MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  0nelelxp Structured version   Visualization version   GIF version

Theorem 0nelelxp 5561
Description: A member of a Cartesian product (ordered pair) doesn't contain the empty set. (Contributed by NM, 15-Dec-2008.)
Assertion
Ref Expression
0nelelxp (𝐶 ∈ (𝐴 × 𝐵) → ¬ ∅ ∈ 𝐶)

Proof of Theorem 0nelelxp
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elxp 5549 . 2 (𝐶 ∈ (𝐴 × 𝐵) ↔ ∃𝑥𝑦(𝐶 = ⟨𝑥, 𝑦⟩ ∧ (𝑥𝐴𝑦𝐵)))
2 0nelop 5354 . . . . 5 ¬ ∅ ∈ ⟨𝑥, 𝑦
3 eleq2 2821 . . . . 5 (𝐶 = ⟨𝑥, 𝑦⟩ → (∅ ∈ 𝐶 ↔ ∅ ∈ ⟨𝑥, 𝑦⟩))
42, 3mtbiri 330 . . . 4 (𝐶 = ⟨𝑥, 𝑦⟩ → ¬ ∅ ∈ 𝐶)
54adantr 484 . . 3 ((𝐶 = ⟨𝑥, 𝑦⟩ ∧ (𝑥𝐴𝑦𝐵)) → ¬ ∅ ∈ 𝐶)
65exlimivv 1938 . 2 (∃𝑥𝑦(𝐶 = ⟨𝑥, 𝑦⟩ ∧ (𝑥𝐴𝑦𝐵)) → ¬ ∅ ∈ 𝐶)
71, 6sylbi 220 1 (𝐶 ∈ (𝐴 × 𝐵) → ¬ ∅ ∈ 𝐶)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 399   = wceq 1542  wex 1786  wcel 2113  c0 4212  cop 4523   × cxp 5524
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1802  ax-4 1816  ax-5 1916  ax-6 1974  ax-7 2019  ax-8 2115  ax-9 2123  ax-ext 2710  ax-sep 5168  ax-nul 5175  ax-pr 5297
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 847  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1787  df-sb 2074  df-clab 2717  df-cleq 2730  df-clel 2811  df-ne 2935  df-v 3400  df-dif 3847  df-un 3849  df-nul 4213  df-if 4416  df-sn 4518  df-pr 4520  df-op 4524  df-opab 5094  df-xp 5532
This theorem is referenced by:  dmsn0el  6044  onxpdisj  6293
  Copyright terms: Public domain W3C validator