| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > djuexb | Structured version Visualization version GIF version | ||
| Description: The disjoint union of two classes is a set iff both classes are sets. (Contributed by Jim Kingdon, 6-Sep-2023.) |
| Ref | Expression |
|---|---|
| djuexb | ⊢ ((𝐴 ∈ V ∧ 𝐵 ∈ V) ↔ (𝐴 ⊔ 𝐵) ∈ V) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | djuex 9801 | . 2 ⊢ ((𝐴 ∈ V ∧ 𝐵 ∈ V) → (𝐴 ⊔ 𝐵) ∈ V) | |
| 2 | df-dju 9794 | . . . . 5 ⊢ (𝐴 ⊔ 𝐵) = (({∅} × 𝐴) ∪ ({1o} × 𝐵)) | |
| 3 | 2 | eleq1i 2822 | . . . 4 ⊢ ((𝐴 ⊔ 𝐵) ∈ V ↔ (({∅} × 𝐴) ∪ ({1o} × 𝐵)) ∈ V) |
| 4 | unexb 7680 | . . . 4 ⊢ ((({∅} × 𝐴) ∈ V ∧ ({1o} × 𝐵) ∈ V) ↔ (({∅} × 𝐴) ∪ ({1o} × 𝐵)) ∈ V) | |
| 5 | 3, 4 | bitr4i 278 | . . 3 ⊢ ((𝐴 ⊔ 𝐵) ∈ V ↔ (({∅} × 𝐴) ∈ V ∧ ({1o} × 𝐵) ∈ V)) |
| 6 | 0nep0 5294 | . . . . . 6 ⊢ ∅ ≠ {∅} | |
| 7 | 6 | necomi 2982 | . . . . 5 ⊢ {∅} ≠ ∅ |
| 8 | rnexg 7832 | . . . . . 6 ⊢ (({∅} × 𝐴) ∈ V → ran ({∅} × 𝐴) ∈ V) | |
| 9 | rnxp 6117 | . . . . . . 7 ⊢ ({∅} ≠ ∅ → ran ({∅} × 𝐴) = 𝐴) | |
| 10 | 9 | eleq1d 2816 | . . . . . 6 ⊢ ({∅} ≠ ∅ → (ran ({∅} × 𝐴) ∈ V ↔ 𝐴 ∈ V)) |
| 11 | 8, 10 | imbitrid 244 | . . . . 5 ⊢ ({∅} ≠ ∅ → (({∅} × 𝐴) ∈ V → 𝐴 ∈ V)) |
| 12 | 7, 11 | ax-mp 5 | . . . 4 ⊢ (({∅} × 𝐴) ∈ V → 𝐴 ∈ V) |
| 13 | 1oex 8395 | . . . . . 6 ⊢ 1o ∈ V | |
| 14 | 13 | snnz 4726 | . . . . 5 ⊢ {1o} ≠ ∅ |
| 15 | rnexg 7832 | . . . . . 6 ⊢ (({1o} × 𝐵) ∈ V → ran ({1o} × 𝐵) ∈ V) | |
| 16 | rnxp 6117 | . . . . . . 7 ⊢ ({1o} ≠ ∅ → ran ({1o} × 𝐵) = 𝐵) | |
| 17 | 16 | eleq1d 2816 | . . . . . 6 ⊢ ({1o} ≠ ∅ → (ran ({1o} × 𝐵) ∈ V ↔ 𝐵 ∈ V)) |
| 18 | 15, 17 | imbitrid 244 | . . . . 5 ⊢ ({1o} ≠ ∅ → (({1o} × 𝐵) ∈ V → 𝐵 ∈ V)) |
| 19 | 14, 18 | ax-mp 5 | . . . 4 ⊢ (({1o} × 𝐵) ∈ V → 𝐵 ∈ V) |
| 20 | 12, 19 | anim12i 613 | . . 3 ⊢ ((({∅} × 𝐴) ∈ V ∧ ({1o} × 𝐵) ∈ V) → (𝐴 ∈ V ∧ 𝐵 ∈ V)) |
| 21 | 5, 20 | sylbi 217 | . 2 ⊢ ((𝐴 ⊔ 𝐵) ∈ V → (𝐴 ∈ V ∧ 𝐵 ∈ V)) |
| 22 | 1, 21 | impbii 209 | 1 ⊢ ((𝐴 ∈ V ∧ 𝐵 ∈ V) ↔ (𝐴 ⊔ 𝐵) ∈ V) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∈ wcel 2111 ≠ wne 2928 Vcvv 3436 ∪ cun 3895 ∅c0 4280 {csn 4573 × cxp 5612 ran crn 5615 1oc1o 8378 ⊔ cdju 9791 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-11 2160 ax-ext 2703 ax-sep 5232 ax-nul 5242 ax-pow 5301 ax-pr 5368 ax-un 7668 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-ne 2929 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4281 df-if 4473 df-pw 4549 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4857 df-br 5090 df-opab 5152 df-xp 5620 df-rel 5621 df-cnv 5622 df-dm 5624 df-rn 5625 df-suc 6312 df-1o 8385 df-dju 9794 |
| This theorem is referenced by: djuinf 10080 pwdjudom 10106 |
| Copyright terms: Public domain | W3C validator |