ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  cc2 GIF version

Theorem cc2 7199
Description: Countable choice using sequences instead of countable sets. (Contributed by Jim Kingdon, 27-Apr-2024.)
Hypotheses
Ref Expression
cc2.cc (𝜑CCHOICE)
cc2.a (𝜑𝐹 Fn ω)
cc2.m (𝜑 → ∀𝑥 ∈ ω ∃𝑤 𝑤 ∈ (𝐹𝑥))
Assertion
Ref Expression
cc2 (𝜑 → ∃𝑔(𝑔 Fn ω ∧ ∀𝑛 ∈ ω (𝑔𝑛) ∈ (𝐹𝑛)))
Distinct variable groups:   𝑔,𝐹,𝑛   𝑤,𝐹,𝑥   𝜑,𝑛
Allowed substitution hints:   𝜑(𝑥,𝑤,𝑔)

Proof of Theorem cc2
Dummy variables 𝑓 𝑚 𝑣 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 cc2.cc . 2 (𝜑CCHOICE)
2 cc2.a . 2 (𝜑𝐹 Fn ω)
3 cc2.m . . . 4 (𝜑 → ∀𝑥 ∈ ω ∃𝑤 𝑤 ∈ (𝐹𝑥))
4 fveq2 5480 . . . . . . 7 (𝑥 = 𝑦 → (𝐹𝑥) = (𝐹𝑦))
54eleq2d 2234 . . . . . 6 (𝑥 = 𝑦 → (𝑤 ∈ (𝐹𝑥) ↔ 𝑤 ∈ (𝐹𝑦)))
65exbidv 1812 . . . . 5 (𝑥 = 𝑦 → (∃𝑤 𝑤 ∈ (𝐹𝑥) ↔ ∃𝑤 𝑤 ∈ (𝐹𝑦)))
76cbvralv 2689 . . . 4 (∀𝑥 ∈ ω ∃𝑤 𝑤 ∈ (𝐹𝑥) ↔ ∀𝑦 ∈ ω ∃𝑤 𝑤 ∈ (𝐹𝑦))
83, 7sylib 121 . . 3 (𝜑 → ∀𝑦 ∈ ω ∃𝑤 𝑤 ∈ (𝐹𝑦))
9 eleq1w 2225 . . . . 5 (𝑤 = 𝑣 → (𝑤 ∈ (𝐹𝑦) ↔ 𝑣 ∈ (𝐹𝑦)))
109cbvexv 1905 . . . 4 (∃𝑤 𝑤 ∈ (𝐹𝑦) ↔ ∃𝑣 𝑣 ∈ (𝐹𝑦))
1110ralbii 2470 . . 3 (∀𝑦 ∈ ω ∃𝑤 𝑤 ∈ (𝐹𝑦) ↔ ∀𝑦 ∈ ω ∃𝑣 𝑣 ∈ (𝐹𝑦))
128, 11sylib 121 . 2 (𝜑 → ∀𝑦 ∈ ω ∃𝑣 𝑣 ∈ (𝐹𝑦))
13 nfcv 2306 . . 3 𝑛({𝑚} × (𝐹𝑚))
14 nfcv 2306 . . 3 𝑚({𝑛} × (𝐹𝑛))
15 sneq 3581 . . . 4 (𝑚 = 𝑛 → {𝑚} = {𝑛})
16 fveq2 5480 . . . 4 (𝑚 = 𝑛 → (𝐹𝑚) = (𝐹𝑛))
1715, 16xpeq12d 4623 . . 3 (𝑚 = 𝑛 → ({𝑚} × (𝐹𝑚)) = ({𝑛} × (𝐹𝑛)))
1813, 14, 17cbvmpt 4071 . 2 (𝑚 ∈ ω ↦ ({𝑚} × (𝐹𝑚))) = (𝑛 ∈ ω ↦ ({𝑛} × (𝐹𝑛)))
19 nfcv 2306 . . 3 𝑛(2nd ‘(𝑓‘((𝑚 ∈ ω ↦ ({𝑚} × (𝐹𝑚)))‘𝑚)))
20 nfcv 2306 . . . 4 𝑚2nd
21 nfcv 2306 . . . . 5 𝑚𝑓
22 nffvmpt1 5491 . . . . 5 𝑚((𝑚 ∈ ω ↦ ({𝑚} × (𝐹𝑚)))‘𝑛)
2321, 22nffv 5490 . . . 4 𝑚(𝑓‘((𝑚 ∈ ω ↦ ({𝑚} × (𝐹𝑚)))‘𝑛))
2420, 23nffv 5490 . . 3 𝑚(2nd ‘(𝑓‘((𝑚 ∈ ω ↦ ({𝑚} × (𝐹𝑚)))‘𝑛)))
