Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  clsk1indlem0 Structured version   Visualization version   GIF version

Theorem clsk1indlem0 44005
Description: The ansatz closure function (𝑟 ∈ 𝒫 3o ↦ if(𝑟 = {∅}, {∅, 1o}, 𝑟)) has the K0 property of preserving the nullary union. (Contributed by RP, 6-Jul-2021.)
Hypothesis
Ref Expression
clsk1indlem.k 𝐾 = (𝑟 ∈ 𝒫 3o ↦ if(𝑟 = {∅}, {∅, 1o}, 𝑟))
Assertion
Ref Expression
clsk1indlem0 (𝐾‘∅) = ∅

Proof of Theorem clsk1indlem0
StepHypRef Expression
1 0elpw 5374 . 2 ∅ ∈ 𝒫 3o
2 eqeq1 2744 . . . . 5 (𝑟 = ∅ → (𝑟 = {∅} ↔ ∅ = {∅}))
3 id 22 . . . . 5 (𝑟 = ∅ → 𝑟 = ∅)
42, 3ifbieq2d 4574 . . . 4 (𝑟 = ∅ → if(𝑟 = {∅}, {∅, 1o}, 𝑟) = if(∅ = {∅}, {∅, 1o}, ∅))
5 0nep0 5376 . . . . . . 7 ∅ ≠ {∅}
65a1i 11 . . . . . 6 (𝑟 = ∅ → ∅ ≠ {∅})
76neneqd 2951 . . . . 5 (𝑟 = ∅ → ¬ ∅ = {∅})
87iffalsed 4559 . . . 4 (𝑟 = ∅ → if(∅ = {∅}, {∅, 1o}, ∅) = ∅)
94, 8eqtrd 2780 . . 3 (𝑟 = ∅ → if(𝑟 = {∅}, {∅, 1o}, 𝑟) = ∅)
10 clsk1indlem.k . . 3 𝐾 = (𝑟 ∈ 𝒫 3o ↦ if(𝑟 = {∅}, {∅, 1o}, 𝑟))
11 0ex 5325 . . 3 ∅ ∈ V
129, 10, 11fvmpt 7031 . 2 (∅ ∈ 𝒫 3o → (𝐾‘∅) = ∅)
131, 12ax-mp 5 1 (𝐾‘∅) = ∅
Colors of variables: wff setvar class
Syntax hints:   = wceq 1537  wcel 2108  wne 2946  c0 4352  ifcif 4548  𝒫 cpw 4622  {csn 4648  {cpr 4650  cmpt 5249  cfv 6575  1oc1o 8517  3oc3o 8519
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pr 5447
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-ral 3068  df-rex 3077  df-rab 3444  df-v 3490  df-dif 3979  df-un 3981  df-ss 3993  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-br 5167  df-opab 5229  df-mpt 5250  df-id 5593  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-iota 6527  df-fun 6577  df-fv 6583
This theorem is referenced by:  clsk1independent  44010
  Copyright terms: Public domain W3C validator