MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  djuexb Structured version   Visualization version   GIF version

Theorem djuexb 9332
Description: The disjoint union of two classes is a set iff both classes are sets. (Contributed by Jim Kingdon, 6-Sep-2023.)
Assertion
Ref Expression
djuexb ((𝐴 ∈ V ∧ 𝐵 ∈ V) ↔ (𝐴𝐵) ∈ V)

Proof of Theorem djuexb
StepHypRef Expression
1 djuex 9331 . 2 ((𝐴 ∈ V ∧ 𝐵 ∈ V) → (𝐴𝐵) ∈ V)
2 df-dju 9324 . . . . 5 (𝐴𝐵) = (({∅} × 𝐴) ∪ ({1o} × 𝐵))
32eleq1i 2908 . . . 4 ((𝐴𝐵) ∈ V ↔ (({∅} × 𝐴) ∪ ({1o} × 𝐵)) ∈ V)
4 unexb 7464 . . . 4 ((({∅} × 𝐴) ∈ V ∧ ({1o} × 𝐵) ∈ V) ↔ (({∅} × 𝐴) ∪ ({1o} × 𝐵)) ∈ V)
53, 4bitr4i 279 . . 3 ((𝐴𝐵) ∈ V ↔ (({∅} × 𝐴) ∈ V ∧ ({1o} × 𝐵) ∈ V))
6 0nep0 5255 . . . . . 6 ∅ ≠ {∅}
76necomi 3075 . . . . 5 {∅} ≠ ∅
8 rnexg 7607 . . . . . 6 (({∅} × 𝐴) ∈ V → ran ({∅} × 𝐴) ∈ V)
9 rnxp 6026 . . . . . . 7 ({∅} ≠ ∅ → ran ({∅} × 𝐴) = 𝐴)
109eleq1d 2902 . . . . . 6 ({∅} ≠ ∅ → (ran ({∅} × 𝐴) ∈ V ↔ 𝐴 ∈ V))
118, 10syl5ib 245 . . . . 5 ({∅} ≠ ∅ → (({∅} × 𝐴) ∈ V → 𝐴 ∈ V))
127, 11ax-mp 5 . . . 4 (({∅} × 𝐴) ∈ V → 𝐴 ∈ V)
13 1oex 8106 . . . . . 6 1o ∈ V
1413snnz 4710 . . . . 5 {1o} ≠ ∅
15 rnexg 7607 . . . . . 6 (({1o} × 𝐵) ∈ V → ran ({1o} × 𝐵) ∈ V)
16 rnxp 6026 . . . . . . 7 ({1o} ≠ ∅ → ran ({1o} × 𝐵) = 𝐵)
1716eleq1d 2902 . . . . . 6 ({1o} ≠ ∅ → (ran ({1o} × 𝐵) ∈ V ↔ 𝐵 ∈ V))
1815, 17syl5ib 245 . . . . 5 ({1o} ≠ ∅ → (({1o} × 𝐵) ∈ V → 𝐵 ∈ V))
1914, 18ax-mp 5 . . . 4 (({1o} × 𝐵) ∈ V → 𝐵 ∈ V)
2012, 19anim12i 612 . . 3 ((({∅} × 𝐴) ∈ V ∧ ({1o} × 𝐵) ∈ V) → (𝐴 ∈ V ∧ 𝐵 ∈ V))
215, 20sylbi 218 . 2 ((𝐴𝐵) ∈ V → (𝐴 ∈ V ∧ 𝐵 ∈ V))
221, 21impbii 210 1 ((𝐴 ∈ V ∧ 𝐵 ∈ V) ↔ (𝐴𝐵) ∈ V)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 207  wa 396  wcel 2107  wne 3021  Vcvv 3500  cun 3938  c0 4295  {csn 4564   × cxp 5552  ran crn 5555  1oc1o 8091  cdju 9321
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1904  ax-6 1963  ax-7 2008  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2153  ax-12 2169  ax-ext 2798  ax-sep 5200  ax-nul 5207  ax-pow 5263  ax-pr 5326  ax-un 7455
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 844  df-3or 1082  df-3an 1083  df-tru 1533  df-ex 1774  df-nf 1778  df-sb 2063  df-mo 2620  df-eu 2652  df-clab 2805  df-cleq 2819  df-clel 2898  df-nfc 2968  df-ne 3022  df-ral 3148  df-rex 3149  df-rab 3152  df-v 3502  df-sbc 3777  df-dif 3943  df-un 3945  df-in 3947  df-ss 3956  df-pss 3958  df-nul 4296  df-if 4471  df-pw 4544  df-sn 4565  df-pr 4567  df-tp 4569  df-op 4571  df-uni 4838  df-br 5064  df-opab 5126  df-tr 5170  df-eprel 5464  df-po 5473  df-so 5474  df-fr 5513  df-we 5515  df-xp 5560  df-rel 5561  df-cnv 5562  df-dm 5564  df-rn 5565  df-ord 6193  df-on 6194  df-suc 6196  df-1o 8098  df-dju 9324
This theorem is referenced by:  djuinf  9608  pwdjudom  9632
  Copyright terms: Public domain W3C validator