MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pw2eng Structured version   Visualization version   GIF version

Theorem pw2eng 9007
Description: The power set of a set is equinumerous to set exponentiation with a base of ordinal 2o. (Contributed by FL, 22-Feb-2011.) (Revised by Mario Carneiro, 1-Jul-2015.)
Assertion
Ref Expression
pw2eng (𝐴𝑉 → 𝒫 𝐴 ≈ (2om 𝐴))

Proof of Theorem pw2eng
Dummy variables 𝑥 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 pwexg 5320 . . 3 (𝐴𝑉 → 𝒫 𝐴 ∈ V)
2 ovexd 7388 . . 3 (𝐴𝑉 → ({∅, {∅}} ↑m 𝐴) ∈ V)
3 id 22 . . . 4 (𝐴𝑉𝐴𝑉)
4 0ex 5249 . . . . 5 ∅ ∈ V
54a1i 11 . . . 4 (𝐴𝑉 → ∅ ∈ V)
6 p0ex 5326 . . . . 5 {∅} ∈ V
76a1i 11 . . . 4 (𝐴𝑉 → {∅} ∈ V)
8 0nep0 5300 . . . . 5 ∅ ≠ {∅}
98a1i 11 . . . 4 (𝐴𝑉 → ∅ ≠ {∅})
10 eqid 2729 . . . 4 (𝑥 ∈ 𝒫 𝐴 ↦ (𝑧𝐴 ↦ if(𝑧𝑥, {∅}, ∅))) = (𝑥 ∈ 𝒫 𝐴 ↦ (𝑧𝐴 ↦ if(𝑧𝑥, {∅}, ∅)))
113, 5, 7, 9, 10pw2f1o 9006 . . 3 (𝐴𝑉 → (𝑥 ∈ 𝒫 𝐴 ↦ (𝑧𝐴 ↦ if(𝑧𝑥, {∅}, ∅))):𝒫 𝐴1-1-onto→({∅, {∅}} ↑m 𝐴))
12 f1oen2g 8901 . . 3 ((𝒫 𝐴 ∈ V ∧ ({∅, {∅}} ↑m 𝐴) ∈ V ∧ (𝑥 ∈ 𝒫 𝐴 ↦ (𝑧𝐴 ↦ if(𝑧𝑥, {∅}, ∅))):𝒫 𝐴1-1-onto→({∅, {∅}} ↑m 𝐴)) → 𝒫 𝐴 ≈ ({∅, {∅}} ↑m 𝐴))
131, 2, 11, 12syl3anc 1373 . 2 (𝐴𝑉 → 𝒫 𝐴 ≈ ({∅, {∅}} ↑m 𝐴))
14 df2o2 8404 . . 3 2o = {∅, {∅}}
1514oveq1i 7363 . 2 (2om 𝐴) = ({∅, {∅}} ↑m 𝐴)
1613, 15breqtrrdi 5137 1 (𝐴𝑉 → 𝒫 𝐴 ≈ (2om 𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2109  wne 2925  Vcvv 3438  c0 4286  ifcif 4478  𝒫 cpw 4553  {csn 4579  {cpr 4581   class class class wbr 5095  cmpt 5176  1-1-ontowf1o 6485  (class class class)co 7353  2oc2o 8389  m cmap 8760  cen 8876
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7675
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rab 3397  df-v 3440  df-sbc 3745  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-nul 4287  df-if 4479  df-pw 4555  df-sn 4580  df-pr 4582  df-op 4586  df-uni 4862  df-br 5096  df-opab 5158  df-mpt 5177  df-id 5518  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-res 5635  df-ima 5636  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-ov 7356  df-oprab 7357  df-mpo 7358  df-1o 8395  df-2o 8396  df-map 8762  df-en 8880
This theorem is referenced by:  pw2en  9008  pwen  9074  mappwen  10025  pwdjuen  10095  ackbij1lem5  10136  hauspwdom  23404  enrelmap  43970
  Copyright terms: Public domain W3C validator