![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > onxpdisj | Structured version Visualization version GIF version |
Description: Ordinal numbers and ordered pairs are disjoint collections. This theorem can be used if we want to extend a set of ordinal numbers or ordered pairs with disjoint elements. See also snsn0non 6489. (Contributed by NM, 1-Jun-2004.) (Proof shortened by Andrew Salmon, 27-Aug-2011.) |
Ref | Expression |
---|---|
onxpdisj | ⊢ (On ∩ (V × V)) = ∅ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | disj 4447 | . 2 ⊢ ((On ∩ (V × V)) = ∅ ↔ ∀𝑥 ∈ On ¬ 𝑥 ∈ (V × V)) | |
2 | on0eqel 6488 | . . 3 ⊢ (𝑥 ∈ On → (𝑥 = ∅ ∨ ∅ ∈ 𝑥)) | |
3 | 0nelxp 5710 | . . . . 5 ⊢ ¬ ∅ ∈ (V × V) | |
4 | eleq1 2820 | . . . . 5 ⊢ (𝑥 = ∅ → (𝑥 ∈ (V × V) ↔ ∅ ∈ (V × V))) | |
5 | 3, 4 | mtbiri 327 | . . . 4 ⊢ (𝑥 = ∅ → ¬ 𝑥 ∈ (V × V)) |
6 | 0nelelxp 5711 | . . . . 5 ⊢ (𝑥 ∈ (V × V) → ¬ ∅ ∈ 𝑥) | |
7 | 6 | con2i 139 | . . . 4 ⊢ (∅ ∈ 𝑥 → ¬ 𝑥 ∈ (V × V)) |
8 | 5, 7 | jaoi 854 | . . 3 ⊢ ((𝑥 = ∅ ∨ ∅ ∈ 𝑥) → ¬ 𝑥 ∈ (V × V)) |
9 | 2, 8 | syl 17 | . 2 ⊢ (𝑥 ∈ On → ¬ 𝑥 ∈ (V × V)) |
10 | 1, 9 | mprgbir 3067 | 1 ⊢ (On ∩ (V × V)) = ∅ |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 ∨ wo 844 = wceq 1540 ∈ wcel 2105 Vcvv 3473 ∩ cin 3947 ∅c0 4322 × cxp 5674 Oncon0 6364 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-ext 2702 ax-sep 5299 ax-nul 5306 ax-pr 5427 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-sb 2067 df-clab 2709 df-cleq 2723 df-clel 2809 df-ne 2940 df-ral 3061 df-rex 3070 df-rab 3432 df-v 3475 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-pss 3967 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-br 5149 df-opab 5211 df-tr 5266 df-eprel 5580 df-po 5588 df-so 5589 df-fr 5631 df-we 5633 df-xp 5682 df-ord 6367 df-on 6368 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |