Mathbox for Richard Penner |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > clsk1indlem0 | Structured version Visualization version GIF version |
Description: The ansatz closure function (𝑟 ∈ 𝒫 3o ↦ if(𝑟 = {∅}, {∅, 1o}, 𝑟)) has the K0 property of preserving the nullary union. (Contributed by RP, 6-Jul-2021.) |
Ref | Expression |
---|---|
clsk1indlem.k | ⊢ 𝐾 = (𝑟 ∈ 𝒫 3o ↦ if(𝑟 = {∅}, {∅, 1o}, 𝑟)) |
Ref | Expression |
---|---|
clsk1indlem0 | ⊢ (𝐾‘∅) = ∅ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 0elpw 5229 | . 2 ⊢ ∅ ∈ 𝒫 3o | |
2 | eqeq1 2763 | . . . . 5 ⊢ (𝑟 = ∅ → (𝑟 = {∅} ↔ ∅ = {∅})) | |
3 | id 22 | . . . . 5 ⊢ (𝑟 = ∅ → 𝑟 = ∅) | |
4 | 2, 3 | ifbieq2d 4450 | . . . 4 ⊢ (𝑟 = ∅ → if(𝑟 = {∅}, {∅, 1o}, 𝑟) = if(∅ = {∅}, {∅, 1o}, ∅)) |
5 | 0nep0 5231 | . . . . . . 7 ⊢ ∅ ≠ {∅} | |
6 | 5 | a1i 11 | . . . . . 6 ⊢ (𝑟 = ∅ → ∅ ≠ {∅}) |
7 | 6 | neneqd 2957 | . . . . 5 ⊢ (𝑟 = ∅ → ¬ ∅ = {∅}) |
8 | 7 | iffalsed 4435 | . . . 4 ⊢ (𝑟 = ∅ → if(∅ = {∅}, {∅, 1o}, ∅) = ∅) |
9 | 4, 8 | eqtrd 2794 | . . 3 ⊢ (𝑟 = ∅ → if(𝑟 = {∅}, {∅, 1o}, 𝑟) = ∅) |
10 | clsk1indlem.k | . . 3 ⊢ 𝐾 = (𝑟 ∈ 𝒫 3o ↦ if(𝑟 = {∅}, {∅, 1o}, 𝑟)) | |
11 | 0ex 5182 | . . 3 ⊢ ∅ ∈ V | |
12 | 9, 10, 11 | fvmpt 6765 | . 2 ⊢ (∅ ∈ 𝒫 3o → (𝐾‘∅) = ∅) |
13 | 1, 12 | ax-mp 5 | 1 ⊢ (𝐾‘∅) = ∅ |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1539 ∈ wcel 2112 ≠ wne 2952 ∅c0 4228 ifcif 4424 𝒫 cpw 4498 {csn 4526 {cpr 4528 ↦ cmpt 5117 ‘cfv 6341 1oc1o 8112 3oc3o 8114 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1912 ax-6 1971 ax-7 2016 ax-8 2114 ax-9 2122 ax-10 2143 ax-11 2159 ax-12 2176 ax-ext 2730 ax-sep 5174 ax-nul 5181 ax-pr 5303 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 845 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2071 df-mo 2558 df-eu 2589 df-clab 2737 df-cleq 2751 df-clel 2831 df-nfc 2902 df-ne 2953 df-ral 3076 df-rex 3077 df-rab 3080 df-v 3412 df-sbc 3700 df-dif 3864 df-un 3866 df-in 3868 df-ss 3878 df-nul 4229 df-if 4425 df-pw 4500 df-sn 4527 df-pr 4529 df-op 4533 df-uni 4803 df-br 5038 df-opab 5100 df-mpt 5118 df-id 5435 df-xp 5535 df-rel 5536 df-cnv 5537 df-co 5538 df-dm 5539 df-iota 6300 df-fun 6343 df-fv 6349 |
This theorem is referenced by: clsk1independent 41168 |
Copyright terms: Public domain | W3C validator |