| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 0nelxp | Structured version Visualization version GIF version | ||
| Description: The empty set is not a member of a Cartesian product. (Contributed by NM, 2-May-1996.) (Revised by Mario Carneiro, 26-Apr-2015.) (Proof shortened by JJ, 13-Aug-2021.) |
| Ref | Expression |
|---|---|
| 0nelxp | ⊢ ¬ ∅ ∈ (𝐴 × 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | vex 3454 | . . . . . . 7 ⊢ 𝑥 ∈ V | |
| 2 | vex 3454 | . . . . . . 7 ⊢ 𝑦 ∈ V | |
| 3 | 1, 2 | opnzi 5437 | . . . . . 6 ⊢ 〈𝑥, 𝑦〉 ≠ ∅ |
| 4 | 3 | nesymi 2983 | . . . . 5 ⊢ ¬ ∅ = 〈𝑥, 𝑦〉 |
| 5 | 4 | intnanr 487 | . . . 4 ⊢ ¬ (∅ = 〈𝑥, 𝑦〉 ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵)) |
| 6 | 5 | nex 1800 | . . 3 ⊢ ¬ ∃𝑦(∅ = 〈𝑥, 𝑦〉 ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵)) |
| 7 | 6 | nex 1800 | . 2 ⊢ ¬ ∃𝑥∃𝑦(∅ = 〈𝑥, 𝑦〉 ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵)) |
| 8 | elxp 5664 | . 2 ⊢ (∅ ∈ (𝐴 × 𝐵) ↔ ∃𝑥∃𝑦(∅ = 〈𝑥, 𝑦〉 ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵))) | |
| 9 | 7, 8 | mtbir 323 | 1 ⊢ ¬ ∅ ∈ (𝐴 × 𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 ∧ wa 395 = wceq 1540 ∃wex 1779 ∈ wcel 2109 ∅c0 4299 〈cop 4598 × cxp 5639 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pr 5390 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2709 df-cleq 2722 df-clel 2804 df-ne 2927 df-v 3452 df-dif 3920 df-un 3922 df-ss 3934 df-nul 4300 df-if 4492 df-sn 4593 df-pr 4595 df-op 4599 df-opab 5173 df-xp 5647 |
| This theorem is referenced by: 0nelrel0 5701 nrelv 5766 dmsn0 6185 onxpdisj 6463 mpoxopx0ov0 8198 dmtpos 8220 0nnq 10884 adderpq 10916 mulerpq 10917 lterpq 10930 0ncn 11093 structcnvcnv 17130 vtxval0 28973 iedgval0 28974 msrrcl 35537 oppfrcl2 49122 eloppf 49126 |
| Copyright terms: Public domain | W3C validator |