Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > 0nelxp | Structured version Visualization version GIF version |
Description: The empty set is not a member of a Cartesian product. (Contributed by NM, 2-May-1996.) (Revised by Mario Carneiro, 26-Apr-2015.) (Proof shortened by JJ, 13-Aug-2021.) |
Ref | Expression |
---|---|
0nelxp | ⊢ ¬ ∅ ∈ (𝐴 × 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | vex 3445 | . . . . . . 7 ⊢ 𝑥 ∈ V | |
2 | vex 3445 | . . . . . . 7 ⊢ 𝑦 ∈ V | |
3 | 1, 2 | opnzi 5408 | . . . . . 6 ⊢ 〈𝑥, 𝑦〉 ≠ ∅ |
4 | 3 | nesymi 2999 | . . . . 5 ⊢ ¬ ∅ = 〈𝑥, 𝑦〉 |
5 | 4 | intnanr 488 | . . . 4 ⊢ ¬ (∅ = 〈𝑥, 𝑦〉 ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵)) |
6 | 5 | nex 1801 | . . 3 ⊢ ¬ ∃𝑦(∅ = 〈𝑥, 𝑦〉 ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵)) |
7 | 6 | nex 1801 | . 2 ⊢ ¬ ∃𝑥∃𝑦(∅ = 〈𝑥, 𝑦〉 ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵)) |
8 | elxp 5631 | . 2 ⊢ (∅ ∈ (𝐴 × 𝐵) ↔ ∃𝑥∃𝑦(∅ = 〈𝑥, 𝑦〉 ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵))) | |
9 | 7, 8 | mtbir 322 | 1 ⊢ ¬ ∅ ∈ (𝐴 × 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 ∧ wa 396 = wceq 1540 ∃wex 1780 ∈ wcel 2105 ∅c0 4267 〈cop 4577 × cxp 5606 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-ext 2708 ax-sep 5238 ax-nul 5245 ax-pr 5367 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-sb 2067 df-clab 2715 df-cleq 2729 df-clel 2815 df-ne 2942 df-v 3443 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4268 df-if 4472 df-sn 4572 df-pr 4574 df-op 4578 df-opab 5150 df-xp 5614 |
This theorem is referenced by: 0nelrel0 5666 nrelv 5730 dmsn0 6135 onxpdisj 6413 mpoxopx0ov0 8081 dmtpos 8103 0nnq 10760 adderpq 10792 mulerpq 10793 lterpq 10806 0ncn 10969 structcnvcnv 16931 vtxval0 27545 iedgval0 27546 msrrcl 33644 |
Copyright terms: Public domain | W3C validator |