![]() |
Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > 0mgm | Structured version Visualization version GIF version |
Description: A set with an empty base set is always a magma. (Contributed by AV, 25-Feb-2020.) |
Ref | Expression |
---|---|
0mgm.b | ⊢ (Base‘𝑀) = ∅ |
Ref | Expression |
---|---|
0mgm | ⊢ (𝑀 ∈ 𝑉 → 𝑀 ∈ Mgm) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ral0 4519 | . 2 ⊢ ∀𝑥 ∈ ∅ ∀𝑦 ∈ ∅ (𝑥(+g‘𝑀)𝑦) ∈ ∅ | |
2 | 0mgm.b | . . . 4 ⊢ (Base‘𝑀) = ∅ | |
3 | 2 | eqcomi 2744 | . . 3 ⊢ ∅ = (Base‘𝑀) |
4 | eqid 2735 | . . 3 ⊢ (+g‘𝑀) = (+g‘𝑀) | |
5 | 3, 4 | ismgm 18667 | . 2 ⊢ (𝑀 ∈ 𝑉 → (𝑀 ∈ Mgm ↔ ∀𝑥 ∈ ∅ ∀𝑦 ∈ ∅ (𝑥(+g‘𝑀)𝑦) ∈ ∅)) |
6 | 1, 5 | mpbiri 258 | 1 ⊢ (𝑀 ∈ 𝑉 → 𝑀 ∈ Mgm) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1537 ∈ wcel 2106 ∀wral 3059 ∅c0 4339 ‘cfv 6563 (class class class)co 7431 Basecbs 17245 +gcplusg 17298 Mgmcmgm 18664 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-ext 2706 ax-nul 5312 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-sb 2063 df-clab 2713 df-cleq 2727 df-clel 2814 df-ne 2939 df-ral 3060 df-rab 3434 df-v 3480 df-sbc 3792 df-dif 3966 df-un 3968 df-ss 3980 df-nul 4340 df-if 4532 df-sn 4632 df-pr 4634 df-op 4638 df-uni 4913 df-br 5149 df-iota 6516 df-fv 6571 df-ov 7434 df-mgm 18666 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |