MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  2dom Structured version   Visualization version   GIF version

Theorem 2dom 8565
Description: A set that dominates ordinal 2 has at least 2 different members. (Contributed by NM, 25-Jul-2004.)
Assertion
Ref Expression
2dom (2o𝐴 → ∃𝑥𝐴𝑦𝐴 ¬ 𝑥 = 𝑦)
Distinct variable group:   𝑥,𝑦,𝐴

Proof of Theorem 2dom
Dummy variable 𝑓 is distinct from all other variables.
StepHypRef Expression
1 df2o2 8101 . . . 4 2o = {∅, {∅}}
21breq1i 5037 . . 3 (2o𝐴 ↔ {∅, {∅}} ≼ 𝐴)
3 brdomi 8503 . . 3 ({∅, {∅}} ≼ 𝐴 → ∃𝑓 𝑓:{∅, {∅}}–1-1𝐴)
42, 3sylbi 220 . 2 (2o𝐴 → ∃𝑓 𝑓:{∅, {∅}}–1-1𝐴)
5 f1f 6549 . . . . 5 (𝑓:{∅, {∅}}–1-1𝐴𝑓:{∅, {∅}}⟶𝐴)
6 0ex 5175 . . . . . 6 ∅ ∈ V
76prid1 4658 . . . . 5 ∅ ∈ {∅, {∅}}
8 ffvelrn 6826 . . . . 5 ((𝑓:{∅, {∅}}⟶𝐴 ∧ ∅ ∈ {∅, {∅}}) → (𝑓‘∅) ∈ 𝐴)
95, 7, 8sylancl 589 . . . 4 (𝑓:{∅, {∅}}–1-1𝐴 → (𝑓‘∅) ∈ 𝐴)
10 snex 5297 . . . . . 6 {∅} ∈ V
1110prid2 4659 . . . . 5 {∅} ∈ {∅, {∅}}
12 ffvelrn 6826 . . . . 5 ((𝑓:{∅, {∅}}⟶𝐴 ∧ {∅} ∈ {∅, {∅}}) → (𝑓‘{∅}) ∈ 𝐴)
135, 11, 12sylancl 589 . . . 4 (𝑓:{∅, {∅}}–1-1𝐴 → (𝑓‘{∅}) ∈ 𝐴)
14 0nep0 5223 . . . . . 6 ∅ ≠ {∅}
1514neii 2989 . . . . 5 ¬ ∅ = {∅}
16 f1fveq 6998 . . . . . 6 ((𝑓:{∅, {∅}}–1-1𝐴 ∧ (∅ ∈ {∅, {∅}} ∧ {∅} ∈ {∅, {∅}})) → ((𝑓‘∅) = (𝑓‘{∅}) ↔ ∅ = {∅}))
177, 11, 16mpanr12 704 . . . . 5 (𝑓:{∅, {∅}}–1-1𝐴 → ((𝑓‘∅) = (𝑓‘{∅}) ↔ ∅ = {∅}))
1815, 17mtbiri 330 . . . 4 (𝑓:{∅, {∅}}–1-1𝐴 → ¬ (𝑓‘∅) = (𝑓‘{∅}))
19 eqeq1 2802 . . . . . 6 (𝑥 = (𝑓‘∅) → (𝑥 = 𝑦 ↔ (𝑓‘∅) = 𝑦))
2019notbid 321 . . . . 5 (𝑥 = (𝑓‘∅) → (¬ 𝑥 = 𝑦 ↔ ¬ (𝑓‘∅) = 𝑦))
21 eqeq2 2810 . . . . . 6 (𝑦 = (𝑓‘{∅}) → ((𝑓‘∅) = 𝑦 ↔ (𝑓‘∅) = (𝑓‘{∅})))
2221notbid 321 . . . . 5 (𝑦 = (𝑓‘{∅}) → (¬ (𝑓‘∅) = 𝑦 ↔ ¬ (𝑓‘∅) = (𝑓‘{∅})))
2320, 22rspc2ev 3583 . . . 4 (((𝑓‘∅) ∈ 𝐴 ∧ (𝑓‘{∅}) ∈ 𝐴 ∧ ¬ (𝑓‘∅) = (𝑓‘{∅})) → ∃𝑥𝐴𝑦𝐴 ¬ 𝑥 = 𝑦)
249, 13, 18, 23syl3anc 1368 . . 3 (𝑓:{∅, {∅}}–1-1𝐴 → ∃𝑥𝐴𝑦𝐴 ¬ 𝑥 = 𝑦)
2524exlimiv 1931 . 2 (∃𝑓 𝑓:{∅, {∅}}–1-1𝐴 → ∃𝑥𝐴𝑦𝐴 ¬ 𝑥 = 𝑦)
264, 25syl 17 1 (2o𝐴 → ∃𝑥𝐴𝑦𝐴 ¬ 𝑥 = 𝑦)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 209   = wceq 1538  wex 1781  wcel 2111  wrex 3107  c0 4243  {csn 4525  {cpr 4527   class class class wbr 5030  wf 6320  1-1wf1 6321  cfv 6324  2oc2o 8079  cdom 8490
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-sep 5167  ax-nul 5174  ax-pr 5295  ax-un 7441
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-ral 3111  df-rex 3112  df-rab 3115  df-v 3443  df-sbc 3721  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-nul 4244  df-if 4426  df-sn 4526  df-pr 4528  df-op 4532  df-uni 4801  df-br 5031  df-opab 5093  df-id 5425  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-suc 6165  df-iota 6283  df-fun 6326  df-fn 6327  df-f 6328  df-f1 6329  df-fv 6332  df-1o 8085  df-2o 8086  df-dom 8494
This theorem is referenced by:  1sdom  8705
  Copyright terms: Public domain W3C validator