| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > onxpdisj | Structured version Visualization version GIF version | ||
| Description: Ordinal numbers and ordered pairs are disjoint collections. This theorem can be used if we want to extend a set of ordinal numbers or ordered pairs with disjoint elements. See also snsn0non 6484. (Contributed by NM, 1-Jun-2004.) (Proof shortened by Andrew Salmon, 27-Aug-2011.) |
| Ref | Expression |
|---|---|
| onxpdisj | ⊢ (On ∩ (V × V)) = ∅ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | disj 4430 | . 2 ⊢ ((On ∩ (V × V)) = ∅ ↔ ∀𝑥 ∈ On ¬ 𝑥 ∈ (V × V)) | |
| 2 | on0eqel 6483 | . . 3 ⊢ (𝑥 ∈ On → (𝑥 = ∅ ∨ ∅ ∈ 𝑥)) | |
| 3 | 0nelxp 5693 | . . . . 5 ⊢ ¬ ∅ ∈ (V × V) | |
| 4 | eleq1 2823 | . . . . 5 ⊢ (𝑥 = ∅ → (𝑥 ∈ (V × V) ↔ ∅ ∈ (V × V))) | |
| 5 | 3, 4 | mtbiri 327 | . . . 4 ⊢ (𝑥 = ∅ → ¬ 𝑥 ∈ (V × V)) |
| 6 | 0nelelxp 5694 | . . . . 5 ⊢ (𝑥 ∈ (V × V) → ¬ ∅ ∈ 𝑥) | |
| 7 | 6 | con2i 139 | . . . 4 ⊢ (∅ ∈ 𝑥 → ¬ 𝑥 ∈ (V × V)) |
| 8 | 5, 7 | jaoi 857 | . . 3 ⊢ ((𝑥 = ∅ ∨ ∅ ∈ 𝑥) → ¬ 𝑥 ∈ (V × V)) |
| 9 | 2, 8 | syl 17 | . 2 ⊢ (𝑥 ∈ On → ¬ 𝑥 ∈ (V × V)) |
| 10 | 1, 9 | mprgbir 3059 | 1 ⊢ (On ∩ (V × V)) = ∅ |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 ∨ wo 847 = wceq 1540 ∈ wcel 2109 Vcvv 3464 ∩ cin 3930 ∅c0 4313 × cxp 5657 Oncon0 6357 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2708 ax-sep 5271 ax-nul 5281 ax-pr 5407 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2715 df-cleq 2728 df-clel 2810 df-ne 2934 df-ral 3053 df-rex 3062 df-rab 3421 df-v 3466 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-pss 3951 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4889 df-br 5125 df-opab 5187 df-tr 5235 df-eprel 5558 df-po 5566 df-so 5567 df-fr 5611 df-we 5613 df-xp 5665 df-ord 6360 df-on 6361 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |