Mathbox for Richard Penner |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > clsk1indlem0 | Structured version Visualization version GIF version |
Description: The ansatz closure function (𝑟 ∈ 𝒫 3o ↦ if(𝑟 = {∅}, {∅, 1o}, 𝑟)) has the K0 property of preserving the nullary union. (Contributed by RP, 6-Jul-2021.) |
Ref | Expression |
---|---|
clsk1indlem.k | ⊢ 𝐾 = (𝑟 ∈ 𝒫 3o ↦ if(𝑟 = {∅}, {∅, 1o}, 𝑟)) |
Ref | Expression |
---|---|
clsk1indlem0 | ⊢ (𝐾‘∅) = ∅ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 0elpw 5278 | . 2 ⊢ ∅ ∈ 𝒫 3o | |
2 | eqeq1 2742 | . . . . 5 ⊢ (𝑟 = ∅ → (𝑟 = {∅} ↔ ∅ = {∅})) | |
3 | id 22 | . . . . 5 ⊢ (𝑟 = ∅ → 𝑟 = ∅) | |
4 | 2, 3 | ifbieq2d 4485 | . . . 4 ⊢ (𝑟 = ∅ → if(𝑟 = {∅}, {∅, 1o}, 𝑟) = if(∅ = {∅}, {∅, 1o}, ∅)) |
5 | 0nep0 5280 | . . . . . . 7 ⊢ ∅ ≠ {∅} | |
6 | 5 | a1i 11 | . . . . . 6 ⊢ (𝑟 = ∅ → ∅ ≠ {∅}) |
7 | 6 | neneqd 2948 | . . . . 5 ⊢ (𝑟 = ∅ → ¬ ∅ = {∅}) |
8 | 7 | iffalsed 4470 | . . . 4 ⊢ (𝑟 = ∅ → if(∅ = {∅}, {∅, 1o}, ∅) = ∅) |
9 | 4, 8 | eqtrd 2778 | . . 3 ⊢ (𝑟 = ∅ → if(𝑟 = {∅}, {∅, 1o}, 𝑟) = ∅) |
10 | clsk1indlem.k | . . 3 ⊢ 𝐾 = (𝑟 ∈ 𝒫 3o ↦ if(𝑟 = {∅}, {∅, 1o}, 𝑟)) | |
11 | 0ex 5231 | . . 3 ⊢ ∅ ∈ V | |
12 | 9, 10, 11 | fvmpt 6875 | . 2 ⊢ (∅ ∈ 𝒫 3o → (𝐾‘∅) = ∅) |
13 | 1, 12 | ax-mp 5 | 1 ⊢ (𝐾‘∅) = ∅ |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1539 ∈ wcel 2106 ≠ wne 2943 ∅c0 4256 ifcif 4459 𝒫 cpw 4533 {csn 4561 {cpr 4563 ↦ cmpt 5157 ‘cfv 6433 1oc1o 8290 3oc3o 8292 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-sep 5223 ax-nul 5230 ax-pr 5352 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-ral 3069 df-rex 3070 df-rab 3073 df-v 3434 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-br 5075 df-opab 5137 df-mpt 5158 df-id 5489 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-iota 6391 df-fun 6435 df-fv 6441 |
This theorem is referenced by: clsk1independent 41656 |
Copyright terms: Public domain | W3C validator |