25 2fveq3 5485 . . . 4 (𝑚 = 𝑛 → (𝑓‘((𝑚 ∈ ω ↦ ({𝑚} × (𝐹𝑚)))‘𝑚)) = (𝑓‘((𝑚 ∈ ω ↦ ({𝑚} × (𝐹𝑚)))‘𝑛)))
2625fveq2d 5484 . . 3 (𝑚 = 𝑛 → (2nd ‘(𝑓‘((𝑚 ∈ ω ↦ ({𝑚} × (𝐹𝑚)))‘𝑚))) = (2nd ‘(𝑓‘((𝑚 ∈ ω ↦ ({𝑚} × (𝐹𝑚)))‘𝑛))))
2719, 24, 26cbvmpt 4071 . 2 (𝑚 ∈ ω ↦ (2nd ‘(𝑓‘((𝑚 ∈ ω ↦ ({𝑚} × (𝐹𝑚)))‘𝑚)))) = (𝑛 ∈ ω ↦ (2nd ‘(𝑓‘((𝑚 ∈ ω ↦ ({𝑚} × (𝐹𝑚)))‘𝑛))))
281, 2, 12, 18, 27cc2lem 7198 1 (𝜑 → ∃𝑔(𝑔 Fn ω ∧ ∀𝑛 ∈ ω (𝑔𝑛) ∈ (𝐹𝑛)))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wex 1479  wcel 2135  wral 2442  {csn 3570  cmpt 4037  ωcom 4561   × cxp 4596   Fn wfn 5177  cfv 5182  2nd c2nd 6099  CCHOICEwacc 7194
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1434  ax-7 1435  ax-gen 1436  ax-ie1 1480  ax-ie2 1481  ax-8 1491  ax-10 1492  ax-11 1493  ax-i12 1494  ax-bndl 1496  ax-4 1497  ax-17 1513  ax-i9 1517  ax-ial 1521  ax-i5r 1522  ax-13 2137  ax-14 2138  ax-ext 2146  ax-coll 4091  ax-sep 4094  ax-pow 4147  ax-pr 4181  ax-un 4405  ax-iinf 4559
This theorem depends on definitions:  df-bi 116  df-3an 969  df-tru 1345  df-nf 1448  df-sb 1750  df-eu 2016  df-mo 2017  df-clab 2151  df-cleq 2157  df-clel 2160  df-nfc 2295  df-ral 2447  df-rex 2448  df-reu 2449  df-rab 2451  df-v 2723  df-sbc 2947  df-csb 3041  df-un 3115  df-in 3117  df-ss 3124  df-pw 3555  df-sn 3576  df-pr 3577  df-op 3579  df-uni 3784  df-int 3819  df-iun 3862  df-br 3977  df-opab 4038  df-mpt 4039  df-id 4265  df-iom 4562  df-xp 4604  df-rel 4605  df-cnv 4606  df-co 4607  df-dm 4608  df-rn 4609  df-res 4610  df-ima 4611  df-iota 5147  df-fun 5184  df-fn 5185  df-f 5186  df-f1 5187  df-fo 5188  df-f1o 5189  df-fv 5190  df-2nd 6101  df-er 6492  df-en 6698  df-cc 7195
This theorem is referenced by:  cc3  7200
  Copyright terms: Public domain W3C validator