MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pw2eng Structured version   Visualization version   GIF version

Theorem pw2eng 8818
Description: The power set of a set is equinumerous to set exponentiation with a base of ordinal 2o. (Contributed by FL, 22-Feb-2011.) (Revised by Mario Carneiro, 1-Jul-2015.)
Assertion
Ref Expression
pw2eng (𝐴𝑉 → 𝒫 𝐴 ≈ (2om 𝐴))

Proof of Theorem pw2eng
Dummy variables 𝑥 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 pwexg 5296 . . 3 (𝐴𝑉 → 𝒫 𝐴 ∈ V)
2 ovexd 7290 . . 3 (𝐴𝑉 → ({∅, {∅}} ↑m 𝐴) ∈ V)
3 id 22 . . . 4 (𝐴𝑉𝐴𝑉)
4 0ex 5226 . . . . 5 ∅ ∈ V
54a1i 11 . . . 4 (𝐴𝑉 → ∅ ∈ V)
6 p0ex 5302 . . . . 5 {∅} ∈ V
76a1i 11 . . . 4 (𝐴𝑉 → {∅} ∈ V)
8 0nep0 5275 . . . . 5 ∅ ≠ {∅}
98a1i 11 . . . 4 (𝐴𝑉 → ∅ ≠ {∅})
10 eqid 2738 . . . 4 (𝑥 ∈ 𝒫 𝐴 ↦ (𝑧𝐴 ↦ if(𝑧𝑥, {∅}, ∅))) = (𝑥 ∈ 𝒫 𝐴 ↦ (𝑧𝐴 ↦ if(𝑧𝑥, {∅}, ∅)))
113, 5, 7, 9, 10pw2f1o 8817 . . 3 (𝐴𝑉 → (𝑥 ∈ 𝒫 𝐴 ↦ (𝑧𝐴 ↦ if(𝑧𝑥, {∅}, ∅))):𝒫 𝐴1-1-onto→({∅, {∅}} ↑m 𝐴))
12 f1oen2g 8711 . . 3 ((𝒫 𝐴 ∈ V ∧ ({∅, {∅}} ↑m 𝐴) ∈ V ∧ (𝑥 ∈ 𝒫 𝐴 ↦ (𝑧𝐴 ↦ if(𝑧𝑥, {∅}, ∅))):𝒫 𝐴1-1-onto→({∅, {∅}} ↑m 𝐴)) → 𝒫 𝐴 ≈ ({∅, {∅}} ↑m 𝐴))
131, 2, 11, 12syl3anc 1369 . 2 (𝐴𝑉 → 𝒫 𝐴 ≈ ({∅, {∅}} ↑m 𝐴))
14 df2o2 8283 . . 3 2o = {∅, {∅}}
1514oveq1i 7265 . 2 (2om 𝐴) = ({∅, {∅}} ↑m 𝐴)
1613, 15breqtrrdi 5112 1 (𝐴𝑉 → 𝒫 𝐴 ≈ (2om 𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2108  wne 2942  Vcvv 3422  c0 4253  ifcif 4456  𝒫 cpw 4530  {csn 4558  {cpr 4560   class class class wbr 5070  cmpt 5153  1-1-ontowf1o 6417  (class class class)co 7255  2oc2o 8261  m cmap 8573  cen 8688
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-ral 3068  df-rex 3069  df-rab 3072  df-v 3424  df-sbc 3712  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-br 5071  df-opab 5133  df-mpt 5154  df-id 5480  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-ov 7258  df-oprab 7259  df-mpo 7260  df-1o 8267  df-2o 8268  df-map 8575  df-en 8692
This theorem is referenced by:  pw2en  8819  pwen  8886  mappwen  9799  pwdjuen  9868  ackbij1lem5  9911  hauspwdom  22560  enrelmap  41494
  Copyright terms: Public domain W3C validator