MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pw2eng Structured version   Visualization version   GIF version

Theorem pw2eng 8756
Description: The power set of a set is equinumerous to set exponentiation with a base of ordinal 2o. (Contributed by FL, 22-Feb-2011.) (Revised by Mario Carneiro, 1-Jul-2015.)
Assertion
Ref Expression
pw2eng (𝐴𝑉 → 𝒫 𝐴 ≈ (2om 𝐴))

Proof of Theorem pw2eng
Dummy variables 𝑥 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 pwexg 5276 . . 3 (𝐴𝑉 → 𝒫 𝐴 ∈ V)
2 ovexd 7253 . . 3 (𝐴𝑉 → ({∅, {∅}} ↑m 𝐴) ∈ V)
3 id 22 . . . 4 (𝐴𝑉𝐴𝑉)
4 0ex 5205 . . . . 5 ∅ ∈ V
54a1i 11 . . . 4 (𝐴𝑉 → ∅ ∈ V)
6 p0ex 5282 . . . . 5 {∅} ∈ V
76a1i 11 . . . 4 (𝐴𝑉 → {∅} ∈ V)
8 0nep0 5254 . . . . 5 ∅ ≠ {∅}
98a1i 11 . . . 4 (𝐴𝑉 → ∅ ≠ {∅})
10 eqid 2737 . . . 4 (𝑥 ∈ 𝒫 𝐴 ↦ (𝑧𝐴 ↦ if(𝑧𝑥, {∅}, ∅))) = (𝑥 ∈ 𝒫 𝐴 ↦ (𝑧𝐴 ↦ if(𝑧𝑥, {∅}, ∅)))
113, 5, 7, 9, 10pw2f1o 8755 . . 3 (𝐴𝑉 → (𝑥 ∈ 𝒫 𝐴 ↦ (𝑧𝐴 ↦ if(𝑧𝑥, {∅}, ∅))):𝒫 𝐴1-1-onto→({∅, {∅}} ↑m 𝐴))
12 f1oen2g 8650 . . 3 ((𝒫 𝐴 ∈ V ∧ ({∅, {∅}} ↑m 𝐴) ∈ V ∧ (𝑥 ∈ 𝒫 𝐴 ↦ (𝑧𝐴 ↦ if(𝑧𝑥, {∅}, ∅))):𝒫 𝐴1-1-onto→({∅, {∅}} ↑m 𝐴)) → 𝒫 𝐴 ≈ ({∅, {∅}} ↑m 𝐴))
131, 2, 11, 12syl3anc 1373 . 2 (𝐴𝑉 → 𝒫 𝐴 ≈ ({∅, {∅}} ↑m 𝐴))
14 df2o2 8223 . . 3 2o = {∅, {∅}}
1514oveq1i 7228 . 2 (2om 𝐴) = ({∅, {∅}} ↑m 𝐴)
1613, 15breqtrrdi 5100 1 (𝐴𝑉 → 𝒫 𝐴 ≈ (2om 𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2110  wne 2940  Vcvv 3413  c0 4242  ifcif 4444  𝒫 cpw 4518  {csn 4546  {cpr 4548   class class class wbr 5058  cmpt 5140  1-1-ontowf1o 6384  (class class class)co 7218  2oc2o 8201  m cmap 8513  cen 8628
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2016  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2158  ax-12 2175  ax-ext 2708  ax-sep 5197  ax-nul 5204  ax-pow 5263  ax-pr 5327  ax-un 7528
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-nf 1792  df-sb 2071  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2886  df-ne 2941  df-ral 3066  df-rex 3067  df-rab 3070  df-v 3415  df-sbc 3700  df-dif 3874  df-un 3876  df-in 3878  df-ss 3888  df-nul 4243  df-if 4445  df-pw 4520  df-sn 4547  df-pr 4549  df-op 4553  df-uni 4825  df-br 5059  df-opab 5121  df-mpt 5141  df-id 5460  df-xp 5562  df-rel 5563  df-cnv 5564  df-co 5565  df-dm 5566  df-rn 5567  df-res 5568  df-ima 5569  df-suc 6224  df-iota 6343  df-fun 6387  df-fn 6388  df-f 6389  df-f1 6390  df-fo 6391  df-f1o 6392  df-fv 6393  df-ov 7221  df-oprab 7222  df-mpo 7223  df-1o 8207  df-2o 8208  df-map 8515  df-en 8632
This theorem is referenced by:  pw2en  8757  pwen  8824  mappwen  9731  pwdjuen  9800  ackbij1lem5  9843  hauspwdom  22403  enrelmap  41290
  Copyright terms: Public domain W3C validator