![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > pw2eng | Structured version Visualization version GIF version |
Description: The power set of a set is equinumerous to set exponentiation with a base of ordinal 2o. (Contributed by FL, 22-Feb-2011.) (Revised by Mario Carneiro, 1-Jul-2015.) |
Ref | Expression |
---|---|
pw2eng | ⊢ (𝐴 ∈ 𝑉 → 𝒫 𝐴 ≈ (2o ↑m 𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pwexg 5376 | . . 3 ⊢ (𝐴 ∈ 𝑉 → 𝒫 𝐴 ∈ V) | |
2 | ovexd 7443 | . . 3 ⊢ (𝐴 ∈ 𝑉 → ({∅, {∅}} ↑m 𝐴) ∈ V) | |
3 | id 22 | . . . 4 ⊢ (𝐴 ∈ 𝑉 → 𝐴 ∈ 𝑉) | |
4 | 0ex 5307 | . . . . 5 ⊢ ∅ ∈ V | |
5 | 4 | a1i 11 | . . . 4 ⊢ (𝐴 ∈ 𝑉 → ∅ ∈ V) |
6 | p0ex 5382 | . . . . 5 ⊢ {∅} ∈ V | |
7 | 6 | a1i 11 | . . . 4 ⊢ (𝐴 ∈ 𝑉 → {∅} ∈ V) |
8 | 0nep0 5356 | . . . . 5 ⊢ ∅ ≠ {∅} | |
9 | 8 | a1i 11 | . . . 4 ⊢ (𝐴 ∈ 𝑉 → ∅ ≠ {∅}) |
10 | eqid 2732 | . . . 4 ⊢ (𝑥 ∈ 𝒫 𝐴 ↦ (𝑧 ∈ 𝐴 ↦ if(𝑧 ∈ 𝑥, {∅}, ∅))) = (𝑥 ∈ 𝒫 𝐴 ↦ (𝑧 ∈ 𝐴 ↦ if(𝑧 ∈ 𝑥, {∅}, ∅))) | |
11 | 3, 5, 7, 9, 10 | pw2f1o 9076 | . . 3 ⊢ (𝐴 ∈ 𝑉 → (𝑥 ∈ 𝒫 𝐴 ↦ (𝑧 ∈ 𝐴 ↦ if(𝑧 ∈ 𝑥, {∅}, ∅))):𝒫 𝐴–1-1-onto→({∅, {∅}} ↑m 𝐴)) |
12 | f1oen2g 8963 | . . 3 ⊢ ((𝒫 𝐴 ∈ V ∧ ({∅, {∅}} ↑m 𝐴) ∈ V ∧ (𝑥 ∈ 𝒫 𝐴 ↦ (𝑧 ∈ 𝐴 ↦ if(𝑧 ∈ 𝑥, {∅}, ∅))):𝒫 𝐴–1-1-onto→({∅, {∅}} ↑m 𝐴)) → 𝒫 𝐴 ≈ ({∅, {∅}} ↑m 𝐴)) | |
13 | 1, 2, 11, 12 | syl3anc 1371 | . 2 ⊢ (𝐴 ∈ 𝑉 → 𝒫 𝐴 ≈ ({∅, {∅}} ↑m 𝐴)) |
14 | df2o2 8474 | . . 3 ⊢ 2o = {∅, {∅}} | |
15 | 14 | oveq1i 7418 | . 2 ⊢ (2o ↑m 𝐴) = ({∅, {∅}} ↑m 𝐴) |
16 | 13, 15 | breqtrrdi 5190 | 1 ⊢ (𝐴 ∈ 𝑉 → 𝒫 𝐴 ≈ (2o ↑m 𝐴)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2106 ≠ wne 2940 Vcvv 3474 ∅c0 4322 ifcif 4528 𝒫 cpw 4602 {csn 4628 {cpr 4630 class class class wbr 5148 ↦ cmpt 5231 –1-1-onto→wf1o 6542 (class class class)co 7408 2oc2o 8459 ↑m cmap 8819 ≈ cen 8935 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-sep 5299 ax-nul 5306 ax-pow 5363 ax-pr 5427 ax-un 7724 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-ral 3062 df-rex 3071 df-rab 3433 df-v 3476 df-sbc 3778 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-br 5149 df-opab 5211 df-mpt 5232 df-id 5574 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-suc 6370 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-ov 7411 df-oprab 7412 df-mpo 7413 df-1o 8465 df-2o 8466 df-map 8821 df-en 8939 |
This theorem is referenced by: pw2en 9078 pwen 9149 mappwen 10106 pwdjuen 10175 ackbij1lem5 10218 hauspwdom 23004 enrelmap 42738 |
Copyright terms: Public domain | W3C validator |