Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > onxpdisj | Structured version Visualization version GIF version |
Description: Ordinal numbers and ordered pairs are disjoint collections. This theorem can be used if we want to extend a set of ordinal numbers or ordered pairs with disjoint elements. See also snsn0non 6370. (Contributed by NM, 1-Jun-2004.) (Proof shortened by Andrew Salmon, 27-Aug-2011.) |
Ref | Expression |
---|---|
onxpdisj | ⊢ (On ∩ (V × V)) = ∅ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | disj 4378 | . 2 ⊢ ((On ∩ (V × V)) = ∅ ↔ ∀𝑥 ∈ On ¬ 𝑥 ∈ (V × V)) | |
2 | on0eqel 6369 | . . 3 ⊢ (𝑥 ∈ On → (𝑥 = ∅ ∨ ∅ ∈ 𝑥)) | |
3 | 0nelxp 5614 | . . . . 5 ⊢ ¬ ∅ ∈ (V × V) | |
4 | eleq1 2826 | . . . . 5 ⊢ (𝑥 = ∅ → (𝑥 ∈ (V × V) ↔ ∅ ∈ (V × V))) | |
5 | 3, 4 | mtbiri 326 | . . . 4 ⊢ (𝑥 = ∅ → ¬ 𝑥 ∈ (V × V)) |
6 | 0nelelxp 5615 | . . . . 5 ⊢ (𝑥 ∈ (V × V) → ¬ ∅ ∈ 𝑥) | |
7 | 6 | con2i 139 | . . . 4 ⊢ (∅ ∈ 𝑥 → ¬ 𝑥 ∈ (V × V)) |
8 | 5, 7 | jaoi 853 | . . 3 ⊢ ((𝑥 = ∅ ∨ ∅ ∈ 𝑥) → ¬ 𝑥 ∈ (V × V)) |
9 | 2, 8 | syl 17 | . 2 ⊢ (𝑥 ∈ On → ¬ 𝑥 ∈ (V × V)) |
10 | 1, 9 | mprgbir 3078 | 1 ⊢ (On ∩ (V × V)) = ∅ |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 ∨ wo 843 = wceq 1539 ∈ wcel 2108 Vcvv 3422 ∩ cin 3882 ∅c0 4253 × cxp 5578 Oncon0 6251 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-11 2156 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pr 5347 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-ne 2943 df-ral 3068 df-rex 3069 df-rab 3072 df-v 3424 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-pss 3902 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-br 5071 df-opab 5133 df-tr 5188 df-eprel 5486 df-po 5494 df-so 5495 df-fr 5535 df-we 5537 df-xp 5586 df-ord 6254 df-on 6255 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |