MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  0nelxp Structured version   Visualization version   GIF version

Theorem 0nelxp 5665
Description: The empty set is not a member of a Cartesian product. (Contributed by NM, 2-May-1996.) (Revised by Mario Carneiro, 26-Apr-2015.) (Proof shortened by JJ, 13-Aug-2021.)
Assertion
Ref Expression
0nelxp ¬ ∅ ∈ (𝐴 × 𝐵)

Proof of Theorem 0nelxp
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 vex 3448 . . . . . . 7 𝑥 ∈ V
2 vex 3448 . . . . . . 7 𝑦 ∈ V
31, 2opnzi 5429 . . . . . 6 𝑥, 𝑦⟩ ≠ ∅
43nesymi 2982 . . . . 5 ¬ ∅ = ⟨𝑥, 𝑦
54intnanr 487 . . . 4 ¬ (∅ = ⟨𝑥, 𝑦⟩ ∧ (𝑥𝐴𝑦𝐵))
65nex 1800 . . 3 ¬ ∃𝑦(∅ = ⟨𝑥, 𝑦⟩ ∧ (𝑥𝐴𝑦𝐵))
76nex 1800 . 2 ¬ ∃𝑥𝑦(∅ = ⟨𝑥, 𝑦⟩ ∧ (𝑥𝐴𝑦𝐵))
8 elxp 5654 . 2 (∅ ∈ (𝐴 × 𝐵) ↔ ∃𝑥𝑦(∅ = ⟨𝑥, 𝑦⟩ ∧ (𝑥𝐴𝑦𝐵)))
97, 8mtbir 323 1 ¬ ∅ ∈ (𝐴 × 𝐵)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wa 395   = wceq 1540  wex 1779  wcel 2109  c0 4292  cop 4591   × cxp 5629
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2701  ax-sep 5246  ax-nul 5256  ax-pr 5382
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-ne 2926  df-v 3446  df-dif 3914  df-un 3916  df-ss 3928  df-nul 4293  df-if 4485  df-sn 4586  df-pr 4588  df-op 4592  df-opab 5165  df-xp 5637
This theorem is referenced by:  0nelrel0  5691  nrelv  5754  dmsn0  6170  onxpdisj  6448  mpoxopx0ov0  8172  dmtpos  8194  0nnq  10853  adderpq  10885  mulerpq  10886  lterpq  10899  0ncn  11062  structcnvcnv  17099  vtxval0  28942  iedgval0  28943  msrrcl  35503  oppfrcl2  49091  eloppf  49095
  Copyright terms: Public domain W3C validator