| Mathbox for Richard Penner |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > clsk1indlem0 | Structured version Visualization version GIF version | ||
| Description: The ansatz closure function (𝑟 ∈ 𝒫 3o ↦ if(𝑟 = {∅}, {∅, 1o}, 𝑟)) has the K0 property of preserving the nullary union. (Contributed by RP, 6-Jul-2021.) |
| Ref | Expression |
|---|---|
| clsk1indlem.k | ⊢ 𝐾 = (𝑟 ∈ 𝒫 3o ↦ if(𝑟 = {∅}, {∅, 1o}, 𝑟)) |
| Ref | Expression |
|---|---|
| clsk1indlem0 | ⊢ (𝐾‘∅) = ∅ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 0elpw 5292 | . 2 ⊢ ∅ ∈ 𝒫 3o | |
| 2 | eqeq1 2735 | . . . . 5 ⊢ (𝑟 = ∅ → (𝑟 = {∅} ↔ ∅ = {∅})) | |
| 3 | id 22 | . . . . 5 ⊢ (𝑟 = ∅ → 𝑟 = ∅) | |
| 4 | 2, 3 | ifbieq2d 4499 | . . . 4 ⊢ (𝑟 = ∅ → if(𝑟 = {∅}, {∅, 1o}, 𝑟) = if(∅ = {∅}, {∅, 1o}, ∅)) |
| 5 | 0nep0 5294 | . . . . . . 7 ⊢ ∅ ≠ {∅} | |
| 6 | 5 | a1i 11 | . . . . . 6 ⊢ (𝑟 = ∅ → ∅ ≠ {∅}) |
| 7 | 6 | neneqd 2933 | . . . . 5 ⊢ (𝑟 = ∅ → ¬ ∅ = {∅}) |
| 8 | 7 | iffalsed 4483 | . . . 4 ⊢ (𝑟 = ∅ → if(∅ = {∅}, {∅, 1o}, ∅) = ∅) |
| 9 | 4, 8 | eqtrd 2766 | . . 3 ⊢ (𝑟 = ∅ → if(𝑟 = {∅}, {∅, 1o}, 𝑟) = ∅) |
| 10 | clsk1indlem.k | . . 3 ⊢ 𝐾 = (𝑟 ∈ 𝒫 3o ↦ if(𝑟 = {∅}, {∅, 1o}, 𝑟)) | |
| 11 | 0ex 5243 | . . 3 ⊢ ∅ ∈ V | |
| 12 | 9, 10, 11 | fvmpt 6929 | . 2 ⊢ (∅ ∈ 𝒫 3o → (𝐾‘∅) = ∅) |
| 13 | 1, 12 | ax-mp 5 | 1 ⊢ (𝐾‘∅) = ∅ |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1541 ∈ wcel 2111 ≠ wne 2928 ∅c0 4280 ifcif 4472 𝒫 cpw 4547 {csn 4573 {cpr 4575 ↦ cmpt 5170 ‘cfv 6481 1oc1o 8378 3oc3o 8380 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5232 ax-nul 5242 ax-pr 5368 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-dif 3900 df-un 3902 df-ss 3914 df-nul 4281 df-if 4473 df-pw 4549 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4857 df-br 5090 df-opab 5152 df-mpt 5171 df-id 5509 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-iota 6437 df-fun 6483 df-fv 6489 |
| This theorem is referenced by: clsk1independent 44149 |
| Copyright terms: Public domain | W3C validator |