| Mathbox for Richard Penner |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > clsk1indlem0 | Structured version Visualization version GIF version | ||
| Description: The ansatz closure function (𝑟 ∈ 𝒫 3o ↦ if(𝑟 = {∅}, {∅, 1o}, 𝑟)) has the K0 property of preserving the nullary union. (Contributed by RP, 6-Jul-2021.) |
| Ref | Expression |
|---|---|
| clsk1indlem.k | ⊢ 𝐾 = (𝑟 ∈ 𝒫 3o ↦ if(𝑟 = {∅}, {∅, 1o}, 𝑟)) |
| Ref | Expression |
|---|---|
| clsk1indlem0 | ⊢ (𝐾‘∅) = ∅ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 0elpw 5311 | . 2 ⊢ ∅ ∈ 𝒫 3o | |
| 2 | eqeq1 2733 | . . . . 5 ⊢ (𝑟 = ∅ → (𝑟 = {∅} ↔ ∅ = {∅})) | |
| 3 | id 22 | . . . . 5 ⊢ (𝑟 = ∅ → 𝑟 = ∅) | |
| 4 | 2, 3 | ifbieq2d 4515 | . . . 4 ⊢ (𝑟 = ∅ → if(𝑟 = {∅}, {∅, 1o}, 𝑟) = if(∅ = {∅}, {∅, 1o}, ∅)) |
| 5 | 0nep0 5313 | . . . . . . 7 ⊢ ∅ ≠ {∅} | |
| 6 | 5 | a1i 11 | . . . . . 6 ⊢ (𝑟 = ∅ → ∅ ≠ {∅}) |
| 7 | 6 | neneqd 2930 | . . . . 5 ⊢ (𝑟 = ∅ → ¬ ∅ = {∅}) |
| 8 | 7 | iffalsed 4499 | . . . 4 ⊢ (𝑟 = ∅ → if(∅ = {∅}, {∅, 1o}, ∅) = ∅) |
| 9 | 4, 8 | eqtrd 2764 | . . 3 ⊢ (𝑟 = ∅ → if(𝑟 = {∅}, {∅, 1o}, 𝑟) = ∅) |
| 10 | clsk1indlem.k | . . 3 ⊢ 𝐾 = (𝑟 ∈ 𝒫 3o ↦ if(𝑟 = {∅}, {∅, 1o}, 𝑟)) | |
| 11 | 0ex 5262 | . . 3 ⊢ ∅ ∈ V | |
| 12 | 9, 10, 11 | fvmpt 6968 | . 2 ⊢ (∅ ∈ 𝒫 3o → (𝐾‘∅) = ∅) |
| 13 | 1, 12 | ax-mp 5 | 1 ⊢ (𝐾‘∅) = ∅ |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 ∈ wcel 2109 ≠ wne 2925 ∅c0 4296 ifcif 4488 𝒫 cpw 4563 {csn 4589 {cpr 4591 ↦ cmpt 5188 ‘cfv 6511 1oc1o 8427 3oc3o 8429 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pr 5387 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rab 3406 df-v 3449 df-dif 3917 df-un 3919 df-ss 3931 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-br 5108 df-opab 5170 df-mpt 5189 df-id 5533 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-iota 6464 df-fun 6513 df-fv 6519 |
| This theorem is referenced by: clsk1independent 44035 |
| Copyright terms: Public domain | W3C validator |