Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > 0nelxp | Structured version Visualization version GIF version |
Description: The empty set is not a member of a Cartesian product. (Contributed by NM, 2-May-1996.) (Revised by Mario Carneiro, 26-Apr-2015.) (Proof shortened by JJ, 13-Aug-2021.) |
Ref | Expression |
---|---|
0nelxp | ⊢ ¬ ∅ ∈ (𝐴 × 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | vex 3436 | . . . . . . 7 ⊢ 𝑥 ∈ V | |
2 | vex 3436 | . . . . . . 7 ⊢ 𝑦 ∈ V | |
3 | 1, 2 | opnzi 5389 | . . . . . 6 ⊢ 〈𝑥, 𝑦〉 ≠ ∅ |
4 | 3 | nesymi 3001 | . . . . 5 ⊢ ¬ ∅ = 〈𝑥, 𝑦〉 |
5 | 4 | intnanr 488 | . . . 4 ⊢ ¬ (∅ = 〈𝑥, 𝑦〉 ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵)) |
6 | 5 | nex 1803 | . . 3 ⊢ ¬ ∃𝑦(∅ = 〈𝑥, 𝑦〉 ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵)) |
7 | 6 | nex 1803 | . 2 ⊢ ¬ ∃𝑥∃𝑦(∅ = 〈𝑥, 𝑦〉 ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵)) |
8 | elxp 5612 | . 2 ⊢ (∅ ∈ (𝐴 × 𝐵) ↔ ∃𝑥∃𝑦(∅ = 〈𝑥, 𝑦〉 ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵))) | |
9 | 7, 8 | mtbir 323 | 1 ⊢ ¬ ∅ ∈ (𝐴 × 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 ∧ wa 396 = wceq 1539 ∃wex 1782 ∈ wcel 2106 ∅c0 4256 〈cop 4567 × cxp 5587 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-ext 2709 ax-sep 5223 ax-nul 5230 ax-pr 5352 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-sb 2068 df-clab 2716 df-cleq 2730 df-clel 2816 df-ne 2944 df-v 3434 df-dif 3890 df-un 3892 df-nul 4257 df-if 4460 df-sn 4562 df-pr 4564 df-op 4568 df-opab 5137 df-xp 5595 |
This theorem is referenced by: 0nelrel0 5647 nrelv 5710 dmsn0 6112 onxpdisj 6386 mpoxopx0ov0 8032 dmtpos 8054 0nnq 10680 adderpq 10712 mulerpq 10713 lterpq 10726 0ncn 10889 structcnvcnv 16854 vtxval0 27409 iedgval0 27410 msrrcl 33505 |
Copyright terms: Public domain | W3C validator |