![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > pw2eng | Structured version Visualization version GIF version |
Description: The power set of a set is equinumerous to set exponentiation with a base of ordinal 2𝑜. (Contributed by FL, 22-Feb-2011.) (Revised by Mario Carneiro, 1-Jul-2015.) |
Ref | Expression |
---|---|
pw2eng | ⊢ (𝐴 ∈ 𝑉 → 𝒫 𝐴 ≈ (2𝑜 ↑𝑚 𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pwexg 5048 | . . 3 ⊢ (𝐴 ∈ 𝑉 → 𝒫 𝐴 ∈ V) | |
2 | ovexd 6912 | . . 3 ⊢ (𝐴 ∈ 𝑉 → ({∅, {∅}} ↑𝑚 𝐴) ∈ V) | |
3 | id 22 | . . . 4 ⊢ (𝐴 ∈ 𝑉 → 𝐴 ∈ 𝑉) | |
4 | 0ex 4984 | . . . . 5 ⊢ ∅ ∈ V | |
5 | 4 | a1i 11 | . . . 4 ⊢ (𝐴 ∈ 𝑉 → ∅ ∈ V) |
6 | p0ex 5053 | . . . . 5 ⊢ {∅} ∈ V | |
7 | 6 | a1i 11 | . . . 4 ⊢ (𝐴 ∈ 𝑉 → {∅} ∈ V) |
8 | 0nep0 5028 | . . . . 5 ⊢ ∅ ≠ {∅} | |
9 | 8 | a1i 11 | . . . 4 ⊢ (𝐴 ∈ 𝑉 → ∅ ≠ {∅}) |
10 | eqid 2799 | . . . 4 ⊢ (𝑥 ∈ 𝒫 𝐴 ↦ (𝑧 ∈ 𝐴 ↦ if(𝑧 ∈ 𝑥, {∅}, ∅))) = (𝑥 ∈ 𝒫 𝐴 ↦ (𝑧 ∈ 𝐴 ↦ if(𝑧 ∈ 𝑥, {∅}, ∅))) | |
11 | 3, 5, 7, 9, 10 | pw2f1o 8307 | . . 3 ⊢ (𝐴 ∈ 𝑉 → (𝑥 ∈ 𝒫 𝐴 ↦ (𝑧 ∈ 𝐴 ↦ if(𝑧 ∈ 𝑥, {∅}, ∅))):𝒫 𝐴–1-1-onto→({∅, {∅}} ↑𝑚 𝐴)) |
12 | f1oen2g 8212 | . . 3 ⊢ ((𝒫 𝐴 ∈ V ∧ ({∅, {∅}} ↑𝑚 𝐴) ∈ V ∧ (𝑥 ∈ 𝒫 𝐴 ↦ (𝑧 ∈ 𝐴 ↦ if(𝑧 ∈ 𝑥, {∅}, ∅))):𝒫 𝐴–1-1-onto→({∅, {∅}} ↑𝑚 𝐴)) → 𝒫 𝐴 ≈ ({∅, {∅}} ↑𝑚 𝐴)) | |
13 | 1, 2, 11, 12 | syl3anc 1491 | . 2 ⊢ (𝐴 ∈ 𝑉 → 𝒫 𝐴 ≈ ({∅, {∅}} ↑𝑚 𝐴)) |
14 | df2o2 7814 | . . 3 ⊢ 2𝑜 = {∅, {∅}} | |
15 | 14 | oveq1i 6888 | . 2 ⊢ (2𝑜 ↑𝑚 𝐴) = ({∅, {∅}} ↑𝑚 𝐴) |
16 | 13, 15 | syl6breqr 4885 | 1 ⊢ (𝐴 ∈ 𝑉 → 𝒫 𝐴 ≈ (2𝑜 ↑𝑚 𝐴)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2157 ≠ wne 2971 Vcvv 3385 ∅c0 4115 ifcif 4277 𝒫 cpw 4349 {csn 4368 {cpr 4370 class class class wbr 4843 ↦ cmpt 4922 –1-1-onto→wf1o 6100 (class class class)co 6878 2𝑜c2o 7793 ↑𝑚 cmap 8095 ≈ cen 8192 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1891 ax-4 1905 ax-5 2006 ax-6 2072 ax-7 2107 ax-8 2159 ax-9 2166 ax-10 2185 ax-11 2200 ax-12 2213 ax-13 2377 ax-ext 2777 ax-sep 4975 ax-nul 4983 ax-pow 5035 ax-pr 5097 ax-un 7183 |
This theorem depends on definitions: df-bi 199 df-an 386 df-or 875 df-3an 1110 df-tru 1657 df-ex 1876 df-nf 1880 df-sb 2065 df-mo 2591 df-eu 2609 df-clab 2786 df-cleq 2792 df-clel 2795 df-nfc 2930 df-ne 2972 df-ral 3094 df-rex 3095 df-rab 3098 df-v 3387 df-sbc 3634 df-dif 3772 df-un 3774 df-in 3776 df-ss 3783 df-nul 4116 df-if 4278 df-pw 4351 df-sn 4369 df-pr 4371 df-op 4375 df-uni 4629 df-br 4844 df-opab 4906 df-mpt 4923 df-id 5220 df-xp 5318 df-rel 5319 df-cnv 5320 df-co 5321 df-dm 5322 df-rn 5323 df-res 5324 df-ima 5325 df-suc 5947 df-iota 6064 df-fun 6103 df-fn 6104 df-f 6105 df-f1 6106 df-fo 6107 df-f1o 6108 df-fv 6109 df-ov 6881 df-oprab 6882 df-mpt2 6883 df-1o 7799 df-2o 7800 df-map 8097 df-en 8196 |
This theorem is referenced by: pw2en 8309 pwen 8375 mappwen 9221 pwcdaen 9295 ackbij1lem5 9334 hauspwdom 21633 enrelmap 39069 |
Copyright terms: Public domain | W3C validator |