| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 0nelxp | Structured version Visualization version GIF version | ||
| Description: The empty set is not a member of a Cartesian product. (Contributed by NM, 2-May-1996.) (Revised by Mario Carneiro, 26-Apr-2015.) (Proof shortened by JJ, 13-Aug-2021.) |
| Ref | Expression |
|---|---|
| 0nelxp | ⊢ ¬ ∅ ∈ (𝐴 × 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | vex 3440 | . . . . . . 7 ⊢ 𝑥 ∈ V | |
| 2 | vex 3440 | . . . . . . 7 ⊢ 𝑦 ∈ V | |
| 3 | 1, 2 | opnzi 5417 | . . . . . 6 ⊢ 〈𝑥, 𝑦〉 ≠ ∅ |
| 4 | 3 | nesymi 2982 | . . . . 5 ⊢ ¬ ∅ = 〈𝑥, 𝑦〉 |
| 5 | 4 | intnanr 487 | . . . 4 ⊢ ¬ (∅ = 〈𝑥, 𝑦〉 ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵)) |
| 6 | 5 | nex 1800 | . . 3 ⊢ ¬ ∃𝑦(∅ = 〈𝑥, 𝑦〉 ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵)) |
| 7 | 6 | nex 1800 | . 2 ⊢ ¬ ∃𝑥∃𝑦(∅ = 〈𝑥, 𝑦〉 ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵)) |
| 8 | elxp 5642 | . 2 ⊢ (∅ ∈ (𝐴 × 𝐵) ↔ ∃𝑥∃𝑦(∅ = 〈𝑥, 𝑦〉 ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵))) | |
| 9 | 7, 8 | mtbir 323 | 1 ⊢ ¬ ∅ ∈ (𝐴 × 𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 ∧ wa 395 = wceq 1540 ∃wex 1779 ∈ wcel 2109 ∅c0 4284 〈cop 4583 × cxp 5617 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 ax-sep 5235 ax-nul 5245 ax-pr 5371 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-ne 2926 df-v 3438 df-dif 3906 df-un 3908 df-ss 3920 df-nul 4285 df-if 4477 df-sn 4578 df-pr 4580 df-op 4584 df-opab 5155 df-xp 5625 |
| This theorem is referenced by: 0nelrel0 5679 nrelv 5743 dmsn0 6158 onxpdisj 6434 mpoxopx0ov0 8149 dmtpos 8171 0nnq 10818 adderpq 10850 mulerpq 10851 lterpq 10864 0ncn 11027 structcnvcnv 17064 vtxval0 28984 iedgval0 28985 msrrcl 35516 oppfrcl2 49114 eloppf 49118 |
| Copyright terms: Public domain | W3C validator |