Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  opmpoismgm Structured version   Visualization version   GIF version

Theorem opmpoismgm 48266
Description: A structure with a group addition operation in maps-to notation is a magma if the operation value is contained in the base set. (Contributed by AV, 16-Feb-2020.)
Hypotheses
Ref Expression
opmpoismgm.b 𝐵 = (Base‘𝑀)
opmpoismgm.p (+g𝑀) = (𝑥𝐵, 𝑦𝐵𝐶)
opmpoismgm.n (𝜑𝐵 ≠ ∅)
opmpoismgm.c ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → 𝐶𝐵)
Assertion
Ref Expression
opmpoismgm (𝜑𝑀 ∈ Mgm)
Distinct variable groups:   𝑥,𝐵,𝑦   𝑥,𝑀   𝜑,𝑥,𝑦
Allowed substitution hints:   𝐶(𝑥,𝑦)   𝑀(𝑦)

Proof of Theorem opmpoismgm
Dummy variables 𝑎 𝑏 𝑒 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 opmpoismgm.c . . . . . 6 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → 𝐶𝐵)
21ralrimivva 3175 . . . . 5 (𝜑 → ∀𝑥𝐵𝑦𝐵 𝐶𝐵)
32adantr 480 . . . 4 ((𝜑 ∧ (𝑎𝐵𝑏𝐵)) → ∀𝑥𝐵𝑦𝐵 𝐶𝐵)
4 simprl 770 . . . 4 ((𝜑 ∧ (𝑎𝐵𝑏𝐵)) → 𝑎𝐵)
5 simprr 772 . . . 4 ((𝜑 ∧ (𝑎𝐵𝑏𝐵)) → 𝑏𝐵)
6 eqid 2731 . . . . 5 (𝑥𝐵, 𝑦𝐵𝐶) = (𝑥𝐵, 𝑦𝐵𝐶)
76ovmpoelrn 8004 . . . 4 ((∀𝑥𝐵𝑦𝐵 𝐶𝐵𝑎𝐵𝑏𝐵) → (𝑎(𝑥𝐵, 𝑦𝐵𝐶)𝑏) ∈ 𝐵)
83, 4, 5, 7syl3anc 1373 . . 3 ((𝜑 ∧ (𝑎𝐵𝑏𝐵)) → (𝑎(𝑥𝐵, 𝑦𝐵𝐶)𝑏) ∈ 𝐵)
98ralrimivva 3175 . 2 (𝜑 → ∀𝑎𝐵𝑏𝐵 (𝑎(𝑥𝐵, 𝑦𝐵𝐶)𝑏) ∈ 𝐵)
10 opmpoismgm.n . . 3 (𝜑𝐵 ≠ ∅)
11 n0 4300 . . . 4 (𝐵 ≠ ∅ ↔ ∃𝑒 𝑒𝐵)
12 opmpoismgm.b . . . . . 6 𝐵 = (Base‘𝑀)
13 opmpoismgm.p . . . . . . 7 (+g𝑀) = (𝑥𝐵, 𝑦𝐵𝐶)
1413eqcomi 2740 . . . . . 6 (𝑥𝐵, 𝑦𝐵𝐶) = (+g𝑀)
1512, 14ismgmn0 18550 . . . . 5 (𝑒𝐵 → (𝑀 ∈ Mgm ↔ ∀𝑎𝐵𝑏𝐵 (𝑎(𝑥𝐵, 𝑦𝐵𝐶)𝑏) ∈ 𝐵))
1615exlimiv 1931 . . . 4 (∃𝑒 𝑒𝐵 → (𝑀 ∈ Mgm ↔ ∀𝑎𝐵𝑏𝐵 (𝑎(𝑥𝐵, 𝑦𝐵𝐶)𝑏) ∈ 𝐵))
1711, 16sylbi 217 . . 3 (𝐵 ≠ ∅ → (𝑀 ∈ Mgm ↔ ∀𝑎𝐵𝑏𝐵 (𝑎(𝑥𝐵, 𝑦𝐵𝐶)𝑏) ∈ 𝐵))
1810, 17syl 17 . 2 (𝜑 → (𝑀 ∈ Mgm ↔ ∀𝑎𝐵𝑏𝐵 (𝑎(𝑥𝐵, 𝑦𝐵𝐶)𝑏) ∈ 𝐵))
199, 18mpbird 257 1 (𝜑𝑀 ∈ Mgm)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1541  wex 1780  wcel 2111  wne 2928  wral 3047  c0 4280  cfv 6481  (class class class)co 7346  cmpo 7348  Basecbs 17120  +gcplusg 17161  Mgmcmgm 18546
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5232  ax-nul 5242  ax-pr 5368  ax-un 7668
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-nul 4281  df-if 4473  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4857  df-iun 4941  df-br 5090  df-opab 5152  df-mpt 5171  df-id 5509  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-fv 6489  df-ov 7349  df-oprab 7350  df-mpo 7351  df-1st 7921  df-2nd 7922  df-mgm 18548
This theorem is referenced by:  copissgrp  48267
  Copyright terms: Public domain W3C validator