![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > cc2 | GIF version |
Description: Countable choice using sequences instead of countable sets. (Contributed by Jim Kingdon, 27-Apr-2024.) |
Ref | Expression |
---|---|
cc2.cc | ⊢ (𝜑 → CCHOICE) |
cc2.a | ⊢ (𝜑 → 𝐹 Fn ω) |
cc2.m | ⊢ (𝜑 → ∀𝑥 ∈ ω ∃𝑤 𝑤 ∈ (𝐹‘𝑥)) |
Ref | Expression |
---|---|
cc2 | ⊢ (𝜑 → ∃𝑔(𝑔 Fn ω ∧ ∀𝑛 ∈ ω (𝑔‘𝑛) ∈ (𝐹‘𝑛))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cc2.cc | . 2 ⊢ (𝜑 → CCHOICE) | |
2 | cc2.a | . 2 ⊢ (𝜑 → 𝐹 Fn ω) | |
3 | cc2.m | . . . 4 ⊢ (𝜑 → ∀𝑥 ∈ ω ∃𝑤 𝑤 ∈ (𝐹‘𝑥)) | |
4 | fveq2 5517 | . . . . . . 7 ⊢ (𝑥 = 𝑦 → (𝐹‘𝑥) = (𝐹‘𝑦)) | |
5 | 4 | eleq2d 2247 | . . . . . 6 ⊢ (𝑥 = 𝑦 → (𝑤 ∈ (𝐹‘𝑥) ↔ 𝑤 ∈ (𝐹‘𝑦))) |
6 | 5 | exbidv 1825 | . . . . 5 ⊢ (𝑥 = 𝑦 → (∃𝑤 𝑤 ∈ (𝐹‘𝑥) ↔ ∃𝑤 𝑤 ∈ (𝐹‘𝑦))) |
7 | 6 | cbvralv 2705 | . . . 4 ⊢ (∀𝑥 ∈ ω ∃𝑤 𝑤 ∈ (𝐹‘𝑥) ↔ ∀𝑦 ∈ ω ∃𝑤 𝑤 ∈ (𝐹‘𝑦)) |
8 | 3, 7 | sylib 122 | . . 3 ⊢ (𝜑 → ∀𝑦 ∈ ω ∃𝑤 𝑤 ∈ (𝐹‘𝑦)) |
9 | eleq1w 2238 | . . . . 5 ⊢ (𝑤 = 𝑣 → (𝑤 ∈ (𝐹‘𝑦) ↔ 𝑣 ∈ (𝐹‘𝑦))) | |
10 | 9 | cbvexv 1918 | . . . 4 ⊢ (∃𝑤 𝑤 ∈ (𝐹‘𝑦) ↔ ∃𝑣 𝑣 ∈ (𝐹‘𝑦)) |
11 | 10 | ralbii 2483 | . . 3 ⊢ (∀𝑦 ∈ ω ∃𝑤 𝑤 ∈ (𝐹‘𝑦) ↔ ∀𝑦 ∈ ω ∃𝑣 𝑣 ∈ (𝐹‘𝑦)) |
12 | 8, 11 | sylib 122 | . 2 ⊢ (𝜑 → ∀𝑦 ∈ ω ∃𝑣 𝑣 ∈ (𝐹‘𝑦)) |
13 | nfcv 2319 | . . 3 ⊢ Ⅎ𝑛({𝑚} × (𝐹‘𝑚)) | |
14 | nfcv 2319 | . . 3 ⊢ Ⅎ𝑚({𝑛} × (𝐹‘𝑛)) | |
15 | sneq 3605 | . . . 4 ⊢ (𝑚 = 𝑛 → {𝑚} = {𝑛}) | |
16 | fveq2 5517 | . . . 4 ⊢ (𝑚 = 𝑛 → (𝐹‘𝑚) = (𝐹‘𝑛)) | |
17 | 15, 16 | xpeq12d 4653 | . . 3 ⊢ (𝑚 = 𝑛 → ({𝑚} × (𝐹‘𝑚)) = ({𝑛} × (𝐹‘𝑛))) |
18 | 13, 14, 17 | cbvmpt 4100 | . 2 ⊢ (𝑚 ∈ ω ↦ ({𝑚} × (𝐹‘𝑚))) = (𝑛 ∈ ω ↦ ({𝑛} × (𝐹‘𝑛))) |
19 | nfcv 2319 | . . 3 ⊢ Ⅎ𝑛(2nd ‘(𝑓‘((𝑚 ∈ ω ↦ ({𝑚} × (𝐹‘𝑚)))‘𝑚))) | |
20 | nfcv 2319 | . . . 4 ⊢ Ⅎ𝑚2nd | |
21 | nfcv 2319 | . . . . 5 ⊢ Ⅎ𝑚𝑓 | |
22 | nffvmpt1 5528 | . . . . 5 ⊢ Ⅎ𝑚((𝑚 ∈ ω ↦ ({𝑚} × (𝐹‘𝑚)))‘𝑛) | |
23 | 21, 22 | nffv 5527 | . . . 4 ⊢ Ⅎ𝑚(𝑓‘((𝑚 ∈ ω ↦ ({𝑚} × (𝐹‘𝑚)))‘𝑛)) |
24 | 20, 23 | nffv 5527 | . . 3 ⊢ Ⅎ𝑚(2nd ‘(𝑓‘((𝑚 ∈ ω ↦ ({𝑚} × (𝐹‘𝑚)))‘𝑛))) |
25 | 2fveq3 5522 | . . . 4 ⊢ (𝑚 = 𝑛 → (𝑓‘((𝑚 ∈ ω ↦ ({𝑚} × (𝐹‘𝑚)))‘𝑚)) = (𝑓‘((𝑚 ∈ ω ↦ ({𝑚} × (𝐹‘𝑚)))‘𝑛))) | |
26 | 25 | fveq2d 5521 | . . 3 ⊢ (𝑚 = 𝑛 → (2nd ‘(𝑓‘((𝑚 ∈ ω ↦ ({𝑚} × (𝐹‘𝑚)))‘𝑚))) = (2nd ‘(𝑓‘((𝑚 ∈ ω ↦ ({𝑚} × (𝐹‘𝑚)))‘𝑛)))) |
27 | 19, 24, 26 | cbvmpt 4100 | . 2 ⊢ (𝑚 ∈ ω ↦ (2nd ‘(𝑓‘((𝑚 ∈ ω ↦ ({𝑚} × (𝐹‘𝑚)))‘𝑚)))) = (𝑛 ∈ ω ↦ (2nd ‘(𝑓‘((𝑚 ∈ ω ↦ ({𝑚} × (𝐹‘𝑚)))‘𝑛)))) |
28 | 1, 2, 12, 18, 27 | cc2lem 7267 | 1 ⊢ (𝜑 → ∃𝑔(𝑔 Fn ω ∧ ∀𝑛 ∈ ω (𝑔‘𝑛) ∈ (𝐹‘𝑛))) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 ∃wex 1492 ∈ wcel 2148 ∀wral 2455 {csn 3594 ↦ cmpt 4066 ωcom 4591 × cxp 4626 Fn wfn 5213 ‘cfv 5218 2nd c2nd 6142 CCHOICEwacc 7263 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 709 ax-5 1447 ax-7 1448 ax-gen 1449 ax-ie1 1493 ax-ie2 1494 ax-8 1504 ax-10 1505 ax-11 1506 ax-i12 1507 ax-bndl 1509 ax-4 1510 ax-17 1526 ax-i9 1530 ax-ial 1534 ax-i5r 1535 ax-13 2150 ax-14 2151 ax-ext 2159 ax-coll 4120 ax-sep 4123 ax-pow 4176 ax-pr 4211 ax-un 4435 ax-iinf 4589 |
This theorem depends on definitions: df-bi 117 df-3an 980 df-tru 1356 df-nf 1461 df-sb 1763 df-eu 2029 df-mo 2030 df-clab 2164 df-cleq 2170 df-clel 2173 df-nfc 2308 df-ral 2460 df-rex 2461 df-reu 2462 df-rab 2464 df-v 2741 df-sbc 2965 df-csb 3060 df-un 3135 df-in 3137 df-ss 3144 df-pw 3579 df-sn 3600 df-pr 3601 df-op 3603 df-uni 3812 df-int 3847 df-iun 3890 df-br 4006 df-opab 4067 df-mpt 4068 df-id 4295 df-iom 4592 df-xp 4634 df-rel 4635 df-cnv 4636 df-co 4637 df-dm 4638 df-rn 4639 df-res 4640 df-ima 4641 df-iota 5180 df-fun 5220 df-fn 5221 df-f 5222 df-f1 5223 df-fo 5224 df-f1o 5225 df-fv 5226 df-2nd 6144 df-er 6537 df-en 6743 df-cc 7264 |
This theorem is referenced by: cc3 7269 |
Copyright terms: Public domain | W3C validator |