧)) ↔ 𝑝 ∈ (𝑥 × 𝑦))) | 
| 68 | 59 | sseq1d 3212 | 
. . . . . . . . . . . . 13
⊢ (𝑧 = 〈𝑥, 𝑦〉 → (((1st ‘𝑧) × (2nd
‘𝑧)) ⊆ ((𝑎 ∩ 𝑐) × (𝑏 ∩ 𝑑)) ↔ (𝑥 × 𝑦) ⊆ ((𝑎 ∩ 𝑐) × (𝑏 ∩ 𝑑)))) | 
| 69 | 67, 68 | anbi12d 473 | 
. . . . . . . . . . . 12
⊢ (𝑧 = 〈𝑥, 𝑦〉 → ((𝑝 ∈ ((1st ‘𝑧) × (2nd
‘𝑧)) ∧
((1st ‘𝑧)
× (2nd ‘𝑧)) ⊆ ((𝑎 ∩ 𝑐) × (𝑏 ∩ 𝑑))) ↔ (𝑝 ∈ (𝑥 × 𝑦) ∧ (𝑥 × 𝑦) ⊆ ((𝑎 ∩ 𝑐) × (𝑏 ∩ 𝑑))))) | 
| 70 | 69 | rexxp 4810 | 
. . . . . . . . . . 11
⊢
(∃𝑧 ∈
(𝑅 × 𝑆)(𝑝 ∈ ((1st ‘𝑧) × (2nd
‘𝑧)) ∧
((1st ‘𝑧)
× (2nd ‘𝑧)) ⊆ ((𝑎 ∩ 𝑐) × (𝑏 ∩ 𝑑))) ↔ ∃𝑥 ∈ 𝑅 ∃𝑦 ∈ 𝑆 (𝑝 ∈ (𝑥 × 𝑦) ∧ (𝑥 × 𝑦) ⊆ ((𝑎 ∩ 𝑐) × (𝑏 ∩ 𝑑)))) | 
| 71 | 48, 66, 70 | 3bitri 206 | 
. . . . . . . . . 10
⊢
(∃𝑡 ∈
𝐵 (𝑝 ∈ 𝑡 ∧ 𝑡 ⊆ ((𝑎 ∩ 𝑐) × (𝑏 ∩ 𝑑))) ↔ ∃𝑥 ∈ 𝑅 ∃𝑦 ∈ 𝑆 (𝑝 ∈ (𝑥 × 𝑦) ∧ (𝑥 × 𝑦) ⊆ ((𝑎 ∩ 𝑐) × (𝑏 ∩ 𝑑)))) | 
| 72 | 47, 71 | bitrdi 196 | 
. . . . . . . . 9
⊢ ((𝑢 = (𝑎 × 𝑏) ∧ 𝑣 = (𝑐 × 𝑑)) → (∃𝑡 ∈ 𝐵 (𝑝 ∈ 𝑡 ∧ 𝑡 ⊆ (𝑢 ∩ 𝑣)) ↔ ∃𝑥 ∈ 𝑅 ∃𝑦 ∈ 𝑆 (𝑝 ∈ (𝑥 × 𝑦) ∧ (𝑥 × 𝑦) ⊆ ((𝑎 ∩ 𝑐) × (𝑏 ∩ 𝑑))))) | 
| 73 | 44, 72 | raleqbidv 2709 | 
. . . . . . . 8
⊢ ((𝑢 = (𝑎 × 𝑏) ∧ 𝑣 = (𝑐 × 𝑑)) → (∀𝑝 ∈ (𝑢 ∩ 𝑣)∃𝑡 ∈ 𝐵 (𝑝 ∈ 𝑡 ∧ 𝑡 ⊆ (𝑢 ∩ 𝑣)) ↔ ∀𝑝 ∈ ((𝑎 ∩ 𝑐) × (𝑏 ∩ 𝑑))∃𝑥 ∈ 𝑅 ∃𝑦 ∈ 𝑆 (𝑝 ∈ (𝑥 × 𝑦) ∧ (𝑥 × 𝑦) ⊆ ((𝑎 ∩ 𝑐) × (𝑏 ∩ 𝑑))))) | 
| 74 | 41, 73 | syl5ibrcom 157 | 
. . . . . . 7
⊢ ((((𝑅 ∈ TopBases ∧ 𝑆 ∈ TopBases) ∧ (𝑎 ∈ 𝑅 ∧ 𝑐 ∈ 𝑅)) ∧ (𝑏 ∈ 𝑆 ∧ 𝑑 ∈ 𝑆)) → ((𝑢 = (𝑎 × 𝑏) ∧ 𝑣 = (𝑐 × 𝑑)) → ∀𝑝 ∈ (𝑢 ∩ 𝑣)∃𝑡 ∈ 𝐵 (𝑝 ∈ 𝑡 ∧ 𝑡 ⊆ (𝑢 ∩ 𝑣)))) | 
