Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > cc2 | GIF version |
Description: Countable choice using sequences instead of countable sets. (Contributed by Jim Kingdon, 27-Apr-2024.) |
Ref | Expression |
---|---|
cc2.cc | ⊢ (𝜑 → CCHOICE) |
cc2.a | ⊢ (𝜑 → 𝐹 Fn ω) |
cc2.m | ⊢ (𝜑 → ∀𝑥 ∈ ω ∃𝑤 𝑤 ∈ (𝐹‘𝑥)) |
Ref | Expression |
---|---|
cc2 | ⊢ (𝜑 → ∃𝑔(𝑔 Fn ω ∧ ∀𝑛 ∈ ω (𝑔‘𝑛) ∈ (𝐹‘𝑛))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cc2.cc | . 2 ⊢ (𝜑 → CCHOICE) | |
2 | cc2.a | . 2 ⊢ (𝜑 → 𝐹 Fn ω) | |
3 | cc2.m | . . . 4 ⊢ (𝜑 → ∀𝑥 ∈ ω ∃𝑤 𝑤 ∈ (𝐹‘𝑥)) | |
4 | fveq2 5486 | . . . . . . 7 ⊢ (𝑥 = 𝑦 → (𝐹‘𝑥) = (𝐹‘𝑦)) | |
5 | 4 | eleq2d 2236 | . . . . . 6 ⊢ (𝑥 = 𝑦 → (𝑤 ∈ (𝐹‘𝑥) ↔ 𝑤 ∈ (𝐹‘𝑦))) |
6 | 5 | exbidv 1813 | . . . . 5 ⊢ (𝑥 = 𝑦 → (∃𝑤 𝑤 ∈ (𝐹‘𝑥) ↔ ∃𝑤 𝑤 ∈ (𝐹‘𝑦))) |
7 | 6 | cbvralv 2692 | . . . 4 ⊢ (∀𝑥 ∈ ω ∃𝑤 𝑤 ∈ (𝐹‘𝑥) ↔ ∀𝑦 ∈ ω ∃𝑤 𝑤 ∈ (𝐹‘𝑦)) |
8 | 3, 7 | sylib 121 | . . 3 ⊢ (𝜑 → ∀𝑦 ∈ ω ∃𝑤 𝑤 ∈ (𝐹‘𝑦)) |
9 | eleq1w 2227 | . . . . 5 ⊢ (𝑤 = 𝑣 → (𝑤 ∈ (𝐹‘𝑦) ↔ 𝑣 ∈ (𝐹‘𝑦))) | |
10 | 9 | cbvexv 1906 | . . . 4 ⊢ (∃𝑤 𝑤 ∈ (𝐹‘𝑦) ↔ ∃𝑣 𝑣 ∈ (𝐹‘𝑦)) |
11 | 10 | ralbii 2472 | . . 3 ⊢ (∀𝑦 ∈ ω ∃𝑤 𝑤 ∈ (𝐹‘𝑦) ↔ ∀𝑦 ∈ ω ∃𝑣 𝑣 ∈ (𝐹‘𝑦)) |
12 | 8, 11 | sylib 121 | . 2 ⊢ (𝜑 → ∀𝑦 ∈ ω ∃𝑣 𝑣 ∈ (𝐹‘𝑦)) |
13 | nfcv 2308 | . . 3 ⊢ Ⅎ𝑛({𝑚} × (𝐹‘𝑚)) | |
14 | nfcv 2308 | . . 3 ⊢ Ⅎ𝑚({𝑛} × (𝐹‘𝑛)) | |
15 | sneq 3587 | . . . 4 ⊢ (𝑚 = 𝑛 → {𝑚} = {𝑛}) | |
16 | fveq2 5486 | . . . 4 ⊢ (𝑚 = 𝑛 → (𝐹‘𝑚) = (𝐹‘𝑛)) | |
17 | 15, 16 | xpeq12d 4629 | . . 3 ⊢ (𝑚 = 𝑛 → ({𝑚} × (𝐹‘𝑚)) = ({𝑛} × (𝐹‘𝑛))) |
18 | 13, 14, 17 | cbvmpt 4077 | . 2 ⊢ (𝑚 ∈ ω ↦ ({𝑚} × (𝐹‘𝑚))) = (𝑛 ∈ ω ↦ ({𝑛} × (𝐹‘𝑛))) |
19 | nfcv 2308 | . . 3 ⊢ Ⅎ𝑛(2nd ‘(𝑓‘((𝑚 ∈ ω ↦ ({𝑚} × (𝐹‘𝑚)))‘𝑚))) | |
20 | nfcv 2308 | . . . 4 ⊢ Ⅎ𝑚2nd | |
21 | nfcv 2308 | . . . . 5 ⊢ Ⅎ𝑚𝑓 | |
