ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  cc2 GIF version

Theorem cc2 7268
Description: Countable choice using sequences instead of countable sets. (Contributed by Jim Kingdon, 27-Apr-2024.)
Hypotheses
Ref Expression
cc2.cc (𝜑CCHOICE)
cc2.a (𝜑𝐹 Fn ω)
cc2.m (𝜑 → ∀𝑥 ∈ ω ∃𝑤 𝑤 ∈ (𝐹𝑥))
Assertion
Ref Expression
cc2 (𝜑 → ∃𝑔(𝑔 Fn ω ∧ ∀𝑛 ∈ ω (𝑔𝑛) ∈ (𝐹𝑛)))
Distinct variable groups:   𝑔,𝐹,𝑛   𝑤,𝐹,𝑥   𝜑,𝑛
Allowed substitution hints:   𝜑(𝑥,𝑤,𝑔)

Proof of Theorem cc2
Dummy variables 𝑓 𝑚 𝑣 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 cc2.cc . 2 (𝜑CCHOICE)
2 cc2.a . 2 (𝜑𝐹 Fn ω)
3 cc2.m . . . 4 (𝜑 → ∀𝑥 ∈ ω ∃𝑤 𝑤 ∈ (𝐹𝑥))
4 fveq2 5517 . . . . . . 7 (𝑥 = 𝑦 → (𝐹𝑥) = (𝐹𝑦))
54eleq2d 2247 . . . . . 6 (𝑥 = 𝑦 → (𝑤 ∈ (𝐹𝑥) ↔ 𝑤 ∈ (𝐹𝑦)))
65exbidv 1825 . . . . 5 (𝑥 = 𝑦 → (∃𝑤 𝑤 ∈ (𝐹𝑥) ↔ ∃𝑤 𝑤 ∈ (𝐹𝑦)))
76cbvralv 2705 . . . 4 (∀𝑥 ∈ ω ∃𝑤 𝑤 ∈ (𝐹𝑥) ↔ ∀𝑦 ∈ ω ∃𝑤 𝑤 ∈ (𝐹𝑦))
83, 7sylib 122 . . 3 (𝜑 → ∀𝑦 ∈ ω ∃𝑤 𝑤 ∈ (𝐹𝑦))
9 eleq1w 2238 . . . . 5 (𝑤 = 𝑣 → (𝑤 ∈ (𝐹𝑦) ↔ 𝑣 ∈ (𝐹𝑦)))
109cbvexv 1918 . . . 4 (∃𝑤 𝑤 ∈ (𝐹𝑦) ↔ ∃𝑣 𝑣 ∈ (𝐹𝑦))
1110ralbii 2483 . . 3 (∀𝑦 ∈ ω ∃𝑤 𝑤 ∈ (𝐹𝑦) ↔ ∀𝑦 ∈ ω ∃𝑣 𝑣 ∈ (𝐹𝑦))
128, 11sylib 122 . 2 (𝜑 → ∀𝑦 ∈ ω ∃𝑣 𝑣 ∈ (𝐹𝑦))
13 nfcv 2319 . . 3 𝑛({𝑚} × (𝐹𝑚))
14 nfcv 2319 . . 3 𝑚({𝑛} × (𝐹𝑛))
15 sneq 3605 . . . 4 (𝑚 = 𝑛 → {𝑚} = {𝑛})
16 fveq2 5517 . . . 4 (𝑚 = 𝑛 → (𝐹𝑚) = (𝐹𝑛))
1715, 16xpeq12d 4653 . . 3 (𝑚 = 𝑛 → ({𝑚} × (𝐹𝑚)) = ({𝑛} × (𝐹𝑛)))
1813, 14, 17cbvmpt 4100 . 2 (𝑚 ∈ ω ↦ ({𝑚} × (𝐹𝑚))) = (𝑛 ∈ ω ↦ ({𝑛} × (𝐹𝑛)))
19 nfcv 2319 . . 3 𝑛(2nd ‘(𝑓‘((𝑚 ∈ ω ↦ ({𝑚} × (𝐹𝑚)))‘𝑚)))
20 nfcv 2319 . . . 4 𝑚2nd
21 nfcv 2319 . . . . 5 𝑚𝑓
22 nffvmpt1 5528 . . . . 5 𝑚((𝑚 ∈ ω ↦ ({𝑚} × (𝐹𝑚)))‘𝑛)
2321, 22nffv 5527 . . . 4 𝑚(𝑓‘((𝑚 ∈ ω ↦ ({𝑚} × (𝐹𝑚)))‘𝑛))
2420, 23nffv 5527 . . 3 𝑚(2nd ‘(𝑓‘((𝑚 ∈ ω ↦ ({𝑚} × (𝐹𝑚)))‘𝑛)))
25 2fveq3 5522 . . . 4 (𝑚 = 𝑛 → (𝑓‘((𝑚 ∈ ω ↦ ({𝑚} × (𝐹𝑚)))‘𝑚)) = (𝑓‘((𝑚 ∈ ω ↦ ({𝑚} × (𝐹𝑚)))‘𝑛)))
2625fveq2d 5521 . . 3 (𝑚 = 𝑛 → (2nd ‘(𝑓‘((𝑚 ∈ ω ↦ ({𝑚} × (𝐹𝑚)))‘𝑚))) = (2nd ‘(𝑓‘((𝑚 ∈ ω ↦ ({𝑚} × (𝐹𝑚)))‘𝑛))))
2719, 24, 26cbvmpt 4100 . 2 (𝑚 ∈ ω ↦ (2nd ‘(𝑓‘((𝑚 ∈ ω ↦ ({𝑚} × (𝐹𝑚)))‘𝑚)))) = (𝑛 ∈ ω ↦ (2nd ‘(𝑓‘((𝑚 ∈ ω ↦ ({𝑚} × (𝐹𝑚)))‘𝑛))))
281, 2, 12, 18, 27cc2lem 7267 1 (𝜑 → ∃𝑔(𝑔 Fn ω ∧ ∀𝑛 ∈ ω (𝑔𝑛) ∈ (𝐹𝑛)))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wex 1492  wcel 2148  wral 2455  {csn 3594  cmpt 4066  ωcom 4591   × cxp 4626   Fn wfn 5213  cfv 5218  2nd c2nd 6142  CCHOICEwacc 7263
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-coll 4120  ax-sep 4123  ax-pow 4176  ax-pr 4211  ax-un 4435  ax-iinf 4589
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ral 2460  df-rex 2461  df-reu 2462  df-rab 2464  df-v 2741  df-sbc 2965  df-csb 3060  df-un 3135  df-in 3137  df-ss 3144  df-pw 3579  df-sn 3600  df-pr 3601  df-op 3603  df-uni 3812  df-int 3847  df-iun 3890  df-br 4006  df-opab 4067  df-mpt 4068  df-id 4295  df-iom 4592  df-xp 4634  df-rel 4635  df-cnv 4636  df-co 4637  df-dm 4638  df-rn 4639  df-res 4640  df-ima 4641  df-iota 5180  df-fun 5220  df-fn 5221  df-f 5222  df-f1 5223  df-fo 5224  df-f1o 5225  df-fv 5226  df-2nd 6144  df-er 6537  df-en 6743  df-cc 7264
This theorem is referenced by:  cc3  7269
  Copyright terms: Public domain W3C validator