ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  cc2 GIF version

Theorem cc2 7229
Description: Countable choice using sequences instead of countable sets. (Contributed by Jim Kingdon, 27-Apr-2024.)
Hypotheses
Ref Expression
cc2.cc (𝜑CCHOICE)
cc2.a (𝜑𝐹 Fn ω)
cc2.m (𝜑 → ∀𝑥 ∈ ω ∃𝑤 𝑤 ∈ (𝐹𝑥))
Assertion
Ref Expression
cc2 (𝜑 → ∃𝑔(𝑔 Fn ω ∧ ∀𝑛 ∈ ω (𝑔𝑛) ∈ (𝐹𝑛)))
Distinct variable groups:   𝑔,𝐹,𝑛   𝑤,𝐹,𝑥   𝜑,𝑛
Allowed substitution hints:   𝜑(𝑥,𝑤,𝑔)

Proof of Theorem cc2
Dummy variables 𝑓 𝑚 𝑣 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 cc2.cc . 2 (𝜑CCHOICE)
2 cc2.a . 2 (𝜑𝐹 Fn ω)
3 cc2.m . . . 4 (𝜑 → ∀𝑥 ∈ ω ∃𝑤 𝑤 ∈ (𝐹𝑥))
4 fveq2 5496 . . . . . . 7 (𝑥 = 𝑦 → (𝐹𝑥) = (𝐹𝑦))
54eleq2d 2240 . . . . . 6 (𝑥 = 𝑦 → (𝑤 ∈ (𝐹𝑥) ↔ 𝑤 ∈ (𝐹𝑦)))
65exbidv 1818 . . . . 5 (𝑥 = 𝑦 → (∃𝑤 𝑤 ∈ (𝐹𝑥) ↔ ∃𝑤 𝑤 ∈ (𝐹𝑦)))
76cbvralv 2696 . . . 4 (∀𝑥 ∈ ω ∃𝑤 𝑤 ∈ (𝐹𝑥) ↔ ∀𝑦 ∈ ω ∃𝑤 𝑤 ∈ (𝐹𝑦))
83, 7sylib 121 . . 3 (𝜑 → ∀𝑦 ∈ ω ∃𝑤 𝑤 ∈ (𝐹𝑦))
9 eleq1w 2231 . . . . 5 (𝑤 = 𝑣 → (𝑤 ∈ (𝐹𝑦) ↔ 𝑣 ∈ (𝐹𝑦)))
109cbvexv 1911 . . . 4 (∃𝑤 𝑤 ∈ (𝐹𝑦) ↔ ∃𝑣 𝑣 ∈ (𝐹𝑦))
1110ralbii 2476 . . 3 (∀𝑦 ∈ ω ∃𝑤 𝑤 ∈ (𝐹𝑦) ↔ ∀𝑦 ∈ ω ∃𝑣 𝑣 ∈ (𝐹𝑦))
128, 11sylib 121 . 2 (𝜑 → ∀𝑦 ∈ ω ∃𝑣 𝑣 ∈ (𝐹𝑦))
13 nfcv 2312 . . 3 𝑛({𝑚} × (𝐹𝑚))
14 nfcv 2312 . . 3 𝑚({𝑛} × (𝐹𝑛))
15 sneq 3594 . . . 4 (𝑚 = 𝑛 → {𝑚} = {𝑛})
16 fveq2 5496 . . . 4 (𝑚 = 𝑛 → (𝐹𝑚) = (𝐹𝑛))
1715, 16xpeq12d 4636 . . 3 (𝑚 = 𝑛 → ({𝑚} × (𝐹𝑚)) = ({𝑛} × (𝐹𝑛)))
1813, 14, 17cbvmpt 4084 . 2 (𝑚 ∈ ω ↦ ({𝑚} × (𝐹𝑚))) = (𝑛 ∈ ω ↦ ({𝑛} × (𝐹𝑛)))
19 nfcv 2312 . . 3 𝑛(2nd ‘(𝑓‘((𝑚 ∈ ω ↦ ({𝑚} × (𝐹𝑚)))‘𝑚)))
20 nfcv 2312 . . . 4 𝑚2nd
21 nfcv 2312 . . . . 5 𝑚𝑓
22 nffvmpt1 5507 . . . . 5 𝑚((𝑚 ∈ ω ↦ ({𝑚} × (𝐹𝑚)))‘𝑛)
2321, 22nffv 5506 . . . 4 𝑚(𝑓‘((𝑚 ∈ ω ↦ ({𝑚} × (𝐹𝑚)))‘𝑛))
2420, 23nffv 5506 . . 3 𝑚(2nd ‘(𝑓‘((𝑚 ∈ ω ↦ ({𝑚} × (𝐹𝑚)))‘𝑛)))
25 2fveq3 5501 . . . 4 (𝑚 = 𝑛 → (𝑓‘((𝑚 ∈ ω ↦ ({𝑚} × (𝐹𝑚)))‘𝑚)) = (𝑓‘((𝑚 ∈ ω ↦ ({𝑚} × (𝐹𝑚)))‘𝑛)))
2625fveq2d 5500 . . 3 (𝑚 = 𝑛 → (2nd ‘(𝑓‘((𝑚 ∈ ω ↦ ({𝑚} × (𝐹𝑚)))‘𝑚))) = (2nd ‘(𝑓‘((𝑚 ∈ ω ↦ ({𝑚} × (𝐹𝑚)))‘𝑛))))
2719, 24, 26cbvmpt 4084 . 2 (𝑚 ∈ ω ↦ (2nd ‘(𝑓‘((𝑚 ∈ ω ↦ ({𝑚} × (𝐹𝑚)))‘𝑚)))) = (𝑛 ∈ ω ↦ (2nd ‘(𝑓‘((𝑚 ∈ ω ↦ ({𝑚} × (𝐹𝑚)))‘𝑛))))
281, 2, 12, 18, 27cc2lem 7228 1 (𝜑 → ∃𝑔(𝑔 Fn ω ∧ ∀𝑛 ∈ ω (𝑔𝑛) ∈ (𝐹𝑛)))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wex 1485  wcel 2141  wral 2448  {csn 3583  cmpt 4050  ωcom 4574   × cxp 4609   Fn wfn 5193  cfv 5198  2nd c2nd 6118  CCHOICEwacc 7224
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-13 2143  ax-14 2144  ax-ext 2152  ax-coll 4104  ax-sep 4107  ax-pow 4160  ax-pr 4194  ax-un 4418  ax-iinf 4572
This theorem depends on definitions:  df-bi 116  df-3an 975  df-tru 1351  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ral 2453  df-rex 2454  df-reu 2455  df-rab 2457  df-v 2732  df-sbc 2956  df-csb 3050  df-un 3125  df-in 3127  df-ss 3134  df-pw 3568  df-sn 3589  df-pr 3590  df-op 3592  df-uni 3797  df-int 3832  df-iun 3875  df-br 3990  df-opab 4051  df-mpt 4052  df-id 4278  df-iom 4575  df-xp 4617  df-rel 4618  df-cnv 4619  df-co 4620  df-dm 4621  df-rn 4622  df-res 4623  df-ima 4624  df-iota 5160  df-fun 5200  df-fn 5201  df-f 5202  df-f1 5203  df-fo 5204  df-f1o 5205  df-fv 5206  df-2nd 6120  df-er 6513  df-en 6719  df-cc 7225
This theorem is referenced by:  cc3  7230
  Copyright terms: Public domain W3C validator