Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  clsk1indlem0 Structured version   Visualization version   GIF version

Theorem clsk1indlem0 41163
Description: The ansatz closure function (𝑟 ∈ 𝒫 3o ↦ if(𝑟 = {∅}, {∅, 1o}, 𝑟)) has the K0 property of preserving the nullary union. (Contributed by RP, 6-Jul-2021.)
Hypothesis
Ref Expression
clsk1indlem.k 𝐾 = (𝑟 ∈ 𝒫 3o ↦ if(𝑟 = {∅}, {∅, 1o}, 𝑟))
Assertion
Ref Expression
clsk1indlem0 (𝐾‘∅) = ∅

Proof of Theorem clsk1indlem0
StepHypRef Expression
1 0elpw 5229 . 2 ∅ ∈ 𝒫 3o
2 eqeq1 2763 . . . . 5 (𝑟 = ∅ → (𝑟 = {∅} ↔ ∅ = {∅}))
3 id 22 . . . . 5 (𝑟 = ∅ → 𝑟 = ∅)
42, 3ifbieq2d 4450 . . . 4 (𝑟 = ∅ → if(𝑟 = {∅}, {∅, 1o}, 𝑟) = if(∅ = {∅}, {∅, 1o}, ∅))
5 0nep0 5231 . . . . . . 7 ∅ ≠ {∅}
65a1i 11 . . . . . 6 (𝑟 = ∅ → ∅ ≠ {∅})
76neneqd 2957 . . . . 5 (𝑟 = ∅ → ¬ ∅ = {∅})
87iffalsed 4435 . . . 4 (𝑟 = ∅ → if(∅ = {∅}, {∅, 1o}, ∅) = ∅)
94, 8eqtrd 2794 . . 3 (𝑟 = ∅ → if(𝑟 = {∅}, {∅, 1o}, 𝑟) = ∅)
10 clsk1indlem.k . . 3 𝐾 = (𝑟 ∈ 𝒫 3o ↦ if(𝑟 = {∅}, {∅, 1o}, 𝑟))
11 0ex 5182 . . 3 ∅ ∈ V
129, 10, 11fvmpt 6765 . 2 (∅ ∈ 𝒫 3o → (𝐾‘∅) = ∅)
131, 12ax-mp 5 1 (𝐾‘∅) = ∅
Colors of variables: wff setvar class
Syntax hints:   = wceq 1539  wcel 2112  wne 2952  c0 4228  ifcif 4424  𝒫 cpw 4498  {csn 4526  {cpr 4528  cmpt 5117  cfv 6341  1oc1o 8112  3oc3o 8114
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1912  ax-6 1971  ax-7 2016  ax-8 2114  ax-9 2122  ax-10 2143  ax-11 2159  ax-12 2176  ax-ext 2730  ax-sep 5174  ax-nul 5181  ax-pr 5303
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2071  df-mo 2558  df-eu 2589  df-clab 2737  df-cleq 2751  df-clel 2831  df-nfc 2902  df-ne 2953  df-ral 3076  df-rex 3077  df-rab 3080  df-v 3412  df-sbc 3700  df-dif 3864  df-un 3866  df-in 3868  df-ss 3878  df-nul 4229  df-if 4425  df-pw 4500  df-sn 4527  df-pr 4529  df-op 4533  df-uni 4803  df-br 5038  df-opab 5100  df-mpt 5118  df-id 5435  df-xp 5535  df-rel 5536  df-cnv 5537  df-co 5538  df-dm 5539  df-iota 6300  df-fun 6343  df-fv 6349
This theorem is referenced by:  clsk1independent  41168
  Copyright terms: Public domain W3C validator