| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 0nelxp | Structured version Visualization version GIF version | ||
| Description: The empty set is not a member of a Cartesian product. (Contributed by NM, 2-May-1996.) (Revised by Mario Carneiro, 26-Apr-2015.) (Proof shortened by JJ, 13-Aug-2021.) |
| Ref | Expression |
|---|---|
| 0nelxp | ⊢ ¬ ∅ ∈ (𝐴 × 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | vex 3463 | . . . . . . 7 ⊢ 𝑥 ∈ V | |
| 2 | vex 3463 | . . . . . . 7 ⊢ 𝑦 ∈ V | |
| 3 | 1, 2 | opnzi 5449 | . . . . . 6 ⊢ 〈𝑥, 𝑦〉 ≠ ∅ |
| 4 | 3 | nesymi 2989 | . . . . 5 ⊢ ¬ ∅ = 〈𝑥, 𝑦〉 |
| 5 | 4 | intnanr 487 | . . . 4 ⊢ ¬ (∅ = 〈𝑥, 𝑦〉 ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵)) |
| 6 | 5 | nex 1800 | . . 3 ⊢ ¬ ∃𝑦(∅ = 〈𝑥, 𝑦〉 ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵)) |
| 7 | 6 | nex 1800 | . 2 ⊢ ¬ ∃𝑥∃𝑦(∅ = 〈𝑥, 𝑦〉 ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵)) |
| 8 | elxp 5677 | . 2 ⊢ (∅ ∈ (𝐴 × 𝐵) ↔ ∃𝑥∃𝑦(∅ = 〈𝑥, 𝑦〉 ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵))) | |
| 9 | 7, 8 | mtbir 323 | 1 ⊢ ¬ ∅ ∈ (𝐴 × 𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 ∧ wa 395 = wceq 1540 ∃wex 1779 ∈ wcel 2108 ∅c0 4308 〈cop 4607 × cxp 5652 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2707 ax-sep 5266 ax-nul 5276 ax-pr 5402 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2065 df-clab 2714 df-cleq 2727 df-clel 2809 df-ne 2933 df-v 3461 df-dif 3929 df-un 3931 df-ss 3943 df-nul 4309 df-if 4501 df-sn 4602 df-pr 4604 df-op 4608 df-opab 5182 df-xp 5660 |
| This theorem is referenced by: 0nelrel0 5714 nrelv 5779 dmsn0 6198 onxpdisj 6479 mpoxopx0ov0 8213 dmtpos 8235 0nnq 10936 adderpq 10968 mulerpq 10969 lterpq 10982 0ncn 11145 structcnvcnv 17170 vtxval0 28964 iedgval0 28965 msrrcl 35511 oppfrcl2 49025 |
| Copyright terms: Public domain | W3C validator |