| Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > 0mgm | Structured version Visualization version GIF version | ||
| Description: A set with an empty base set is always a magma. (Contributed by AV, 25-Feb-2020.) |
| Ref | Expression |
|---|---|
| 0mgm.b | ⊢ (Base‘𝑀) = ∅ |
| Ref | Expression |
|---|---|
| 0mgm | ⊢ (𝑀 ∈ 𝑉 → 𝑀 ∈ Mgm) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ral0 4479 | . 2 ⊢ ∀𝑥 ∈ ∅ ∀𝑦 ∈ ∅ (𝑥(+g‘𝑀)𝑦) ∈ ∅ | |
| 2 | 0mgm.b | . . . 4 ⊢ (Base‘𝑀) = ∅ | |
| 3 | 2 | eqcomi 2739 | . . 3 ⊢ ∅ = (Base‘𝑀) |
| 4 | eqid 2730 | . . 3 ⊢ (+g‘𝑀) = (+g‘𝑀) | |
| 5 | 3, 4 | ismgm 18575 | . 2 ⊢ (𝑀 ∈ 𝑉 → (𝑀 ∈ Mgm ↔ ∀𝑥 ∈ ∅ ∀𝑦 ∈ ∅ (𝑥(+g‘𝑀)𝑦) ∈ ∅)) |
| 6 | 1, 5 | mpbiri 258 | 1 ⊢ (𝑀 ∈ 𝑉 → 𝑀 ∈ Mgm) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 ∀wral 3045 ∅c0 4299 ‘cfv 6514 (class class class)co 7390 Basecbs 17186 +gcplusg 17227 Mgmcmgm 18572 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2702 ax-nul 5264 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2709 df-cleq 2722 df-clel 2804 df-ne 2927 df-ral 3046 df-rab 3409 df-v 3452 df-sbc 3757 df-dif 3920 df-un 3922 df-ss 3934 df-nul 4300 df-if 4492 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-br 5111 df-iota 6467 df-fv 6522 df-ov 7393 df-mgm 18574 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |