MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  onxpdisj Structured version   Visualization version   GIF version

Theorem onxpdisj 6509
Description: Ordinal numbers and ordered pairs are disjoint collections. This theorem can be used if we want to extend a set of ordinal numbers or ordered pairs with disjoint elements. See also snsn0non 6508. (Contributed by NM, 1-Jun-2004.) (Proof shortened by Andrew Salmon, 27-Aug-2011.)
Assertion
Ref Expression
onxpdisj (On ∩ (V × V)) = ∅

Proof of Theorem onxpdisj
StepHypRef Expression
1 disj 4449 . 2 ((On ∩ (V × V)) = ∅ ↔ ∀𝑥 ∈ On ¬ 𝑥 ∈ (V × V))
2 on0eqel 6507 . . 3 (𝑥 ∈ On → (𝑥 = ∅ ∨ ∅ ∈ 𝑥))
3 0nelxp 5718 . . . . 5 ¬ ∅ ∈ (V × V)
4 eleq1 2828 . . . . 5 (𝑥 = ∅ → (𝑥 ∈ (V × V) ↔ ∅ ∈ (V × V)))
53, 4mtbiri 327 . . . 4 (𝑥 = ∅ → ¬ 𝑥 ∈ (V × V))
6 0nelelxp 5719 . . . . 5 (𝑥 ∈ (V × V) → ¬ ∅ ∈ 𝑥)
76con2i 139 . . . 4 (∅ ∈ 𝑥 → ¬ 𝑥 ∈ (V × V))
85, 7jaoi 857 . . 3 ((𝑥 = ∅ ∨ ∅ ∈ 𝑥) → ¬ 𝑥 ∈ (V × V))
92, 8syl 17 . 2 (𝑥 ∈ On → ¬ 𝑥 ∈ (V × V))
101, 9mprgbir 3067 1 (On ∩ (V × V)) = ∅
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wo 847   = wceq 1539  wcel 2107  Vcvv 3479  cin 3949  c0 4332   × cxp 5682  Oncon0 6383
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-ext 2707  ax-sep 5295  ax-nul 5305  ax-pr 5431
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-sb 2064  df-clab 2714  df-cleq 2728  df-clel 2815  df-ne 2940  df-ral 3061  df-rex 3070  df-rab 3436  df-v 3481  df-dif 3953  df-un 3955  df-in 3957  df-ss 3967  df-pss 3970  df-nul 4333  df-if 4525  df-pw 4601  df-sn 4626  df-pr 4628  df-op 4632  df-uni 4907  df-br 5143  df-opab 5205  df-tr 5259  df-eprel 5583  df-po 5591  df-so 5592  df-fr 5636  df-we 5638  df-xp 5690  df-ord 6386  df-on 6387
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator