Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  opmpoismgm Structured version   Visualization version   GIF version

Theorem opmpoismgm 47890
Description: A structure with a group addition operation in maps-to notation is a magma if the operation value is contained in the base set. (Contributed by AV, 16-Feb-2020.)
Hypotheses
Ref Expression
opmpoismgm.b 𝐵 = (Base‘𝑀)
opmpoismgm.p (+g𝑀) = (𝑥𝐵, 𝑦𝐵𝐶)
opmpoismgm.n (𝜑𝐵 ≠ ∅)
opmpoismgm.c ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → 𝐶𝐵)
Assertion
Ref Expression
opmpoismgm (𝜑𝑀 ∈ Mgm)
Distinct variable groups:   𝑥,𝐵,𝑦   𝑥,𝑀   𝜑,𝑥,𝑦
Allowed substitution hints:   𝐶(𝑥,𝑦)   𝑀(𝑦)

Proof of Theorem opmpoismgm
Dummy variables 𝑎 𝑏 𝑒 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 opmpoismgm.c . . . . . 6 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → 𝐶𝐵)
21ralrimivva 3208 . . . . 5 (𝜑 → ∀𝑥𝐵𝑦𝐵 𝐶𝐵)
32adantr 480 . . . 4 ((𝜑 ∧ (𝑎𝐵𝑏𝐵)) → ∀𝑥𝐵𝑦𝐵 𝐶𝐵)
4 simprl 770 . . . 4 ((𝜑 ∧ (𝑎𝐵𝑏𝐵)) → 𝑎𝐵)
5 simprr 772 . . . 4 ((𝜑 ∧ (𝑎𝐵𝑏𝐵)) → 𝑏𝐵)
6 eqid 2740 . . . . 5 (𝑥𝐵, 𝑦𝐵𝐶) = (𝑥𝐵, 𝑦𝐵𝐶)
76ovmpoelrn 8113 . . . 4 ((∀𝑥𝐵𝑦𝐵 𝐶𝐵𝑎𝐵𝑏𝐵) → (𝑎(𝑥𝐵, 𝑦𝐵𝐶)𝑏) ∈ 𝐵)
83, 4, 5, 7syl3anc 1371 . . 3 ((𝜑 ∧ (𝑎𝐵𝑏𝐵)) → (𝑎(𝑥𝐵, 𝑦𝐵𝐶)𝑏) ∈ 𝐵)
98ralrimivva 3208 . 2 (𝜑 → ∀𝑎𝐵𝑏𝐵 (𝑎(𝑥𝐵, 𝑦𝐵𝐶)𝑏) ∈ 𝐵)
10 opmpoismgm.n . . 3 (𝜑𝐵 ≠ ∅)
11 n0 4376 . . . 4 (𝐵 ≠ ∅ ↔ ∃𝑒 𝑒𝐵)
12 opmpoismgm.b . . . . . 6 𝐵 = (Base‘𝑀)
13 opmpoismgm.p . . . . . . 7 (+g𝑀) = (𝑥𝐵, 𝑦𝐵𝐶)
1413eqcomi 2749 . . . . . 6 (𝑥𝐵, 𝑦𝐵𝐶) = (+g𝑀)
1512, 14ismgmn0 18680 . . . . 5 (𝑒𝐵 → (𝑀 ∈ Mgm ↔ ∀𝑎𝐵𝑏𝐵 (𝑎(𝑥𝐵, 𝑦𝐵𝐶)𝑏) ∈ 𝐵))
1615exlimiv 1929 . . . 4 (∃𝑒 𝑒𝐵 → (𝑀 ∈ Mgm ↔ ∀𝑎𝐵𝑏𝐵 (𝑎(𝑥𝐵, 𝑦𝐵𝐶)𝑏) ∈ 𝐵))
1711, 16sylbi 217 . . 3 (𝐵 ≠ ∅ → (𝑀 ∈ Mgm ↔ ∀𝑎𝐵𝑏𝐵 (𝑎(𝑥𝐵, 𝑦𝐵𝐶)𝑏) ∈ 𝐵))
1810, 17syl 17 . 2 (𝜑 → (𝑀 ∈ Mgm ↔ ∀𝑎𝐵𝑏𝐵 (𝑎(𝑥𝐵, 𝑦𝐵𝐶)𝑏) ∈ 𝐵))
199, 18mpbird 257 1 (𝜑𝑀 ∈ Mgm)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1537  wex 1777  wcel 2108  wne 2946  wral 3067  c0 4352  cfv 6573  (class class class)co 7448  cmpo 7450  Basecbs 17258  +gcplusg 17311  Mgmcmgm 18676
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pr 5447  ax-un 7770
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-ral 3068  df-rex 3077  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-id 5593  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-fv 6581  df-ov 7451  df-oprab 7452  df-mpo 7453  df-1st 8030  df-2nd 8031  df-mgm 18678
This theorem is referenced by:  copissgrp  47891
  Copyright terms: Public domain W3C validator