| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > cc2 | GIF version | ||
| Description: Countable choice using sequences instead of countable sets. (Contributed by Jim Kingdon, 27-Apr-2024.) | 
| Ref | Expression | 
|---|---|
| cc2.cc | ⊢ (𝜑 → CCHOICE) | 
| cc2.a | ⊢ (𝜑 → 𝐹 Fn ω) | 
| cc2.m | ⊢ (𝜑 → ∀𝑥 ∈ ω ∃𝑤 𝑤 ∈ (𝐹‘𝑥)) | 
| Ref | Expression | 
|---|---|
| cc2 | ⊢ (𝜑 → ∃𝑔(𝑔 Fn ω ∧ ∀𝑛 ∈ ω (𝑔‘𝑛) ∈ (𝐹‘𝑛))) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | cc2.cc | . 2 ⊢ (𝜑 → CCHOICE) | |
| 2 | cc2.a | . 2 ⊢ (𝜑 → 𝐹 Fn ω) | |
| 3 | cc2.m | . . . 4 ⊢ (𝜑 → ∀𝑥 ∈ ω ∃𝑤 𝑤 ∈ (𝐹‘𝑥)) | |
| 4 | fveq2 5558 | . . . . . . 7 ⊢ (𝑥 = 𝑦 → (𝐹‘𝑥) = (𝐹‘𝑦)) | |
| 5 | 4 | eleq2d 2266 | . . . . . 6 ⊢ (𝑥 = 𝑦 → (𝑤 ∈ (𝐹‘𝑥) ↔ 𝑤 ∈ (𝐹‘𝑦))) | 
| 6 | 5 | exbidv 1839 | . . . . 5 ⊢ (𝑥 = 𝑦 → (∃𝑤 𝑤 ∈ (𝐹‘𝑥) ↔ ∃𝑤 𝑤 ∈ (𝐹‘𝑦))) | 
| 7 | 6 | cbvralv 2729 | . . . 4 ⊢ (∀𝑥 ∈ ω ∃𝑤 𝑤 ∈ (𝐹‘𝑥) ↔ ∀𝑦 ∈ ω ∃𝑤 𝑤 ∈ (𝐹‘𝑦)) | 
| 8 | 3, 7 | sylib 122 | . . 3 ⊢ (𝜑 → ∀𝑦 ∈ ω ∃𝑤 𝑤 ∈ (𝐹‘𝑦)) | 
| 9 | eleq1w 2257 | . . . . 5 ⊢ (𝑤 = 𝑣 → (𝑤 ∈ (𝐹‘𝑦) ↔ 𝑣 ∈ (𝐹‘𝑦))) | |
| 10 | 9 | cbvexv 1933 | . . . 4 ⊢ (∃𝑤 𝑤 ∈ (𝐹‘𝑦) ↔ ∃𝑣 𝑣 ∈ (𝐹‘𝑦)) | 
| 11 | 10 | ralbii 2503 | . . 3 ⊢ (∀𝑦 ∈ ω ∃𝑤 𝑤 ∈ (𝐹‘𝑦) ↔ ∀𝑦 ∈ ω ∃𝑣 𝑣 ∈ (𝐹‘𝑦)) | 
| 12 | 8, 11 | sylib 122 | . 2 ⊢ (𝜑 → ∀𝑦 ∈ ω ∃𝑣 𝑣 ∈ (𝐹‘𝑦)) | 
| 13 | nfcv 2339 | . . 3 ⊢ Ⅎ𝑛({𝑚} × (𝐹‘𝑚)) | |
| 14 | nfcv 2339 | . . 3 ⊢ Ⅎ𝑚({𝑛} × (𝐹‘𝑛)) | |
| 15 | sneq 3633 | . . . 4 ⊢ (𝑚 = 𝑛 → {𝑚} = {𝑛}) | |
| 16 | fveq2 5558 | . . . 4 ⊢ (𝑚 = 𝑛 → (𝐹‘𝑚) = (𝐹‘𝑛)) | |
| 17 | 15, 16 | xpeq12d 4688 | . . 3 ⊢ (𝑚 = 𝑛 → ({𝑚} × (𝐹‘𝑚)) = ({𝑛} × (𝐹‘𝑛))) | 
| 18 | 13, 14, 17 | cbvmpt 4128 | . 2 ⊢ (𝑚 ∈ ω ↦ ({𝑚} × (𝐹‘𝑚))) = (𝑛 ∈ ω ↦ ({𝑛} × (𝐹‘𝑛))) | 
| 19 | nfcv 2339 | . . 3 ⊢ Ⅎ𝑛(2nd ‘(𝑓‘((𝑚 ∈ ω ↦ ({𝑚} × (𝐹‘𝑚)))‘𝑚))) | |
| 20 | nfcv 2339 | . . . 4 ⊢ Ⅎ𝑚2nd | |
| 21 | nfcv 2339 | . . . . 5 ⊢ Ⅎ𝑚𝑓 | |
| 22 | nffvmpt1 5569 | . . . . 5 ⊢ Ⅎ𝑚((𝑚 ∈ ω ↦ ({𝑚} × (𝐹‘𝑚)))‘𝑛) | |
| 23 | 21, 22 | nffv 5568 | . . . 4 ⊢ Ⅎ𝑚(𝑓‘((𝑚 ∈ ω ↦ ({𝑚} × (𝐹‘𝑚)))‘𝑛)) | 
| 24 | 20, 23 | nffv 5568 | . . 3 ⊢ Ⅎ𝑚(2nd ‘(𝑓‘((𝑚 ∈ ω ↦ ({𝑚} × (𝐹‘𝑚)))‘𝑛))) | 
| 25 | 2fveq3 5563 | . . . 4 ⊢ (𝑚 = 𝑛 → (𝑓‘((𝑚 ∈ ω ↦ ({𝑚} × (𝐹‘𝑚)))‘𝑚)) = (𝑓‘((𝑚 ∈ ω ↦ ({𝑚} × (𝐹‘𝑚)))‘𝑛))) | |
| 26 | 25 | fveq2d 5562 | . . 3 ⊢ (𝑚 = 𝑛 → (2nd ‘(𝑓‘((𝑚 ∈ ω ↦ ({𝑚} × (𝐹‘𝑚)))‘𝑚))) = (2nd ‘(𝑓‘((𝑚 ∈ ω ↦ ({𝑚} × (𝐹‘𝑚)))‘𝑛)))) | 
| 27 | 19, 24, 26 | cbvmpt 4128 | . 2 ⊢ (𝑚 ∈ ω ↦ (2nd ‘(𝑓‘((𝑚 ∈ ω ↦ ({𝑚} × (𝐹‘𝑚)))‘𝑚)))) = (𝑛 ∈ ω ↦ (2nd ‘(𝑓‘((𝑚 ∈ ω ↦ ({𝑚} × (𝐹‘𝑚)))‘𝑛)))) | 
| 28 | 1, 2, 12, 18, 27 | cc2lem 7333 | 1 ⊢ (𝜑 → ∃𝑔(𝑔 Fn ω ∧ ∀𝑛 ∈ ω (𝑔‘𝑛) ∈ (𝐹‘𝑛))) | 
| Colors of variables: wff set class | 
| Syntax hints: → wi 4 ∧ wa 104 ∃wex 1506 ∈ wcel 2167 ∀wral 2475 {csn 3622 ↦ cmpt 4094 ωcom 4626 × cxp 4661 Fn wfn 5253 ‘cfv 5258 2nd c2nd 6197 CCHOICEwacc 7329 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-coll 4148 ax-sep 4151 ax-pow 4207 ax-pr 4242 ax-un 4468 ax-iinf 4624 | 
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ral 2480 df-rex 2481 df-reu 2482 df-rab 2484 df-v 2765 df-sbc 2990 df-csb 3085 df-un 3161 df-in 3163 df-ss 3170 df-pw 3607 df-sn 3628 df-pr 3629 df-op 3631 df-uni 3840 df-int 3875 df-iun 3918 df-br 4034 df-opab 4095 df-mpt 4096 df-id 4328 df-iom 4627 df-xp 4669 df-rel 4670 df-cnv 4671 df-co 4672 df-dm 4673 df-rn 4674 df-res 4675 df-ima 4676 df-iota 5219 df-fun 5260 df-fn 5261 df-f 5262 df-f1 5263 df-fo 5264 df-f1o 5265 df-fv 5266 df-2nd 6199 df-er 6592 df-en 6800 df-cc 7330 | 
| This theorem is referenced by: cc3 7335 | 
| Copyright terms: Public domain | W3C validator |