![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > djuexb | Structured version Visualization version GIF version |
Description: The disjoint union of two classes is a set iff both classes are sets. (Contributed by Jim Kingdon, 6-Sep-2023.) |
Ref | Expression |
---|---|
djuexb | ⊢ ((𝐴 ∈ V ∧ 𝐵 ∈ V) ↔ (𝐴 ⊔ 𝐵) ∈ V) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | djuex 9977 | . 2 ⊢ ((𝐴 ∈ V ∧ 𝐵 ∈ V) → (𝐴 ⊔ 𝐵) ∈ V) | |
2 | df-dju 9970 | . . . . 5 ⊢ (𝐴 ⊔ 𝐵) = (({∅} × 𝐴) ∪ ({1o} × 𝐵)) | |
3 | 2 | eleq1i 2835 | . . . 4 ⊢ ((𝐴 ⊔ 𝐵) ∈ V ↔ (({∅} × 𝐴) ∪ ({1o} × 𝐵)) ∈ V) |
4 | unexb 7782 | . . . 4 ⊢ ((({∅} × 𝐴) ∈ V ∧ ({1o} × 𝐵) ∈ V) ↔ (({∅} × 𝐴) ∪ ({1o} × 𝐵)) ∈ V) | |
5 | 3, 4 | bitr4i 278 | . . 3 ⊢ ((𝐴 ⊔ 𝐵) ∈ V ↔ (({∅} × 𝐴) ∈ V ∧ ({1o} × 𝐵) ∈ V)) |
6 | 0nep0 5376 | . . . . . 6 ⊢ ∅ ≠ {∅} | |
7 | 6 | necomi 3001 | . . . . 5 ⊢ {∅} ≠ ∅ |
8 | rnexg 7942 | . . . . . 6 ⊢ (({∅} × 𝐴) ∈ V → ran ({∅} × 𝐴) ∈ V) | |
9 | rnxp 6201 | . . . . . . 7 ⊢ ({∅} ≠ ∅ → ran ({∅} × 𝐴) = 𝐴) | |
10 | 9 | eleq1d 2829 | . . . . . 6 ⊢ ({∅} ≠ ∅ → (ran ({∅} × 𝐴) ∈ V ↔ 𝐴 ∈ V)) |
11 | 8, 10 | imbitrid 244 | . . . . 5 ⊢ ({∅} ≠ ∅ → (({∅} × 𝐴) ∈ V → 𝐴 ∈ V)) |
12 | 7, 11 | ax-mp 5 | . . . 4 ⊢ (({∅} × 𝐴) ∈ V → 𝐴 ∈ V) |
13 | 1oex 8532 | . . . . . 6 ⊢ 1o ∈ V | |
14 | 13 | snnz 4801 | . . . . 5 ⊢ {1o} ≠ ∅ |
15 | rnexg 7942 | . . . . . 6 ⊢ (({1o} × 𝐵) ∈ V → ran ({1o} × 𝐵) ∈ V) | |
16 | rnxp 6201 | . . . . . . 7 ⊢ ({1o} ≠ ∅ → ran ({1o} × 𝐵) = 𝐵) | |
17 | 16 | eleq1d 2829 | . . . . . 6 ⊢ ({1o} ≠ ∅ → (ran ({1o} × 𝐵) ∈ V ↔ 𝐵 ∈ V)) |
18 | 15, 17 | imbitrid 244 | . . . . 5 ⊢ ({1o} ≠ ∅ → (({1o} × 𝐵) ∈ V → 𝐵 ∈ V)) |
19 | 14, 18 | ax-mp 5 | . . . 4 ⊢ (({1o} × 𝐵) ∈ V → 𝐵 ∈ V) |
20 | 12, 19 | anim12i 612 | . . 3 ⊢ ((({∅} × 𝐴) ∈ V ∧ ({1o} × 𝐵) ∈ V) → (𝐴 ∈ V ∧ 𝐵 ∈ V)) |
21 | 5, 20 | sylbi 217 | . 2 ⊢ ((𝐴 ⊔ 𝐵) ∈ V → (𝐴 ∈ V ∧ 𝐵 ∈ V)) |
22 | 1, 21 | impbii 209 | 1 ⊢ ((𝐴 ∈ V ∧ 𝐵 ∈ V) ↔ (𝐴 ⊔ 𝐵) ∈ V) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∈ wcel 2108 ≠ wne 2946 Vcvv 3488 ∪ cun 3974 ∅c0 4352 {csn 4648 × cxp 5698 ran crn 5701 1oc1o 8515 ⊔ cdju 9967 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-11 2158 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7770 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-ne 2947 df-ral 3068 df-rex 3077 df-rab 3444 df-v 3490 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-br 5167 df-opab 5229 df-xp 5706 df-rel 5707 df-cnv 5708 df-dm 5710 df-rn 5711 df-suc 6401 df-1o 8522 df-dju 9970 |
This theorem is referenced by: djuinf 10258 pwdjudom 10284 |
Copyright terms: Public domain | W3C validator |