| Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > 0mgm | Structured version Visualization version GIF version | ||
| Description: A set with an empty base set is always a magma. (Contributed by AV, 25-Feb-2020.) |
| Ref | Expression |
|---|---|
| 0mgm.b | ⊢ (Base‘𝑀) = ∅ |
| Ref | Expression |
|---|---|
| 0mgm | ⊢ (𝑀 ∈ 𝑉 → 𝑀 ∈ Mgm) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ral0 4464 | . 2 ⊢ ∀𝑥 ∈ ∅ ∀𝑦 ∈ ∅ (𝑥(+g‘𝑀)𝑦) ∈ ∅ | |
| 2 | 0mgm.b | . . . 4 ⊢ (Base‘𝑀) = ∅ | |
| 3 | 2 | eqcomi 2738 | . . 3 ⊢ ∅ = (Base‘𝑀) |
| 4 | eqid 2729 | . . 3 ⊢ (+g‘𝑀) = (+g‘𝑀) | |
| 5 | 3, 4 | ismgm 18515 | . 2 ⊢ (𝑀 ∈ 𝑉 → (𝑀 ∈ Mgm ↔ ∀𝑥 ∈ ∅ ∀𝑦 ∈ ∅ (𝑥(+g‘𝑀)𝑦) ∈ ∅)) |
| 6 | 1, 5 | mpbiri 258 | 1 ⊢ (𝑀 ∈ 𝑉 → 𝑀 ∈ Mgm) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 ∀wral 3044 ∅c0 4284 ‘cfv 6482 (class class class)co 7349 Basecbs 17120 +gcplusg 17161 Mgmcmgm 18512 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 ax-nul 5245 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-ne 2926 df-ral 3045 df-rab 3395 df-v 3438 df-sbc 3743 df-dif 3906 df-un 3908 df-ss 3920 df-nul 4285 df-if 4477 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4859 df-br 5093 df-iota 6438 df-fv 6490 df-ov 7352 df-mgm 18514 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |