MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  djuexb Structured version   Visualization version   GIF version

Theorem djuexb 9805
Description: The disjoint union of two classes is a set iff both classes are sets. (Contributed by Jim Kingdon, 6-Sep-2023.)
Assertion
Ref Expression
djuexb ((𝐴 ∈ V ∧ 𝐵 ∈ V) ↔ (𝐴𝐵) ∈ V)

Proof of Theorem djuexb
StepHypRef Expression
1 djuex 9804 . 2 ((𝐴 ∈ V ∧ 𝐵 ∈ V) → (𝐴𝐵) ∈ V)
2 df-dju 9797 . . . . 5 (𝐴𝐵) = (({∅} × 𝐴) ∪ ({1o} × 𝐵))
32eleq1i 2819 . . . 4 ((𝐴𝐵) ∈ V ↔ (({∅} × 𝐴) ∪ ({1o} × 𝐵)) ∈ V)
4 unexb 7683 . . . 4 ((({∅} × 𝐴) ∈ V ∧ ({1o} × 𝐵) ∈ V) ↔ (({∅} × 𝐴) ∪ ({1o} × 𝐵)) ∈ V)
53, 4bitr4i 278 . . 3 ((𝐴𝐵) ∈ V ↔ (({∅} × 𝐴) ∈ V ∧ ({1o} × 𝐵) ∈ V))
6 0nep0 5297 . . . . . 6 ∅ ≠ {∅}
76necomi 2979 . . . . 5 {∅} ≠ ∅
8 rnexg 7835 . . . . . 6 (({∅} × 𝐴) ∈ V → ran ({∅} × 𝐴) ∈ V)
9 rnxp 6119 . . . . . . 7 ({∅} ≠ ∅ → ran ({∅} × 𝐴) = 𝐴)
109eleq1d 2813 . . . . . 6 ({∅} ≠ ∅ → (ran ({∅} × 𝐴) ∈ V ↔ 𝐴 ∈ V))
118, 10imbitrid 244 . . . . 5 ({∅} ≠ ∅ → (({∅} × 𝐴) ∈ V → 𝐴 ∈ V))
127, 11ax-mp 5 . . . 4 (({∅} × 𝐴) ∈ V → 𝐴 ∈ V)
13 1oex 8398 . . . . . 6 1o ∈ V
1413snnz 4728 . . . . 5 {1o} ≠ ∅
15 rnexg 7835 . . . . . 6 (({1o} × 𝐵) ∈ V → ran ({1o} × 𝐵) ∈ V)
16 rnxp 6119 . . . . . . 7 ({1o} ≠ ∅ → ran ({1o} × 𝐵) = 𝐵)
1716eleq1d 2813 . . . . . 6 ({1o} ≠ ∅ → (ran ({1o} × 𝐵) ∈ V ↔ 𝐵 ∈ V))
1815, 17imbitrid 244 . . . . 5 ({1o} ≠ ∅ → (({1o} × 𝐵) ∈ V → 𝐵 ∈ V))
1914, 18ax-mp 5 . . . 4 (({1o} × 𝐵) ∈ V → 𝐵 ∈ V)
2012, 19anim12i 613 . . 3 ((({∅} × 𝐴) ∈ V ∧ ({1o} × 𝐵) ∈ V) → (𝐴 ∈ V ∧ 𝐵 ∈ V))
215, 20sylbi 217 . 2 ((𝐴𝐵) ∈ V → (𝐴 ∈ V ∧ 𝐵 ∈ V))
221, 21impbii 209 1 ((𝐴 ∈ V ∧ 𝐵 ∈ V) ↔ (𝐴𝐵) ∈ V)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wcel 2109  wne 2925  Vcvv 3436  cun 3901  c0 4284  {csn 4577   × cxp 5617  ran crn 5620  1oc1o 8381  cdju 9794
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-11 2158  ax-ext 2701  ax-sep 5235  ax-nul 5245  ax-pow 5304  ax-pr 5371  ax-un 7671
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-ne 2926  df-ral 3045  df-rex 3054  df-rab 3395  df-v 3438  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4859  df-br 5093  df-opab 5155  df-xp 5625  df-rel 5626  df-cnv 5627  df-dm 5629  df-rn 5630  df-suc 6313  df-1o 8388  df-dju 9797
This theorem is referenced by:  djuinf  10083  pwdjudom  10109
  Copyright terms: Public domain W3C validator