MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  djuexb Structured version   Visualization version   GIF version

Theorem djuexb 9598
Description: The disjoint union of two classes is a set iff both classes are sets. (Contributed by Jim Kingdon, 6-Sep-2023.)
Assertion
Ref Expression
djuexb ((𝐴 ∈ V ∧ 𝐵 ∈ V) ↔ (𝐴𝐵) ∈ V)

Proof of Theorem djuexb
StepHypRef Expression
1 djuex 9597 . 2 ((𝐴 ∈ V ∧ 𝐵 ∈ V) → (𝐴𝐵) ∈ V)
2 df-dju 9590 . . . . 5 (𝐴𝐵) = (({∅} × 𝐴) ∪ ({1o} × 𝐵))
32eleq1i 2829 . . . 4 ((𝐴𝐵) ∈ V ↔ (({∅} × 𝐴) ∪ ({1o} × 𝐵)) ∈ V)
4 unexb 7576 . . . 4 ((({∅} × 𝐴) ∈ V ∧ ({1o} × 𝐵) ∈ V) ↔ (({∅} × 𝐴) ∪ ({1o} × 𝐵)) ∈ V)
53, 4bitr4i 277 . . 3 ((𝐴𝐵) ∈ V ↔ (({∅} × 𝐴) ∈ V ∧ ({1o} × 𝐵) ∈ V))
6 0nep0 5275 . . . . . 6 ∅ ≠ {∅}
76necomi 2997 . . . . 5 {∅} ≠ ∅
8 rnexg 7725 . . . . . 6 (({∅} × 𝐴) ∈ V → ran ({∅} × 𝐴) ∈ V)
9 rnxp 6062 . . . . . . 7 ({∅} ≠ ∅ → ran ({∅} × 𝐴) = 𝐴)
109eleq1d 2823 . . . . . 6 ({∅} ≠ ∅ → (ran ({∅} × 𝐴) ∈ V ↔ 𝐴 ∈ V))
118, 10syl5ib 243 . . . . 5 ({∅} ≠ ∅ → (({∅} × 𝐴) ∈ V → 𝐴 ∈ V))
127, 11ax-mp 5 . . . 4 (({∅} × 𝐴) ∈ V → 𝐴 ∈ V)
13 1oex 8280 . . . . . 6 1o ∈ V
1413snnz 4709 . . . . 5 {1o} ≠ ∅
15 rnexg 7725 . . . . . 6 (({1o} × 𝐵) ∈ V → ran ({1o} × 𝐵) ∈ V)
16 rnxp 6062 . . . . . . 7 ({1o} ≠ ∅ → ran ({1o} × 𝐵) = 𝐵)
1716eleq1d 2823 . . . . . 6 ({1o} ≠ ∅ → (ran ({1o} × 𝐵) ∈ V ↔ 𝐵 ∈ V))
1815, 17syl5ib 243 . . . . 5 ({1o} ≠ ∅ → (({1o} × 𝐵) ∈ V → 𝐵 ∈ V))
1914, 18ax-mp 5 . . . 4 (({1o} × 𝐵) ∈ V → 𝐵 ∈ V)
2012, 19anim12i 612 . . 3 ((({∅} × 𝐴) ∈ V ∧ ({1o} × 𝐵) ∈ V) → (𝐴 ∈ V ∧ 𝐵 ∈ V))
215, 20sylbi 216 . 2 ((𝐴𝐵) ∈ V → (𝐴 ∈ V ∧ 𝐵 ∈ V))
221, 21impbii 208 1 ((𝐴 ∈ V ∧ 𝐵 ∈ V) ↔ (𝐴𝐵) ∈ V)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395  wcel 2108  wne 2942  Vcvv 3422  cun 3881  c0 4253  {csn 4558   × cxp 5578  ran crn 5581  1oc1o 8260  cdju 9587
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-ral 3068  df-rex 3069  df-rab 3072  df-v 3424  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-br 5071  df-opab 5133  df-xp 5586  df-rel 5587  df-cnv 5588  df-dm 5590  df-rn 5591  df-suc 6257  df-1o 8267  df-dju 9590
This theorem is referenced by:  djuinf  9875  pwdjudom  9903
  Copyright terms: Public domain W3C validator