![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > onxpdisj | Structured version Visualization version GIF version |
Description: Ordinal numbers and ordered pairs are disjoint collections. This theorem can be used if we want to extend a set of ordinal numbers or ordered pairs with disjoint elements. See also snsn0non 6060. (Contributed by NM, 1-Jun-2004.) (Proof shortened by Andrew Salmon, 27-Aug-2011.) |
Ref | Expression |
---|---|
onxpdisj | ⊢ (On ∩ (V × V)) = ∅ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | disj 4213 | . 2 ⊢ ((On ∩ (V × V)) = ∅ ↔ ∀𝑥 ∈ On ¬ 𝑥 ∈ (V × V)) | |
2 | on0eqel 6059 | . . 3 ⊢ (𝑥 ∈ On → (𝑥 = ∅ ∨ ∅ ∈ 𝑥)) | |
3 | 0nelxp 5347 | . . . . 5 ⊢ ¬ ∅ ∈ (V × V) | |
4 | eleq1 2867 | . . . . 5 ⊢ (𝑥 = ∅ → (𝑥 ∈ (V × V) ↔ ∅ ∈ (V × V))) | |
5 | 3, 4 | mtbiri 319 | . . . 4 ⊢ (𝑥 = ∅ → ¬ 𝑥 ∈ (V × V)) |
6 | 0nelelxp 5348 | . . . . 5 ⊢ (𝑥 ∈ (V × V) → ¬ ∅ ∈ 𝑥) | |
7 | 6 | con2i 137 | . . . 4 ⊢ (∅ ∈ 𝑥 → ¬ 𝑥 ∈ (V × V)) |
8 | 5, 7 | jaoi 884 | . . 3 ⊢ ((𝑥 = ∅ ∨ ∅ ∈ 𝑥) → ¬ 𝑥 ∈ (V × V)) |
9 | 2, 8 | syl 17 | . 2 ⊢ (𝑥 ∈ On → ¬ 𝑥 ∈ (V × V)) |
10 | 1, 9 | mprgbir 3109 | 1 ⊢ (On ∩ (V × V)) = ∅ |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 ∨ wo 874 = wceq 1653 ∈ wcel 2157 Vcvv 3386 ∩ cin 3769 ∅c0 4116 × cxp 5311 Oncon0 5942 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1891 ax-4 1905 ax-5 2006 ax-6 2072 ax-7 2107 ax-9 2166 ax-10 2185 ax-11 2200 ax-12 2213 ax-13 2378 ax-ext 2778 ax-sep 4976 ax-nul 4984 ax-pr 5098 |
This theorem depends on definitions: df-bi 199 df-an 386 df-or 875 df-3or 1109 df-3an 1110 df-tru 1657 df-ex 1876 df-nf 1880 df-sb 2065 df-mo 2592 df-eu 2610 df-clab 2787 df-cleq 2793 df-clel 2796 df-nfc 2931 df-ne 2973 df-ral 3095 df-rex 3096 df-rab 3099 df-v 3388 df-sbc 3635 df-dif 3773 df-un 3775 df-in 3777 df-ss 3784 df-pss 3786 df-nul 4117 df-if 4279 df-pw 4352 df-sn 4370 df-pr 4372 df-op 4376 df-uni 4630 df-br 4845 df-opab 4907 df-tr 4947 df-eprel 5226 df-po 5234 df-so 5235 df-fr 5272 df-we 5274 df-xp 5319 df-ord 5945 df-on 5946 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |