ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  cc2 GIF version

Theorem cc2 7327
Description: Countable choice using sequences instead of countable sets. (Contributed by Jim Kingdon, 27-Apr-2024.)
Hypotheses
Ref Expression
cc2.cc (𝜑CCHOICE)
cc2.a (𝜑𝐹 Fn ω)
cc2.m (𝜑 → ∀𝑥 ∈ ω ∃𝑤 𝑤 ∈ (𝐹𝑥))
Assertion
Ref Expression
cc2 (𝜑 → ∃𝑔(𝑔 Fn ω ∧ ∀𝑛 ∈ ω (𝑔𝑛) ∈ (𝐹𝑛)))
Distinct variable groups:   𝑔,𝐹,𝑛   𝑤,𝐹,𝑥   𝜑,𝑛
Allowed substitution hints:   𝜑(𝑥,𝑤,𝑔)

Proof of Theorem cc2
Dummy variables 𝑓 𝑚 𝑣 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 cc2.cc . 2 (𝜑CCHOICE)
2 cc2.a . 2 (𝜑𝐹 Fn ω)
3 cc2.m . . . 4 (𝜑 → ∀𝑥 ∈ ω ∃𝑤 𝑤 ∈ (𝐹𝑥))
4 fveq2 5554 . . . . . . 7 (𝑥 = 𝑦 → (𝐹𝑥) = (𝐹𝑦))
54eleq2d 2263 . . . . . 6 (𝑥 = 𝑦 → (𝑤 ∈ (𝐹𝑥) ↔ 𝑤 ∈ (𝐹𝑦)))
65exbidv 1836 . . . . 5 (𝑥 = 𝑦 → (∃𝑤 𝑤 ∈ (𝐹𝑥) ↔ ∃𝑤 𝑤 ∈ (𝐹𝑦)))
76cbvralv 2726 . . . 4 (∀𝑥 ∈ ω ∃𝑤 𝑤 ∈ (𝐹𝑥) ↔ ∀𝑦 ∈ ω ∃𝑤 𝑤 ∈ (𝐹𝑦))
83, 7sylib 122 . . 3 (𝜑 → ∀𝑦 ∈ ω ∃𝑤 𝑤 ∈ (𝐹𝑦))
9 eleq1w 2254 . . . . 5 (𝑤 = 𝑣 → (𝑤 ∈ (𝐹𝑦) ↔ 𝑣 ∈ (𝐹𝑦)))
109cbvexv 1930 . . . 4 (∃𝑤 𝑤 ∈ (𝐹𝑦) ↔ ∃𝑣 𝑣 ∈ (𝐹𝑦))
1110ralbii 2500 . . 3 (∀𝑦 ∈ ω ∃𝑤 𝑤 ∈ (𝐹𝑦) ↔ ∀𝑦 ∈ ω ∃𝑣 𝑣 ∈ (𝐹𝑦))
128, 11sylib 122 . 2 (𝜑 → ∀𝑦 ∈ ω ∃𝑣 𝑣 ∈ (𝐹𝑦))
13 nfcv 2336 . . 3 𝑛({𝑚} × (𝐹𝑚))
14 nfcv 2336 . . 3 𝑚({𝑛} × (𝐹𝑛))
15 sneq 3629 . . . 4 (𝑚 = 𝑛 → {𝑚} = {𝑛})
16 fveq2 5554 . . . 4 (𝑚 = 𝑛 → (𝐹𝑚) = (𝐹𝑛))
1715, 16xpeq12d 4684 . . 3 (𝑚 = 𝑛 → ({𝑚} × (𝐹𝑚)) = ({𝑛} × (𝐹𝑛)))
1813, 14, 17cbvmpt 4124 . 2 (𝑚 ∈ ω ↦ ({𝑚} × (𝐹𝑚))) = (𝑛 ∈ ω ↦ ({𝑛} × (𝐹𝑛)))
19 nfcv 2336 . . 3 𝑛(2nd ‘(𝑓‘((𝑚 ∈ ω ↦ ({𝑚} × (𝐹𝑚)))‘𝑚)))
20 nfcv 2336 . . . 4 𝑚2nd
21 nfcv 2336 . . . . 5 𝑚𝑓
22 nffvmpt1 5565 . . . . 5 𝑚((𝑚 ∈ ω ↦ ({𝑚} × (𝐹𝑚)))‘𝑛)
2321, 22nffv 5564 . . . 4 𝑚(𝑓‘((𝑚 ∈ ω ↦ ({𝑚} × (𝐹𝑚)))‘𝑛))
2420, 23nffv 5564 . . 3 𝑚(2nd ‘(𝑓‘((𝑚 ∈ ω ↦ ({𝑚} × (𝐹𝑚)))‘𝑛)))
25 2fveq3 5559 . . . 4 (𝑚 = 𝑛 → (𝑓‘((𝑚 ∈ ω ↦ ({𝑚} × (𝐹𝑚)))‘𝑚)) = (𝑓‘((𝑚 ∈ ω ↦ ({𝑚} × (𝐹𝑚)))‘𝑛)))
2625fveq2d 5558 . . 3 (𝑚 = 𝑛 → (2nd ‘(𝑓‘((𝑚 ∈ ω ↦ ({𝑚} × (𝐹𝑚)))‘𝑚))) = (2nd ‘(𝑓‘((𝑚 ∈ ω ↦ ({𝑚} × (𝐹𝑚)))‘𝑛))))
2719, 24, 26cbvmpt 4124 . 2 (𝑚 ∈ ω ↦ (2nd ‘(𝑓‘((𝑚 ∈ ω ↦ ({𝑚} × (𝐹𝑚)))‘𝑚)))) = (𝑛 ∈ ω ↦ (2nd ‘(𝑓‘((𝑚 ∈ ω ↦ ({𝑚} × (𝐹𝑚)))‘𝑛))))
281, 2, 12, 18, 27cc2lem 7326 1 (𝜑 → ∃𝑔(𝑔 Fn ω ∧ ∀𝑛 ∈ ω (𝑔𝑛) ∈ (𝐹𝑛)))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wex 1503  wcel 2164  wral 2472  {csn 3618  cmpt 4090  ωcom 4622   × cxp 4657   Fn wfn 5249  cfv 5254  2nd c2nd 6192  CCHOICEwacc 7322
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-coll 4144  ax-sep 4147  ax-pow 4203  ax-pr 4238  ax-un 4464  ax-iinf 4620
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ral 2477  df-rex 2478  df-reu 2479  df-rab 2481  df-v 2762  df-sbc 2986  df-csb 3081  df-un 3157  df-in 3159  df-ss 3166  df-pw 3603  df-sn 3624  df-pr 3625  df-op 3627  df-uni 3836  df-int 3871  df-iun 3914  df-br 4030  df-opab 4091  df-mpt 4092  df-id 4324  df-iom 4623  df-xp 4665  df-rel 4666  df-cnv 4667  df-co 4668  df-dm 4669  df-rn 4670  df-res 4671  df-ima 4672  df-iota 5215  df-fun 5256  df-fn 5257  df-f 5258  df-f1 5259  df-fo 5260  df-f1o 5261  df-fv 5262  df-2nd 6194  df-er 6587  df-en 6795  df-cc 7323
This theorem is referenced by:  cc3  7328
  Copyright terms: Public domain W3C validator