| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 0nelelxp | Structured version Visualization version GIF version | ||
| Description: A member of a Cartesian product (ordered pair) doesn't contain the empty set. (Contributed by NM, 15-Dec-2008.) |
| Ref | Expression |
|---|---|
| 0nelelxp | ⊢ (𝐶 ∈ (𝐴 × 𝐵) → ¬ ∅ ∈ 𝐶) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elxp 5646 | . 2 ⊢ (𝐶 ∈ (𝐴 × 𝐵) ↔ ∃𝑥∃𝑦(𝐶 = 〈𝑥, 𝑦〉 ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵))) | |
| 2 | 0nelop 5443 | . . . . 5 ⊢ ¬ ∅ ∈ 〈𝑥, 𝑦〉 | |
| 3 | eleq2 2817 | . . . . 5 ⊢ (𝐶 = 〈𝑥, 𝑦〉 → (∅ ∈ 𝐶 ↔ ∅ ∈ 〈𝑥, 𝑦〉)) | |
| 4 | 2, 3 | mtbiri 327 | . . . 4 ⊢ (𝐶 = 〈𝑥, 𝑦〉 → ¬ ∅ ∈ 𝐶) |
| 5 | 4 | adantr 480 | . . 3 ⊢ ((𝐶 = 〈𝑥, 𝑦〉 ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵)) → ¬ ∅ ∈ 𝐶) |
| 6 | 5 | exlimivv 1932 | . 2 ⊢ (∃𝑥∃𝑦(𝐶 = 〈𝑥, 𝑦〉 ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵)) → ¬ ∅ ∈ 𝐶) |
| 7 | 1, 6 | sylbi 217 | 1 ⊢ (𝐶 ∈ (𝐴 × 𝐵) → ¬ ∅ ∈ 𝐶) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 = wceq 1540 ∃wex 1779 ∈ wcel 2109 ∅c0 4286 〈cop 4585 × cxp 5621 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 ax-sep 5238 ax-nul 5248 ax-pr 5374 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-ne 2926 df-v 3440 df-dif 3908 df-un 3910 df-ss 3922 df-nul 4287 df-if 4479 df-sn 4580 df-pr 4582 df-op 4586 df-opab 5158 df-xp 5629 |
| This theorem is referenced by: dmsn0el 6164 onxpdisj 6438 |
| Copyright terms: Public domain | W3C validator |