Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  0mgm Structured version   Visualization version   GIF version

Theorem 0mgm 48158
Description: A set with an empty base set is always a magma. (Contributed by AV, 25-Feb-2020.)
Hypothesis
Ref Expression
0mgm.b (Base‘𝑀) = ∅
Assertion
Ref Expression
0mgm (𝑀𝑉𝑀 ∈ Mgm)

Proof of Theorem 0mgm
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ral0 4479 . 2 𝑥 ∈ ∅ ∀𝑦 ∈ ∅ (𝑥(+g𝑀)𝑦) ∈ ∅
2 0mgm.b . . . 4 (Base‘𝑀) = ∅
32eqcomi 2739 . . 3 ∅ = (Base‘𝑀)
4 eqid 2730 . . 3 (+g𝑀) = (+g𝑀)
53, 4ismgm 18575 . 2 (𝑀𝑉 → (𝑀 ∈ Mgm ↔ ∀𝑥 ∈ ∅ ∀𝑦 ∈ ∅ (𝑥(+g𝑀)𝑦) ∈ ∅))
61, 5mpbiri 258 1 (𝑀𝑉𝑀 ∈ Mgm)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wcel 2109  wral 3045  c0 4299  cfv 6514  (class class class)co 7390  Basecbs 17186  +gcplusg 17227  Mgmcmgm 18572
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2702  ax-nul 5264
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2709  df-cleq 2722  df-clel 2804  df-ne 2927  df-ral 3046  df-rab 3409  df-v 3452  df-sbc 3757  df-dif 3920  df-un 3922  df-ss 3934  df-nul 4300  df-if 4492  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-br 5111  df-iota 6467  df-fv 6522  df-ov 7393  df-mgm 18574
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator