Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > djuexb | Structured version Visualization version GIF version |
Description: The disjoint union of two classes is a set iff both classes are sets. (Contributed by Jim Kingdon, 6-Sep-2023.) |
Ref | Expression |
---|---|
djuexb | ⊢ ((𝐴 ∈ V ∧ 𝐵 ∈ V) ↔ (𝐴 ⊔ 𝐵) ∈ V) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | djuex 9597 | . 2 ⊢ ((𝐴 ∈ V ∧ 𝐵 ∈ V) → (𝐴 ⊔ 𝐵) ∈ V) | |
2 | df-dju 9590 | . . . . 5 ⊢ (𝐴 ⊔ 𝐵) = (({∅} × 𝐴) ∪ ({1o} × 𝐵)) | |
3 | 2 | eleq1i 2829 | . . . 4 ⊢ ((𝐴 ⊔ 𝐵) ∈ V ↔ (({∅} × 𝐴) ∪ ({1o} × 𝐵)) ∈ V) |
4 | unexb 7576 | . . . 4 ⊢ ((({∅} × 𝐴) ∈ V ∧ ({1o} × 𝐵) ∈ V) ↔ (({∅} × 𝐴) ∪ ({1o} × 𝐵)) ∈ V) | |
5 | 3, 4 | bitr4i 277 | . . 3 ⊢ ((𝐴 ⊔ 𝐵) ∈ V ↔ (({∅} × 𝐴) ∈ V ∧ ({1o} × 𝐵) ∈ V)) |
6 | 0nep0 5275 | . . . . . 6 ⊢ ∅ ≠ {∅} | |
7 | 6 | necomi 2997 | . . . . 5 ⊢ {∅} ≠ ∅ |
8 | rnexg 7725 | . . . . . 6 ⊢ (({∅} × 𝐴) ∈ V → ran ({∅} × 𝐴) ∈ V) | |
9 | rnxp 6062 | . . . . . . 7 ⊢ ({∅} ≠ ∅ → ran ({∅} × 𝐴) = 𝐴) | |
10 | 9 | eleq1d 2823 | . . . . . 6 ⊢ ({∅} ≠ ∅ → (ran ({∅} × 𝐴) ∈ V ↔ 𝐴 ∈ V)) |
11 | 8, 10 | syl5ib 243 | . . . . 5 ⊢ ({∅} ≠ ∅ → (({∅} × 𝐴) ∈ V → 𝐴 ∈ V)) |
12 | 7, 11 | ax-mp 5 | . . . 4 ⊢ (({∅} × 𝐴) ∈ V → 𝐴 ∈ V) |
13 | 1oex 8280 | . . . . . 6 ⊢ 1o ∈ V | |
14 | 13 | snnz 4709 | . . . . 5 ⊢ {1o} ≠ ∅ |
15 | rnexg 7725 | . . . . . 6 ⊢ (({1o} × 𝐵) ∈ V → ran ({1o} × 𝐵) ∈ V) | |
16 | rnxp 6062 | . . . . . . 7 ⊢ ({1o} ≠ ∅ → ran ({1o} × 𝐵) = 𝐵) | |
17 | 16 | eleq1d 2823 | . . . . . 6 ⊢ ({1o} ≠ ∅ → (ran ({1o} × 𝐵) ∈ V ↔ 𝐵 ∈ V)) |
18 | 15, 17 | syl5ib 243 | . . . . 5 ⊢ ({1o} ≠ ∅ → (({1o} × 𝐵) ∈ V → 𝐵 ∈ V)) |
19 | 14, 18 | ax-mp 5 | . . . 4 ⊢ (({1o} × 𝐵) ∈ V → 𝐵 ∈ V) |
20 | 12, 19 | anim12i 612 | . . 3 ⊢ ((({∅} × 𝐴) ∈ V ∧ ({1o} × 𝐵) ∈ V) → (𝐴 ∈ V ∧ 𝐵 ∈ V)) |
21 | 5, 20 | sylbi 216 | . 2 ⊢ ((𝐴 ⊔ 𝐵) ∈ V → (𝐴 ∈ V ∧ 𝐵 ∈ V)) |
22 | 1, 21 | impbii 208 | 1 ⊢ ((𝐴 ∈ V ∧ 𝐵 ∈ V) ↔ (𝐴 ⊔ 𝐵) ∈ V) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 ∈ wcel 2108 ≠ wne 2942 Vcvv 3422 ∪ cun 3881 ∅c0 4253 {csn 4558 × cxp 5578 ran crn 5581 1oc1o 8260 ⊔ cdju 9587 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-ral 3068 df-rex 3069 df-rab 3072 df-v 3424 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-br 5071 df-opab 5133 df-xp 5586 df-rel 5587 df-cnv 5588 df-dm 5590 df-rn 5591 df-suc 6257 df-1o 8267 df-dju 9590 |
This theorem is referenced by: djuinf 9875 pwdjudom 9903 |
Copyright terms: Public domain | W3C validator |