| Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > opmpoismgm | Structured version Visualization version GIF version | ||
| Description: A structure with a group addition operation in maps-to notation is a magma if the operation value is contained in the base set. (Contributed by AV, 16-Feb-2020.) |
| Ref | Expression |
|---|---|
| opmpoismgm.b | ⊢ 𝐵 = (Base‘𝑀) |
| opmpoismgm.p | ⊢ (+g‘𝑀) = (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ 𝐶) |
| opmpoismgm.n | ⊢ (𝜑 → 𝐵 ≠ ∅) |
| opmpoismgm.c | ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → 𝐶 ∈ 𝐵) |
| Ref | Expression |
|---|---|
| opmpoismgm | ⊢ (𝜑 → 𝑀 ∈ Mgm) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | opmpoismgm.c | . . . . . 6 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → 𝐶 ∈ 𝐵) | |
| 2 | 1 | ralrimivva 3175 | . . . . 5 ⊢ (𝜑 → ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 𝐶 ∈ 𝐵) |
| 3 | 2 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ (𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵)) → ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 𝐶 ∈ 𝐵) |
| 4 | simprl 770 | . . . 4 ⊢ ((𝜑 ∧ (𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵)) → 𝑎 ∈ 𝐵) | |
| 5 | simprr 772 | . . . 4 ⊢ ((𝜑 ∧ (𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵)) → 𝑏 ∈ 𝐵) | |
| 6 | eqid 2731 | . . . . 5 ⊢ (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ 𝐶) = (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ 𝐶) | |
| 7 | 6 | ovmpoelrn 8004 | . . . 4 ⊢ ((∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 𝐶 ∈ 𝐵 ∧ 𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵) → (𝑎(𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ 𝐶)𝑏) ∈ 𝐵) |
| 8 | 3, 4, 5, 7 | syl3anc 1373 | . . 3 ⊢ ((𝜑 ∧ (𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵)) → (𝑎(𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ 𝐶)𝑏) ∈ 𝐵) |
| 9 | 8 | ralrimivva 3175 | . 2 ⊢ (𝜑 → ∀𝑎 ∈ 𝐵 ∀𝑏 ∈ 𝐵 (𝑎(𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ 𝐶)𝑏) ∈ 𝐵) |
| 10 | opmpoismgm.n | . . 3 ⊢ (𝜑 → 𝐵 ≠ ∅) | |
| 11 | n0 4300 | . . . 4 ⊢ (𝐵 ≠ ∅ ↔ ∃𝑒 𝑒 ∈ 𝐵) | |
| 12 | opmpoismgm.b | . . . . . 6 ⊢ 𝐵 = (Base‘𝑀) | |
| 13 | opmpoismgm.p | . . . . . . 7 ⊢ (+g‘𝑀) = (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ 𝐶) | |
| 14 | 13 | eqcomi 2740 | . . . . . 6 ⊢ (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ 𝐶) = (+g‘𝑀) |
| 15 | 12, 14 | ismgmn0 18550 | . . . . 5 ⊢ (𝑒 ∈ 𝐵 → (𝑀 ∈ Mgm ↔ ∀𝑎 ∈ 𝐵 ∀𝑏 ∈ 𝐵 (𝑎(𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ 𝐶)𝑏) ∈ 𝐵)) |
| 16 | 15 | exlimiv 1931 | . . . 4 ⊢ (∃𝑒 𝑒 ∈ 𝐵 → (𝑀 ∈ Mgm ↔ ∀𝑎 ∈ 𝐵 ∀𝑏 ∈ 𝐵 (𝑎(𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ 𝐶)𝑏) ∈ 𝐵)) |
| 17 | 11, 16 | sylbi 217 | . . 3 ⊢ (𝐵 ≠ ∅ → (𝑀 ∈ Mgm ↔ ∀𝑎 ∈ 𝐵 ∀𝑏 ∈ 𝐵 (𝑎(𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ 𝐶)𝑏) ∈ 𝐵)) |
| 18 | 10, 17 | syl 17 | . 2 ⊢ (𝜑 → (𝑀 ∈ Mgm ↔ ∀𝑎 ∈ 𝐵 ∀𝑏 ∈ 𝐵 (𝑎(𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ 𝐶)𝑏) ∈ 𝐵)) |
| 19 | 9, 18 | mpbird 257 | 1 ⊢ (𝜑 → 𝑀 ∈ Mgm) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1541 ∃wex 1780 ∈ wcel 2111 ≠ wne 2928 ∀wral 3047 ∅c0 4280 ‘cfv 6481 (class class class)co 7346 ∈ cmpo 7348 Basecbs 17120 +gcplusg 17161 Mgmcmgm 18546 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5232 ax-nul 5242 ax-pr 5368 ax-un 7668 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4281 df-if 4473 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4857 df-iun 4941 df-br 5090 df-opab 5152 df-mpt 5171 df-id 5509 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-fv 6489 df-ov 7349 df-oprab 7350 df-mpo 7351 df-1st 7921 df-2nd 7922 df-mgm 18548 |
| This theorem is referenced by: copissgrp 48267 |
| Copyright terms: Public domain | W3C validator |