MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  onxpdisj Structured version   Visualization version   GIF version

Theorem onxpdisj 6438
Description: Ordinal numbers and ordered pairs are disjoint collections. This theorem can be used if we want to extend a set of ordinal numbers or ordered pairs with disjoint elements. See also snsn0non 6437. (Contributed by NM, 1-Jun-2004.) (Proof shortened by Andrew Salmon, 27-Aug-2011.)
Assertion
Ref Expression
onxpdisj (On ∩ (V × V)) = ∅

Proof of Theorem onxpdisj
StepHypRef Expression
1 disj 4399 . 2 ((On ∩ (V × V)) = ∅ ↔ ∀𝑥 ∈ On ¬ 𝑥 ∈ (V × V))
2 on0eqel 6436 . . 3 (𝑥 ∈ On → (𝑥 = ∅ ∨ ∅ ∈ 𝑥))
3 0nelxp 5653 . . . . 5 ¬ ∅ ∈ (V × V)
4 eleq1 2821 . . . . 5 (𝑥 = ∅ → (𝑥 ∈ (V × V) ↔ ∅ ∈ (V × V)))
53, 4mtbiri 327 . . . 4 (𝑥 = ∅ → ¬ 𝑥 ∈ (V × V))
6 0nelelxp 5654 . . . . 5 (𝑥 ∈ (V × V) → ¬ ∅ ∈ 𝑥)
76con2i 139 . . . 4 (∅ ∈ 𝑥 → ¬ 𝑥 ∈ (V × V))
85, 7jaoi 857 . . 3 ((𝑥 = ∅ ∨ ∅ ∈ 𝑥) → ¬ 𝑥 ∈ (V × V))
92, 8syl 17 . 2 (𝑥 ∈ On → ¬ 𝑥 ∈ (V × V))
101, 9mprgbir 3055 1 (On ∩ (V × V)) = ∅
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wo 847   = wceq 1541  wcel 2113  Vcvv 3437  cin 3897  c0 4282   × cxp 5617  Oncon0 6311
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-ext 2705  ax-sep 5236  ax-nul 5246  ax-pr 5372
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-sb 2068  df-clab 2712  df-cleq 2725  df-clel 2808  df-ne 2930  df-ral 3049  df-rex 3058  df-rab 3397  df-v 3439  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-pss 3918  df-nul 4283  df-if 4475  df-pw 4551  df-sn 4576  df-pr 4578  df-op 4582  df-uni 4859  df-br 5094  df-opab 5156  df-tr 5201  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-we 5574  df-xp 5625  df-ord 6314  df-on 6315
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator