![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > 0nelelxp | Structured version Visualization version GIF version |
Description: A member of a Cartesian product (ordered pair) doesn't contain the empty set. (Contributed by NM, 15-Dec-2008.) |
Ref | Expression |
---|---|
0nelelxp | ⊢ (𝐶 ∈ (𝐴 × 𝐵) → ¬ ∅ ∈ 𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elxp 5723 | . 2 ⊢ (𝐶 ∈ (𝐴 × 𝐵) ↔ ∃𝑥∃𝑦(𝐶 = 〈𝑥, 𝑦〉 ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵))) | |
2 | 0nelop 5515 | . . . . 5 ⊢ ¬ ∅ ∈ 〈𝑥, 𝑦〉 | |
3 | eleq2 2833 | . . . . 5 ⊢ (𝐶 = 〈𝑥, 𝑦〉 → (∅ ∈ 𝐶 ↔ ∅ ∈ 〈𝑥, 𝑦〉)) | |
4 | 2, 3 | mtbiri 327 | . . . 4 ⊢ (𝐶 = 〈𝑥, 𝑦〉 → ¬ ∅ ∈ 𝐶) |
5 | 4 | adantr 480 | . . 3 ⊢ ((𝐶 = 〈𝑥, 𝑦〉 ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵)) → ¬ ∅ ∈ 𝐶) |
6 | 5 | exlimivv 1931 | . 2 ⊢ (∃𝑥∃𝑦(𝐶 = 〈𝑥, 𝑦〉 ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵)) → ¬ ∅ ∈ 𝐶) |
7 | 1, 6 | sylbi 217 | 1 ⊢ (𝐶 ∈ (𝐴 × 𝐵) → ¬ ∅ ∈ 𝐶) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 = wceq 1537 ∃wex 1777 ∈ wcel 2108 ∅c0 4352 〈cop 4654 × cxp 5698 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pr 5447 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-ne 2947 df-v 3490 df-dif 3979 df-un 3981 df-ss 3993 df-nul 4353 df-if 4549 df-sn 4649 df-pr 4651 df-op 4655 df-opab 5229 df-xp 5706 |
This theorem is referenced by: dmsn0el 6242 onxpdisj 6521 |
Copyright terms: Public domain | W3C validator |