MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ismgm Structured version   Visualization version   GIF version

Theorem ismgm 18327
Description: The predicate "is a magma". (Contributed by FL, 2-Nov-2009.) (Revised by AV, 6-Jan-2020.)
Hypotheses
Ref Expression
ismgm.b 𝐵 = (Base‘𝑀)
ismgm.o = (+g𝑀)
Assertion
Ref Expression
ismgm (𝑀𝑉 → (𝑀 ∈ Mgm ↔ ∀𝑥𝐵𝑦𝐵 (𝑥 𝑦) ∈ 𝐵))
Distinct variable groups:   𝑥,𝐵,𝑦   𝑥,𝑀,𝑦   𝑥, ,𝑦
Allowed substitution hints:   𝑉(𝑥,𝑦)

Proof of Theorem ismgm
Dummy variables 𝑏 𝑚 𝑜 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fvexd 6789 . . 3 (𝑚 = 𝑀 → (Base‘𝑚) ∈ V)
2 fveq2 6774 . . . 4 (𝑚 = 𝑀 → (Base‘𝑚) = (Base‘𝑀))
3 ismgm.b . . . 4 𝐵 = (Base‘𝑀)
42, 3eqtr4di 2796 . . 3 (𝑚 = 𝑀 → (Base‘𝑚) = 𝐵)
5 fvexd 6789 . . . 4 ((𝑚 = 𝑀𝑏 = 𝐵) → (+g𝑚) ∈ V)
6 fveq2 6774 . . . . . 6 (𝑚 = 𝑀 → (+g𝑚) = (+g𝑀))
76adantr 481 . . . . 5 ((𝑚 = 𝑀𝑏 = 𝐵) → (+g𝑚) = (+g𝑀))
8 ismgm.o . . . . 5 = (+g𝑀)
97, 8eqtr4di 2796 . . . 4 ((𝑚 = 𝑀𝑏 = 𝐵) → (+g𝑚) = )
10 simplr 766 . . . . 5 (((𝑚 = 𝑀𝑏 = 𝐵) ∧ 𝑜 = ) → 𝑏 = 𝐵)
11 oveq 7281 . . . . . . . 8 (𝑜 = → (𝑥𝑜𝑦) = (𝑥 𝑦))
1211adantl 482 . . . . . . 7 (((𝑚 = 𝑀𝑏 = 𝐵) ∧ 𝑜 = ) → (𝑥𝑜𝑦) = (𝑥 𝑦))
1312, 10eleq12d 2833 . . . . . 6 (((𝑚 = 𝑀𝑏 = 𝐵) ∧ 𝑜 = ) → ((𝑥𝑜𝑦) ∈ 𝑏 ↔ (𝑥 𝑦) ∈ 𝐵))
1410, 13raleqbidv 3336 . . . . 5 (((𝑚 = 𝑀𝑏 = 𝐵) ∧ 𝑜 = ) → (∀𝑦𝑏 (𝑥𝑜𝑦) ∈ 𝑏 ↔ ∀𝑦𝐵 (𝑥 𝑦) ∈ 𝐵))
1510, 14raleqbidv 3336 . . . 4 (((𝑚 = 𝑀𝑏 = 𝐵) ∧ 𝑜 = ) → (∀𝑥𝑏𝑦𝑏 (𝑥𝑜𝑦) ∈ 𝑏 ↔ ∀𝑥𝐵𝑦𝐵 (𝑥 𝑦) ∈ 𝐵))
165, 9, 15sbcied2 3763 . . 3 ((𝑚 = 𝑀𝑏 = 𝐵) → ([(+g𝑚) / 𝑜]𝑥𝑏𝑦𝑏 (𝑥𝑜𝑦) ∈ 𝑏 ↔ ∀𝑥𝐵𝑦𝐵 (𝑥 𝑦) ∈ 𝐵))
171, 4, 16sbcied2 3763 . 2 (𝑚 = 𝑀 → ([(Base‘𝑚) / 𝑏][(+g𝑚) / 𝑜]𝑥𝑏𝑦𝑏 (𝑥𝑜𝑦) ∈ 𝑏 ↔ ∀𝑥𝐵𝑦𝐵 (𝑥 𝑦) ∈ 𝐵))
18 df-mgm 18326 . 2 Mgm = {𝑚[(Base‘𝑚) / 𝑏][(+g𝑚) / 𝑜]𝑥𝑏𝑦𝑏 (𝑥𝑜𝑦) ∈ 𝑏}
1917, 18elab2g 3611 1 (𝑀𝑉 → (𝑀 ∈ Mgm ↔ ∀𝑥𝐵𝑦𝐵 (𝑥 𝑦) ∈ 𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396   = wceq 1539  wcel 2106  wral 3064  Vcvv 3432  [wsbc 3716  cfv 6433  (class class class)co 7275  Basecbs 16912  +gcplusg 16962  Mgmcmgm 18324
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-nul 5230
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-ral 3069  df-rex 3070  df-rab 3073  df-v 3434  df-sbc 3717  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-br 5075  df-iota 6391  df-fv 6441  df-ov 7278  df-mgm 18326
This theorem is referenced by:  ismgmn0  18328  mgmcl  18329  issstrmgm  18337  mgm0  18340  issgrpv  18377  efmndmgm  18524  smndex1mgm  18546  0mgm  45328  ismgmd  45330  mgm2mgm  45421  lidlmmgm  45483
  Copyright terms: Public domain W3C validator