Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > 0nelxp | Structured version Visualization version GIF version |
Description: The empty set is not a member of a Cartesian product. (Contributed by NM, 2-May-1996.) (Revised by Mario Carneiro, 26-Apr-2015.) (Proof shortened by JJ, 13-Aug-2021.) |
Ref | Expression |
---|---|
0nelxp | ⊢ ¬ ∅ ∈ (𝐴 × 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | vex 3426 | . . . . . . 7 ⊢ 𝑥 ∈ V | |
2 | vex 3426 | . . . . . . 7 ⊢ 𝑦 ∈ V | |
3 | 1, 2 | opnzi 5383 | . . . . . 6 ⊢ 〈𝑥, 𝑦〉 ≠ ∅ |
4 | 3 | nesymi 3000 | . . . . 5 ⊢ ¬ ∅ = 〈𝑥, 𝑦〉 |
5 | 4 | intnanr 487 | . . . 4 ⊢ ¬ (∅ = 〈𝑥, 𝑦〉 ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵)) |
6 | 5 | nex 1804 | . . 3 ⊢ ¬ ∃𝑦(∅ = 〈𝑥, 𝑦〉 ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵)) |
7 | 6 | nex 1804 | . 2 ⊢ ¬ ∃𝑥∃𝑦(∅ = 〈𝑥, 𝑦〉 ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵)) |
8 | elxp 5603 | . 2 ⊢ (∅ ∈ (𝐴 × 𝐵) ↔ ∃𝑥∃𝑦(∅ = 〈𝑥, 𝑦〉 ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵))) | |
9 | 7, 8 | mtbir 322 | 1 ⊢ ¬ ∅ ∈ (𝐴 × 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 ∧ wa 395 = wceq 1539 ∃wex 1783 ∈ wcel 2108 ∅c0 4253 〈cop 4564 × cxp 5578 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pr 5347 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-ne 2943 df-v 3424 df-dif 3886 df-un 3888 df-nul 4254 df-if 4457 df-sn 4559 df-pr 4561 df-op 4565 df-opab 5133 df-xp 5586 |
This theorem is referenced by: 0nelrel0 5638 nrelv 5699 dmsn0 6101 onxpdisj 6371 mpoxopx0ov0 8003 dmtpos 8025 0nnq 10611 adderpq 10643 mulerpq 10644 lterpq 10657 0ncn 10820 structcnvcnv 16782 vtxval0 27312 iedgval0 27313 msrrcl 33405 |
Copyright terms: Public domain | W3C validator |