Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  clsk1indlem0 Structured version   Visualization version   GIF version

Theorem clsk1indlem0 41540
Description: The ansatz closure function (𝑟 ∈ 𝒫 3o ↦ if(𝑟 = {∅}, {∅, 1o}, 𝑟)) has the K0 property of preserving the nullary union. (Contributed by RP, 6-Jul-2021.)
Hypothesis
Ref Expression
clsk1indlem.k 𝐾 = (𝑟 ∈ 𝒫 3o ↦ if(𝑟 = {∅}, {∅, 1o}, 𝑟))
Assertion
Ref Expression
clsk1indlem0 (𝐾‘∅) = ∅

Proof of Theorem clsk1indlem0
StepHypRef Expression
1 0elpw 5273 . 2 ∅ ∈ 𝒫 3o
2 eqeq1 2742 . . . . 5 (𝑟 = ∅ → (𝑟 = {∅} ↔ ∅ = {∅}))
3 id 22 . . . . 5 (𝑟 = ∅ → 𝑟 = ∅)
42, 3ifbieq2d 4482 . . . 4 (𝑟 = ∅ → if(𝑟 = {∅}, {∅, 1o}, 𝑟) = if(∅ = {∅}, {∅, 1o}, ∅))
5 0nep0 5275 . . . . . . 7 ∅ ≠ {∅}
65a1i 11 . . . . . 6 (𝑟 = ∅ → ∅ ≠ {∅})
76neneqd 2947 . . . . 5 (𝑟 = ∅ → ¬ ∅ = {∅})
87iffalsed 4467 . . . 4 (𝑟 = ∅ → if(∅ = {∅}, {∅, 1o}, ∅) = ∅)
94, 8eqtrd 2778 . . 3 (𝑟 = ∅ → if(𝑟 = {∅}, {∅, 1o}, 𝑟) = ∅)
10 clsk1indlem.k . . 3 𝐾 = (𝑟 ∈ 𝒫 3o ↦ if(𝑟 = {∅}, {∅, 1o}, 𝑟))
11 0ex 5226 . . 3 ∅ ∈ V
129, 10, 11fvmpt 6857 . 2 (∅ ∈ 𝒫 3o → (𝐾‘∅) = ∅)
131, 12ax-mp 5 1 (𝐾‘∅) = ∅
Colors of variables: wff setvar class
Syntax hints:   = wceq 1539  wcel 2108  wne 2942  c0 4253  ifcif 4456  𝒫 cpw 4530  {csn 4558  {cpr 4560  cmpt 5153  cfv 6418  1oc1o 8260  3oc3o 8262
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pr 5347
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-ral 3068  df-rex 3069  df-rab 3072  df-v 3424  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-br 5071  df-opab 5133  df-mpt 5154  df-id 5480  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-iota 6376  df-fun 6420  df-fv 6426
This theorem is referenced by:  clsk1independent  41545
  Copyright terms: Public domain W3C validator