| 75 | 74 | rexlimdvva 2622 | 
. . . . . 6
⊢ (((𝑅 ∈ TopBases ∧ 𝑆 ∈ TopBases) ∧ (𝑎 ∈ 𝑅 ∧ 𝑐 ∈ 𝑅)) → (∃𝑏 ∈ 𝑆 ∃𝑑 ∈ 𝑆 (𝑢 = (𝑎 × 𝑏) ∧ 𝑣 = (𝑐 × 𝑑)) → ∀𝑝 ∈ (𝑢 ∩ 𝑣)∃𝑡 ∈ 𝐵 (𝑝 ∈ 𝑡 ∧ 𝑡 ⊆ (𝑢 ∩ 𝑣)))) | 
| 76 | 17, 75 | biimtrrid 153 | 
. . . . 5
⊢ (((𝑅 ∈ TopBases ∧ 𝑆 ∈ TopBases) ∧ (𝑎 ∈ 𝑅 ∧ 𝑐 ∈ 𝑅)) → ((∃𝑏 ∈ 𝑆 𝑢 = (𝑎 × 𝑏) ∧ ∃𝑑 ∈ 𝑆 𝑣 = (𝑐 × 𝑑)) → ∀𝑝 ∈ (𝑢 ∩ 𝑣)∃𝑡 ∈ 𝐵 (𝑝 ∈ 𝑡 ∧ 𝑡 ⊆ (𝑢 ∩ 𝑣)))) | 
| 77 | 76 | rexlimdvva 2622 | 
. . . 4
⊢ ((𝑅 ∈ TopBases ∧ 𝑆 ∈ TopBases) →
(∃𝑎 ∈ 𝑅 ∃𝑐 ∈ 𝑅 (∃𝑏 ∈ 𝑆 𝑢 = (𝑎 × 𝑏) ∧ ∃𝑑 ∈ 𝑆 𝑣 = (𝑐 × 𝑑)) → ∀𝑝 ∈ (𝑢 ∩ 𝑣)∃𝑡 ∈ 𝐵 (𝑝 ∈ 𝑡 ∧ 𝑡 ⊆ (𝑢 ∩ 𝑣)))) | 
| 78 | 16, 77 | biimtrid 152 | 
. . 3
⊢ ((𝑅 ∈ TopBases ∧ 𝑆 ∈ TopBases) → ((𝑢 ∈ 𝐵 ∧ 𝑣 ∈ 𝐵) → ∀𝑝 ∈ (𝑢 ∩ 𝑣)∃𝑡 ∈ 𝐵 (𝑝 ∈ 𝑡 ∧ 𝑡 ⊆ (𝑢 ∩ 𝑣)))) | 
| 79 | 78 | ralrimivv 2578 | 
. 2
⊢ ((𝑅 ∈ TopBases ∧ 𝑆 ∈ TopBases) →
∀𝑢 ∈ 𝐵 ∀𝑣 ∈ 𝐵 ∀𝑝 ∈ (𝑢 ∩ 𝑣)∃𝑡 ∈ 𝐵 (𝑝 ∈ 𝑡 ∧ 𝑡 ⊆ (𝑢 ∩ 𝑣))) | 
| 80 | 1 | txbasex 14493 | 
. . 3
⊢ ((𝑅 ∈ TopBases ∧ 𝑆 ∈ TopBases) → 𝐵 ∈ V) | 
| 81 |   | isbasis2g 14281 | 
. . 3
⊢ (𝐵 ∈ V → (𝐵 ∈ TopBases ↔
∀𝑢 ∈ 𝐵 ∀𝑣 ∈ 𝐵 ∀𝑝 ∈ (𝑢 ∩ 𝑣)∃𝑡 ∈ 𝐵 (𝑝 ∈ 𝑡 ∧ 𝑡 ⊆ (𝑢 ∩ 𝑣)))) | 
| 82 | 80, 81 | syl 14 | 
. 2
⊢ ((𝑅 ∈ TopBases ∧ 𝑆 ∈ TopBases) → (𝐵 ∈ TopBases ↔
∀𝑢 ∈ 𝐵 ∀𝑣 ∈ 𝐵 ∀𝑝 ∈ (𝑢 ∩ 𝑣)∃𝑡 ∈ 𝐵 (𝑝 ∈ 𝑡 ∧ 𝑡 ⊆ (𝑢 ∩ 𝑣)))) | 
| 83 | 79, 82 | mpbird 167 | 
1
⊢ ((𝑅 ∈ TopBases ∧ 𝑆 ∈ TopBases) → 𝐵 ∈
TopBases) |