Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  opmpoismgm Structured version   Visualization version   GIF version

Theorem opmpoismgm 48011
Description: A structure with a group addition operation in maps-to notation is a magma if the operation value is contained in the base set. (Contributed by AV, 16-Feb-2020.)
Hypotheses
Ref Expression
opmpoismgm.b 𝐵 = (Base‘𝑀)
opmpoismgm.p (+g𝑀) = (𝑥𝐵, 𝑦𝐵𝐶)
opmpoismgm.n (𝜑𝐵 ≠ ∅)
opmpoismgm.c ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → 𝐶𝐵)
Assertion
Ref Expression
opmpoismgm (𝜑𝑀 ∈ Mgm)
Distinct variable groups:   𝑥,𝐵,𝑦   𝑥,𝑀   𝜑,𝑥,𝑦
Allowed substitution hints:   𝐶(𝑥,𝑦)   𝑀(𝑦)

Proof of Theorem opmpoismgm
Dummy variables 𝑎 𝑏 𝑒 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 opmpoismgm.c . . . . . 6 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → 𝐶𝐵)
21ralrimivva 3200 . . . . 5 (𝜑 → ∀𝑥𝐵𝑦𝐵 𝐶𝐵)
32adantr 480 . . . 4 ((𝜑 ∧ (𝑎𝐵𝑏𝐵)) → ∀𝑥𝐵𝑦𝐵 𝐶𝐵)
4 simprl 771 . . . 4 ((𝜑 ∧ (𝑎𝐵𝑏𝐵)) → 𝑎𝐵)
5 simprr 773 . . . 4 ((𝜑 ∧ (𝑎𝐵𝑏𝐵)) → 𝑏𝐵)
6 eqid 2735 . . . . 5 (𝑥𝐵, 𝑦𝐵𝐶) = (𝑥𝐵, 𝑦𝐵𝐶)
76ovmpoelrn 8096 . . . 4 ((∀𝑥𝐵𝑦𝐵 𝐶𝐵𝑎𝐵𝑏𝐵) → (𝑎(𝑥𝐵, 𝑦𝐵𝐶)𝑏) ∈ 𝐵)
83, 4, 5, 7syl3anc 1370 . . 3 ((𝜑 ∧ (𝑎𝐵𝑏𝐵)) → (𝑎(𝑥𝐵, 𝑦𝐵𝐶)𝑏) ∈ 𝐵)
98ralrimivva 3200 . 2 (𝜑 → ∀𝑎𝐵𝑏𝐵 (𝑎(𝑥𝐵, 𝑦𝐵𝐶)𝑏) ∈ 𝐵)
10 opmpoismgm.n . . 3 (𝜑𝐵 ≠ ∅)
11 n0 4359 . . . 4 (𝐵 ≠ ∅ ↔ ∃𝑒 𝑒𝐵)
12 opmpoismgm.b . . . . . 6 𝐵 = (Base‘𝑀)
13 opmpoismgm.p . . . . . . 7 (+g𝑀) = (𝑥𝐵, 𝑦𝐵𝐶)
1413eqcomi 2744 . . . . . 6 (𝑥𝐵, 𝑦𝐵𝐶) = (+g𝑀)
1512, 14ismgmn0 18668 . . . . 5 (𝑒𝐵 → (𝑀 ∈ Mgm ↔ ∀𝑎𝐵𝑏𝐵 (𝑎(𝑥𝐵, 𝑦𝐵𝐶)𝑏) ∈ 𝐵))
1615exlimiv 1928 . . . 4 (∃𝑒 𝑒𝐵 → (𝑀 ∈ Mgm ↔ ∀𝑎𝐵𝑏𝐵 (𝑎(𝑥𝐵, 𝑦𝐵𝐶)𝑏) ∈ 𝐵))
1711, 16sylbi 217 . . 3 (𝐵 ≠ ∅ → (𝑀 ∈ Mgm ↔ ∀𝑎𝐵𝑏𝐵 (𝑎(𝑥𝐵, 𝑦𝐵𝐶)𝑏) ∈ 𝐵))
1810, 17syl 17 . 2 (𝜑 → (𝑀 ∈ Mgm ↔ ∀𝑎𝐵𝑏𝐵 (𝑎(𝑥𝐵, 𝑦𝐵𝐶)𝑏) ∈ 𝐵))
199, 18mpbird 257 1 (𝜑𝑀 ∈ Mgm)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1537  wex 1776  wcel 2106  wne 2938  wral 3059  c0 4339  cfv 6563  (class class class)co 7431  cmpo 7433  Basecbs 17245  +gcplusg 17298  Mgmcmgm 18664
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-sep 5302  ax-nul 5312  ax-pr 5438  ax-un 7754
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-ral 3060  df-rex 3069  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-nul 4340  df-if 4532  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-iun 4998  df-br 5149  df-opab 5211  df-mpt 5232  df-id 5583  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-fv 6571  df-ov 7434  df-oprab 7435  df-mpo 7436  df-1st 8013  df-2nd 8014  df-mgm 18666
This theorem is referenced by:  copissgrp  48012
  Copyright terms: Public domain W3C validator