![]() |
Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > opmpoismgm | Structured version Visualization version GIF version |
Description: A structure with a group addition operation in maps-to notation is a magma if the operation value is contained in the base set. (Contributed by AV, 16-Feb-2020.) |
Ref | Expression |
---|---|
opmpoismgm.b | ⊢ 𝐵 = (Base‘𝑀) |
opmpoismgm.p | ⊢ (+g‘𝑀) = (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ 𝐶) |
opmpoismgm.n | ⊢ (𝜑 → 𝐵 ≠ ∅) |
opmpoismgm.c | ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → 𝐶 ∈ 𝐵) |
Ref | Expression |
---|---|
opmpoismgm | ⊢ (𝜑 → 𝑀 ∈ Mgm) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | opmpoismgm.c | . . . . . 6 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → 𝐶 ∈ 𝐵) | |
2 | 1 | ralrimivva 3191 | . . . . 5 ⊢ (𝜑 → ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 𝐶 ∈ 𝐵) |
3 | 2 | adantr 479 | . . . 4 ⊢ ((𝜑 ∧ (𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵)) → ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 𝐶 ∈ 𝐵) |
4 | simprl 769 | . . . 4 ⊢ ((𝜑 ∧ (𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵)) → 𝑎 ∈ 𝐵) | |
5 | simprr 771 | . . . 4 ⊢ ((𝜑 ∧ (𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵)) → 𝑏 ∈ 𝐵) | |
6 | eqid 2726 | . . . . 5 ⊢ (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ 𝐶) = (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ 𝐶) | |
7 | 6 | ovmpoelrn 8086 | . . . 4 ⊢ ((∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 𝐶 ∈ 𝐵 ∧ 𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵) → (𝑎(𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ 𝐶)𝑏) ∈ 𝐵) |
8 | 3, 4, 5, 7 | syl3anc 1368 | . . 3 ⊢ ((𝜑 ∧ (𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵)) → (𝑎(𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ 𝐶)𝑏) ∈ 𝐵) |
9 | 8 | ralrimivva 3191 | . 2 ⊢ (𝜑 → ∀𝑎 ∈ 𝐵 ∀𝑏 ∈ 𝐵 (𝑎(𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ 𝐶)𝑏) ∈ 𝐵) |
10 | opmpoismgm.n | . . 3 ⊢ (𝜑 → 𝐵 ≠ ∅) | |
11 | n0 4349 | . . . 4 ⊢ (𝐵 ≠ ∅ ↔ ∃𝑒 𝑒 ∈ 𝐵) | |
12 | opmpoismgm.b | . . . . . 6 ⊢ 𝐵 = (Base‘𝑀) | |
13 | opmpoismgm.p | . . . . . . 7 ⊢ (+g‘𝑀) = (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ 𝐶) | |
14 | 13 | eqcomi 2735 | . . . . . 6 ⊢ (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ 𝐶) = (+g‘𝑀) |
15 | 12, 14 | ismgmn0 18635 | . . . . 5 ⊢ (𝑒 ∈ 𝐵 → (𝑀 ∈ Mgm ↔ ∀𝑎 ∈ 𝐵 ∀𝑏 ∈ 𝐵 (𝑎(𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ 𝐶)𝑏) ∈ 𝐵)) |
16 | 15 | exlimiv 1926 | . . . 4 ⊢ (∃𝑒 𝑒 ∈ 𝐵 → (𝑀 ∈ Mgm ↔ ∀𝑎 ∈ 𝐵 ∀𝑏 ∈ 𝐵 (𝑎(𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ 𝐶)𝑏) ∈ 𝐵)) |
17 | 11, 16 | sylbi 216 | . . 3 ⊢ (𝐵 ≠ ∅ → (𝑀 ∈ Mgm ↔ ∀𝑎 ∈ 𝐵 ∀𝑏 ∈ 𝐵 (𝑎(𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ 𝐶)𝑏) ∈ 𝐵)) |
18 | 10, 17 | syl 17 | . 2 ⊢ (𝜑 → (𝑀 ∈ Mgm ↔ ∀𝑎 ∈ 𝐵 ∀𝑏 ∈ 𝐵 (𝑎(𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ 𝐶)𝑏) ∈ 𝐵)) |
19 | 9, 18 | mpbird 256 | 1 ⊢ (𝜑 → 𝑀 ∈ Mgm) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 394 = wceq 1534 ∃wex 1774 ∈ wcel 2099 ≠ wne 2930 ∀wral 3051 ∅c0 4325 ‘cfv 6554 (class class class)co 7424 ∈ cmpo 7426 Basecbs 17213 +gcplusg 17266 Mgmcmgm 18631 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2167 ax-ext 2697 ax-sep 5304 ax-nul 5311 ax-pr 5433 ax-un 7746 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3an 1086 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2529 df-eu 2558 df-clab 2704 df-cleq 2718 df-clel 2803 df-nfc 2878 df-ne 2931 df-ral 3052 df-rex 3061 df-rab 3420 df-v 3464 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-nul 4326 df-if 4534 df-sn 4634 df-pr 4636 df-op 4640 df-uni 4914 df-iun 5003 df-br 5154 df-opab 5216 df-mpt 5237 df-id 5580 df-xp 5688 df-rel 5689 df-cnv 5690 df-co 5691 df-dm 5692 df-rn 5693 df-res 5694 df-ima 5695 df-iota 6506 df-fun 6556 df-fn 6557 df-f 6558 df-fv 6562 df-ov 7427 df-oprab 7428 df-mpo 7429 df-1st 8003 df-2nd 8004 df-mgm 18633 |
This theorem is referenced by: copissgrp 47545 |
Copyright terms: Public domain | W3C validator |