22 | nffvmpt1 5497 | . . . . 5 ⊢ Ⅎ𝑚((𝑚 ∈ ω ↦ ({𝑚} × (𝐹‘𝑚)))‘𝑛) | |
23 | 21, 22 | nffv 5496 | . . . 4 ⊢ Ⅎ𝑚(𝑓‘((𝑚 ∈ ω ↦ ({𝑚} × (𝐹‘𝑚)))‘𝑛)) |
24 | 20, 23 | nffv 5496 | . . 3 ⊢ Ⅎ𝑚(2nd ‘(𝑓‘((𝑚 ∈ ω ↦ ({𝑚} × (𝐹‘𝑚)))‘𝑛))) |
25 | 2fveq3 5491 | . . . 4 ⊢ (𝑚 = 𝑛 → (𝑓‘((𝑚 ∈ ω ↦ ({𝑚} × (𝐹‘𝑚)))‘𝑚)) = (𝑓‘((𝑚 ∈ ω ↦ ({𝑚} × (𝐹‘𝑚)))‘𝑛))) | |
26 | 25 | fveq2d 5490 | . . 3 ⊢ (𝑚 = 𝑛 → (2nd ‘(𝑓‘((𝑚 ∈ ω ↦ ({𝑚} × (𝐹‘𝑚)))‘𝑚))) = (2nd ‘(𝑓‘((𝑚 ∈ ω ↦ ({𝑚} × (𝐹‘𝑚)))‘𝑛)))) |
27 | 19, 24, 26 | cbvmpt 4077 | . 2 ⊢ (𝑚 ∈ ω ↦ (2nd ‘(𝑓‘((𝑚 ∈ ω ↦ ({𝑚} × (𝐹‘𝑚)))‘𝑚)))) = (𝑛 ∈ ω ↦ (2nd ‘(𝑓‘((𝑚 ∈ ω ↦ ({𝑚} × (𝐹‘𝑚)))‘𝑛)))) |
28 | 1, 2, 12, 18, 27 | cc2lem 7207 | 1 ⊢ (𝜑 → ∃𝑔(𝑔 Fn ω ∧ ∀𝑛 ∈ ω (𝑔‘𝑛) ∈ (𝐹‘𝑛))) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 ∃wex 1480 ∈ wcel 2136 ∀wral 2444 {csn 3576 ↦ cmpt 4043 ωcom 4567 × cxp 4602 Fn wfn 5183 ‘cfv 5188 2nd c2nd 6107 CCHOICEwacc 7203 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-13 2138 ax-14 2139 ax-ext 2147 ax-coll 4097 ax-sep 4100 ax-pow 4153 ax-pr 4187 ax-un 4411 ax-iinf 4565 |
This theorem depends on definitions: df-bi 116 df-3an 970 df-tru 1346 df-nf 1449 df-sb 1751 df-eu 2017 df-mo 2018 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ral 2449 df-rex 2450 df-reu 2451 df-rab 2453 df-v 2728 df-sbc 2952 df-csb 3046 df-un 3120 df-in 3122 df-ss 3129 df-pw 3561 df-sn 3582 df-pr 3583 df-op 3585 df-uni 3790 df-int 3825 df-iun 3868 df-br 3983 df-opab 4044 df-mpt 4045 df-id 4271 df-iom 4568 df-xp 4610 df-rel 4611 df-cnv 4612 df-co 4613 df-dm 4614 df-rn 4615 df-res 4616 df-ima 4617 df-iota 5153 df-fun 5190 df-fn 5191 df-f 5192 df-f1 5193 df-fo 5194 df-f1o 5195 df-fv 5196 df-2nd 6109 df-er 6501 df-en 6707 df-cc 7204 |
This theorem is referenced by: cc3 7209 |
Copyright terms: Public domain | W3C validator |