MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  0nelxp Structured version   Visualization version   GIF version

Theorem 0nelxp 5614
Description: The empty set is not a member of a Cartesian product. (Contributed by NM, 2-May-1996.) (Revised by Mario Carneiro, 26-Apr-2015.) (Proof shortened by JJ, 13-Aug-2021.)
Assertion
Ref Expression
0nelxp ¬ ∅ ∈ (𝐴 × 𝐵)

Proof of Theorem 0nelxp
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 vex 3426 . . . . . . 7 𝑥 ∈ V
2 vex 3426 . . . . . . 7 𝑦 ∈ V
31, 2opnzi 5383 . . . . . 6 𝑥, 𝑦⟩ ≠ ∅
43nesymi 3000 . . . . 5 ¬ ∅ = ⟨𝑥, 𝑦
54intnanr 487 . . . 4 ¬ (∅ = ⟨𝑥, 𝑦⟩ ∧ (𝑥𝐴𝑦𝐵))
65nex 1804 . . 3 ¬ ∃𝑦(∅ = ⟨𝑥, 𝑦⟩ ∧ (𝑥𝐴𝑦𝐵))
76nex 1804 . 2 ¬ ∃𝑥𝑦(∅ = ⟨𝑥, 𝑦⟩ ∧ (𝑥𝐴𝑦𝐵))
8 elxp 5603 . 2 (∅ ∈ (𝐴 × 𝐵) ↔ ∃𝑥𝑦(∅ = ⟨𝑥, 𝑦⟩ ∧ (𝑥𝐴𝑦𝐵)))
97, 8mtbir 322 1 ¬ ∅ ∈ (𝐴 × 𝐵)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wa 395   = wceq 1539  wex 1783  wcel 2108  c0 4253  cop 4564   × cxp 5578
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pr 5347
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-sb 2069  df-clab 2716  df-cleq 2730  df-clel 2817  df-ne 2943  df-v 3424  df-dif 3886  df-un 3888  df-nul 4254  df-if 4457  df-sn 4559  df-pr 4561  df-op 4565  df-opab 5133  df-xp 5586
This theorem is referenced by:  0nelrel0  5638  nrelv  5699  dmsn0  6101  onxpdisj  6371  mpoxopx0ov0  8003  dmtpos  8025  0nnq  10611  adderpq  10643  mulerpq  10644  lterpq  10657  0ncn  10820  structcnvcnv  16782  vtxval0  27312  iedgval0  27313  msrrcl  33405
  Copyright terms: Public domain W3C validator