| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > cc2 | GIF version | ||
| Description: Countable choice using sequences instead of countable sets. (Contributed by Jim Kingdon, 27-Apr-2024.) |
| Ref | Expression |
|---|---|
| cc2.cc | ⊢ (𝜑 → CCHOICE) |
| cc2.a | ⊢ (𝜑 → 𝐹 Fn ω) |
| cc2.m | ⊢ (𝜑 → ∀𝑥 ∈ ω ∃𝑤 𝑤 ∈ (𝐹‘𝑥)) |
| Ref | Expression |
|---|---|
| cc2 | ⊢ (𝜑 → ∃𝑔(𝑔 Fn ω ∧ ∀𝑛 ∈ ω (𝑔‘𝑛) ∈ (𝐹‘𝑛))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cc2.cc | . 2 ⊢ (𝜑 → CCHOICE) | |
| 2 | cc2.a | . 2 ⊢ (𝜑 → 𝐹 Fn ω) | |
| 3 | cc2.m | . . . 4 ⊢ (𝜑 → ∀𝑥 ∈ ω ∃𝑤 𝑤 ∈ (𝐹‘𝑥)) | |
| 4 | fveq2 5586 | . . . . . . 7 ⊢ (𝑥 = 𝑦 → (𝐹‘𝑥) = (𝐹‘𝑦)) | |
| 5 | 4 | eleq2d 2276 | . . . . . 6 ⊢ (𝑥 = 𝑦 → (𝑤 ∈ (𝐹‘𝑥) ↔ 𝑤 ∈ (𝐹‘𝑦))) |
| 6 | 5 | exbidv 1849 | . . . . 5 ⊢ (𝑥 = 𝑦 → (∃𝑤 𝑤 ∈ (𝐹‘𝑥) ↔ ∃𝑤 𝑤 ∈ (𝐹‘𝑦))) |
| 7 | 6 | cbvralv 2739 | . . . 4 ⊢ (∀𝑥 ∈ ω ∃𝑤 𝑤 ∈ (𝐹‘𝑥) ↔ ∀𝑦 ∈ ω ∃𝑤 𝑤 ∈ (𝐹‘𝑦)) |
| 8 | 3, 7 | sylib 122 | . . 3 ⊢ (𝜑 → ∀𝑦 ∈ ω ∃𝑤 𝑤 ∈ (𝐹‘𝑦)) |
| 9 | eleq1w 2267 | . . . . 5 ⊢ (𝑤 = 𝑣 → (𝑤 ∈ (𝐹‘𝑦) ↔ 𝑣 ∈ (𝐹‘𝑦))) | |
| 10 | 9 | cbvexv 1943 | . . . 4 ⊢ (∃𝑤 𝑤 ∈ (𝐹‘𝑦) ↔ ∃𝑣 𝑣 ∈ (𝐹‘𝑦)) |
| 11 | 10 | ralbii 2513 | . . 3 ⊢ (∀𝑦 ∈ ω ∃𝑤 𝑤 ∈ (𝐹‘𝑦) ↔ ∀𝑦 ∈ ω ∃𝑣 𝑣 ∈ (𝐹‘𝑦)) |
| 12 | 8, 11 | sylib 122 | . 2 ⊢ (𝜑 → ∀𝑦 ∈ ω ∃𝑣 𝑣 ∈ (𝐹‘𝑦)) |
| 13 | nfcv 2349 | . . 3 ⊢ Ⅎ𝑛({𝑚} × (𝐹‘𝑚)) | |
| 14 | nfcv 2349 | . . 3 ⊢ Ⅎ𝑚({𝑛} × (𝐹‘𝑛)) | |
| 15 | sneq 3646 | . . . 4 ⊢ (𝑚 = 𝑛 → {𝑚} = {𝑛}) | |
| 16 | fveq2 5586 | . . . 4 ⊢ (𝑚 = 𝑛 → (𝐹‘𝑚) = (𝐹‘𝑛)) | |
| 17 | 15, 16 | xpeq12d 4705 | . . 3 ⊢ (𝑚 = 𝑛 → ({𝑚} × (𝐹‘𝑚)) = ({𝑛} × (𝐹‘𝑛))) |
| 18 | 13, 14, 17 | cbvmpt 4144 | . 2 ⊢ (𝑚 ∈ ω ↦ ({𝑚} × (𝐹‘𝑚))) = (𝑛 ∈ ω ↦ ({𝑛} × (𝐹‘𝑛))) |
| 19 | nfcv 2349 | . . 3 ⊢ Ⅎ𝑛(2nd ‘(𝑓‘((𝑚 ∈ ω ↦ ({𝑚} × (𝐹‘𝑚)))‘𝑚))) | |
| 20 | nfcv 2349 | . . . 4 ⊢ Ⅎ𝑚2nd | |
| 21 | nfcv 2349 | . . . . 5 ⊢ Ⅎ𝑚𝑓 | |
| 22 | nffvmpt1 5597 | . . . . 5 ⊢ Ⅎ𝑚((𝑚 ∈ ω ↦ ({𝑚} × (𝐹‘𝑚)))‘𝑛) | |
| 23 | 21, 22 | nffv 5596 | . . . 4 ⊢ Ⅎ𝑚(𝑓‘((𝑚 ∈ ω ↦ ({𝑚} × (𝐹‘𝑚)))‘𝑛)) |
| 24 | 20, 23 | nffv 5596 | . . 3 ⊢ Ⅎ𝑚(2nd ‘(𝑓‘((𝑚 ∈ ω ↦ ({𝑚} × (𝐹‘𝑚)))‘𝑛))) |
| 25 | 2fveq3 5591 | . . . 4 ⊢ (𝑚 = 𝑛 → (𝑓‘((𝑚 ∈ ω ↦ ({𝑚} × (𝐹‘𝑚)))‘𝑚)) = (𝑓‘((𝑚 ∈ ω ↦ ({𝑚} × (𝐹‘𝑚)))‘𝑛))) | |
| 26 | 25 | fveq2d 5590 | . . 3 ⊢ (𝑚 = 𝑛 → (2nd ‘(𝑓‘((𝑚 ∈ ω ↦ ({𝑚} × (𝐹‘𝑚)))‘𝑚))) = (2nd ‘(𝑓‘((𝑚 ∈ ω ↦ ({𝑚} × (𝐹‘𝑚)))‘𝑛)))) |
| 27 | 19, 24, 26 | cbvmpt 4144 | . 2 ⊢ (𝑚 ∈ ω ↦ (2nd ‘(𝑓‘((𝑚 ∈ ω ↦ ({𝑚} × (𝐹‘𝑚)))‘𝑚)))) = (𝑛 ∈ ω ↦ (2nd ‘(𝑓‘((𝑚 ∈ ω ↦ ({𝑚} × (𝐹‘𝑚)))‘𝑛)))) |
| 28 | 1, 2, 12, 18, 27 | cc2lem 7391 | 1 ⊢ (𝜑 → ∃𝑔(𝑔 Fn ω ∧ ∀𝑛 ∈ ω (𝑔‘𝑛) ∈ (𝐹‘𝑛))) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ∃wex 1516 ∈ wcel 2177 ∀wral 2485 {csn 3635 ↦ cmpt 4110 ωcom 4643 × cxp 4678 Fn wfn 5272 ‘cfv 5277 2nd c2nd 6235 CCHOICEwacc 7387 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2179 ax-14 2180 ax-ext 2188 ax-coll 4164 ax-sep 4167 ax-pow 4223 ax-pr 4258 ax-un 4485 ax-iinf 4641 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ral 2490 df-rex 2491 df-reu 2492 df-rab 2494 df-v 2775 df-sbc 3001 df-csb 3096 df-un 3172 df-in 3174 df-ss 3181 df-pw 3620 df-sn 3641 df-pr 3642 df-op 3644 df-uni 3854 df-int 3889 df-iun 3932 df-br 4049 df-opab 4111 df-mpt 4112 df-id 4345 df-iom 4644 df-xp 4686 df-rel 4687 df-cnv 4688 df-co 4689 df-dm 4690 df-rn 4691 df-res 4692 df-ima 4693 df-iota 5238 df-fun 5279 df-fn 5280 df-f 5281 df-f1 5282 df-fo 5283 df-f1o 5284 df-fv 5285 df-2nd 6237 df-er 6630 df-en 6838 df-cc 7388 |
| This theorem is referenced by: cc3 7393 acnccim 7397 |
| Copyright terms: Public domain | W3C validator |