| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > cc2 | GIF version | ||
| Description: Countable choice using sequences instead of countable sets. (Contributed by Jim Kingdon, 27-Apr-2024.) |
| Ref | Expression |
|---|---|
| cc2.cc | ⊢ (𝜑 → CCHOICE) |
| cc2.a | ⊢ (𝜑 → 𝐹 Fn ω) |
| cc2.m | ⊢ (𝜑 → ∀𝑥 ∈ ω ∃𝑤 𝑤 ∈ (𝐹‘𝑥)) |
| Ref | Expression |
|---|---|
| cc2 | ⊢ (𝜑 → ∃𝑔(𝑔 Fn ω ∧ ∀𝑛 ∈ ω (𝑔‘𝑛) ∈ (𝐹‘𝑛))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cc2.cc | . 2 ⊢ (𝜑 → CCHOICE) | |
| 2 | cc2.a | . 2 ⊢ (𝜑 → 𝐹 Fn ω) | |
| 3 | cc2.m | . . . 4 ⊢ (𝜑 → ∀𝑥 ∈ ω ∃𝑤 𝑤 ∈ (𝐹‘𝑥)) | |
| 4 | fveq2 5623 | . . . . . . 7 ⊢ (𝑥 = 𝑦 → (𝐹‘𝑥) = (𝐹‘𝑦)) | |
| 5 | 4 | eleq2d 2299 | . . . . . 6 ⊢ (𝑥 = 𝑦 → (𝑤 ∈ (𝐹‘𝑥) ↔ 𝑤 ∈ (𝐹‘𝑦))) |
| 6 | 5 | exbidv 1871 | . . . . 5 ⊢ (𝑥 = 𝑦 → (∃𝑤 𝑤 ∈ (𝐹‘𝑥) ↔ ∃𝑤 𝑤 ∈ (𝐹‘𝑦))) |
| 7 | 6 | cbvralv 2765 | . . . 4 ⊢ (∀𝑥 ∈ ω ∃𝑤 𝑤 ∈ (𝐹‘𝑥) ↔ ∀𝑦 ∈ ω ∃𝑤 𝑤 ∈ (𝐹‘𝑦)) |
| 8 | 3, 7 | sylib 122 | . . 3 ⊢ (𝜑 → ∀𝑦 ∈ ω ∃𝑤 𝑤 ∈ (𝐹‘𝑦)) |
| 9 | eleq1w 2290 | . . . . 5 ⊢ (𝑤 = 𝑣 → (𝑤 ∈ (𝐹‘𝑦) ↔ 𝑣 ∈ (𝐹‘𝑦))) | |
| 10 | 9 | cbvexv 1965 | . . . 4 ⊢ (∃𝑤 𝑤 ∈ (𝐹‘𝑦) ↔ ∃𝑣 𝑣 ∈ (𝐹‘𝑦)) |
| 11 | 10 | ralbii 2536 | . . 3 ⊢ (∀𝑦 ∈ ω ∃𝑤 𝑤 ∈ (𝐹‘𝑦) ↔ ∀𝑦 ∈ ω ∃𝑣 𝑣 ∈ (𝐹‘𝑦)) |
| 12 | 8, 11 | sylib 122 | . 2 ⊢ (𝜑 → ∀𝑦 ∈ ω ∃𝑣 𝑣 ∈ (𝐹‘𝑦)) |
| 13 | nfcv 2372 | . . 3 ⊢ Ⅎ𝑛({𝑚} × (𝐹‘𝑚)) | |
| 14 | nfcv 2372 | . . 3 ⊢ Ⅎ𝑚({𝑛} × (𝐹‘𝑛)) | |
| 15 | sneq 3677 | . . . 4 ⊢ (𝑚 = 𝑛 → {𝑚} = {𝑛}) | |
| 16 | fveq2 5623 | . . . 4 ⊢ (𝑚 = 𝑛 → (𝐹‘𝑚) = (𝐹‘𝑛)) | |
| 17 | 15, 16 | xpeq12d 4741 | . . 3 ⊢ (𝑚 = 𝑛 → ({𝑚} × (𝐹‘𝑚)) = ({𝑛} × (𝐹‘𝑛))) |
| 18 | 13, 14, 17 | cbvmpt 4178 | . 2 ⊢ (𝑚 ∈ ω ↦ ({𝑚} × (𝐹‘𝑚))) = (𝑛 ∈ ω ↦ ({𝑛} × (𝐹‘𝑛))) |
| 19 | nfcv 2372 | . . 3 ⊢ Ⅎ𝑛(2nd ‘(𝑓‘((𝑚 ∈ ω ↦ ({𝑚} × (𝐹‘𝑚)))‘𝑚))) | |
| 20 | nfcv 2372 | . . . 4 ⊢ Ⅎ𝑚2nd | |
| 21 | nfcv 2372 | . . . . 5 ⊢ Ⅎ𝑚𝑓 | |
| 22 | nffvmpt1 5634 | . . . . 5 ⊢ Ⅎ𝑚((𝑚 ∈ ω ↦ ({𝑚} × (𝐹‘𝑚)))‘𝑛) | |
| 23 | 21, 22 | nffv 5633 | . . . 4 ⊢ Ⅎ𝑚(𝑓‘((𝑚 ∈ ω ↦ ({𝑚} × (𝐹‘𝑚)))‘𝑛)) |
| 24 | 20, 23 | nffv 5633 | . . 3 ⊢ Ⅎ𝑚(2nd ‘(𝑓‘((𝑚 ∈ ω ↦ ({𝑚} × (𝐹‘𝑚)))‘𝑛))) |
| 25 | 2fveq3 5628 | . . . 4 ⊢ (𝑚 = 𝑛 → (𝑓‘((𝑚 ∈ ω ↦ ({𝑚} × (𝐹‘𝑚)))‘𝑚)) = (𝑓‘((𝑚 ∈ ω ↦ ({𝑚} × (𝐹‘𝑚)))‘𝑛))) | |
| 26 | 25 | fveq2d 5627 | . . 3 ⊢ (𝑚 = 𝑛 → (2nd ‘(𝑓‘((𝑚 ∈ ω ↦ ({𝑚} × (𝐹‘𝑚)))‘𝑚))) = (2nd ‘(𝑓‘((𝑚 ∈ ω ↦ ({𝑚} × (𝐹‘𝑚)))‘𝑛)))) |
| 27 | 19, 24, 26 | cbvmpt 4178 | . 2 ⊢ (𝑚 ∈ ω ↦ (2nd ‘(𝑓‘((𝑚 ∈ ω ↦ ({𝑚} × (𝐹‘𝑚)))‘𝑚)))) = (𝑛 ∈ ω ↦ (2nd ‘(𝑓‘((𝑚 ∈ ω ↦ ({𝑚} × (𝐹‘𝑚)))‘𝑛)))) |
| 28 | 1, 2, 12, 18, 27 | cc2lem 7440 | 1 ⊢ (𝜑 → ∃𝑔(𝑔 Fn ω ∧ ∀𝑛 ∈ ω (𝑔‘𝑛) ∈ (𝐹‘𝑛))) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ∃wex 1538 ∈ wcel 2200 ∀wral 2508 {csn 3666 ↦ cmpt 4144 ωcom 4679 × cxp 4714 Fn wfn 5309 ‘cfv 5314 2nd c2nd 6275 CCHOICEwacc 7436 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-coll 4198 ax-sep 4201 ax-pow 4257 ax-pr 4292 ax-un 4521 ax-iinf 4677 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ral 2513 df-rex 2514 df-reu 2515 df-rab 2517 df-v 2801 df-sbc 3029 df-csb 3125 df-un 3201 df-in 3203 df-ss 3210 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3888 df-int 3923 df-iun 3966 df-br 4083 df-opab 4145 df-mpt 4146 df-id 4381 df-iom 4680 df-xp 4722 df-rel 4723 df-cnv 4724 df-co 4725 df-dm 4726 df-rn 4727 df-res 4728 df-ima 4729 df-iota 5274 df-fun 5316 df-fn 5317 df-f 5318 df-f1 5319 df-fo 5320 df-f1o 5321 df-fv 5322 df-2nd 6277 df-er 6670 df-en 6878 df-cc 7437 |
| This theorem is referenced by: cc3 7442 acnccim 7446 |
| Copyright terms: Public domain | W3C validator |