![]() |
Mathbox for Richard Penner |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > clsk1indlem0 | Structured version Visualization version GIF version |
Description: The ansatz closure function (𝑟 ∈ 𝒫 3o ↦ if(𝑟 = {∅}, {∅, 1o}, 𝑟)) has the K0 property of preserving the nullary union. (Contributed by RP, 6-Jul-2021.) |
Ref | Expression |
---|---|
clsk1indlem.k | ⊢ 𝐾 = (𝑟 ∈ 𝒫 3o ↦ if(𝑟 = {∅}, {∅, 1o}, 𝑟)) |
Ref | Expression |
---|---|
clsk1indlem0 | ⊢ (𝐾‘∅) = ∅ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 0elpw 5363 | . 2 ⊢ ∅ ∈ 𝒫 3o | |
2 | eqeq1 2740 | . . . . 5 ⊢ (𝑟 = ∅ → (𝑟 = {∅} ↔ ∅ = {∅})) | |
3 | id 22 | . . . . 5 ⊢ (𝑟 = ∅ → 𝑟 = ∅) | |
4 | 2, 3 | ifbieq2d 4558 | . . . 4 ⊢ (𝑟 = ∅ → if(𝑟 = {∅}, {∅, 1o}, 𝑟) = if(∅ = {∅}, {∅, 1o}, ∅)) |
5 | 0nep0 5365 | . . . . . . 7 ⊢ ∅ ≠ {∅} | |
6 | 5 | a1i 11 | . . . . . 6 ⊢ (𝑟 = ∅ → ∅ ≠ {∅}) |
7 | 6 | neneqd 2944 | . . . . 5 ⊢ (𝑟 = ∅ → ¬ ∅ = {∅}) |
8 | 7 | iffalsed 4543 | . . . 4 ⊢ (𝑟 = ∅ → if(∅ = {∅}, {∅, 1o}, ∅) = ∅) |
9 | 4, 8 | eqtrd 2776 | . . 3 ⊢ (𝑟 = ∅ → if(𝑟 = {∅}, {∅, 1o}, 𝑟) = ∅) |
10 | clsk1indlem.k | . . 3 ⊢ 𝐾 = (𝑟 ∈ 𝒫 3o ↦ if(𝑟 = {∅}, {∅, 1o}, 𝑟)) | |
11 | 0ex 5314 | . . 3 ⊢ ∅ ∈ V | |
12 | 9, 10, 11 | fvmpt 7020 | . 2 ⊢ (∅ ∈ 𝒫 3o → (𝐾‘∅) = ∅) |
13 | 1, 12 | ax-mp 5 | 1 ⊢ (𝐾‘∅) = ∅ |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1538 ∈ wcel 2107 ≠ wne 2939 ∅c0 4340 ifcif 4532 𝒫 cpw 4606 {csn 4632 {cpr 4634 ↦ cmpt 5232 ‘cfv 6566 1oc1o 8504 3oc3o 8506 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2707 ax-sep 5303 ax-nul 5313 ax-pr 5439 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1541 df-fal 1551 df-ex 1778 df-nf 1782 df-sb 2064 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2728 df-clel 2815 df-nfc 2891 df-ne 2940 df-ral 3061 df-rex 3070 df-rab 3435 df-v 3481 df-dif 3967 df-un 3969 df-ss 3981 df-nul 4341 df-if 4533 df-pw 4608 df-sn 4633 df-pr 4635 df-op 4639 df-uni 4914 df-br 5150 df-opab 5212 df-mpt 5233 df-id 5584 df-xp 5696 df-rel 5697 df-cnv 5698 df-co 5699 df-dm 5700 df-iota 6519 df-fun 6568 df-fv 6574 |
This theorem is referenced by: clsk1independent 44050 |
Copyright terms: Public domain | W3C validator |