MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  2dom Structured version   Visualization version   GIF version

Theorem 2dom 9042
Description: A set that dominates ordinal 2 has at least 2 different members. (Contributed by NM, 25-Jul-2004.)
Assertion
Ref Expression
2dom (2o𝐴 → ∃𝑥𝐴𝑦𝐴 ¬ 𝑥 = 𝑦)
Distinct variable group:   𝑥,𝑦,𝐴

Proof of Theorem 2dom
Dummy variable 𝑓 is distinct from all other variables.
StepHypRef Expression
1 df2o2 8487 . . . 4 2o = {∅, {∅}}
21breq1i 5126 . . 3 (2o𝐴 ↔ {∅, {∅}} ≼ 𝐴)
3 brdomi 8971 . . 3 ({∅, {∅}} ≼ 𝐴 → ∃𝑓 𝑓:{∅, {∅}}–1-1𝐴)
42, 3sylbi 217 . 2 (2o𝐴 → ∃𝑓 𝑓:{∅, {∅}}–1-1𝐴)
5 f1f 6773 . . . . 5 (𝑓:{∅, {∅}}–1-1𝐴𝑓:{∅, {∅}}⟶𝐴)
6 0ex 5277 . . . . . 6 ∅ ∈ V
76prid1 4738 . . . . 5 ∅ ∈ {∅, {∅}}
8 ffvelcdm 7070 . . . . 5 ((𝑓:{∅, {∅}}⟶𝐴 ∧ ∅ ∈ {∅, {∅}}) → (𝑓‘∅) ∈ 𝐴)
95, 7, 8sylancl 586 . . . 4 (𝑓:{∅, {∅}}–1-1𝐴 → (𝑓‘∅) ∈ 𝐴)
10 snex 5406 . . . . . 6 {∅} ∈ V
1110prid2 4739 . . . . 5 {∅} ∈ {∅, {∅}}
12 ffvelcdm 7070 . . . . 5 ((𝑓:{∅, {∅}}⟶𝐴 ∧ {∅} ∈ {∅, {∅}}) → (𝑓‘{∅}) ∈ 𝐴)
135, 11, 12sylancl 586 . . . 4 (𝑓:{∅, {∅}}–1-1𝐴 → (𝑓‘{∅}) ∈ 𝐴)
14 0nep0 5328 . . . . . 6 ∅ ≠ {∅}
1514neii 2934 . . . . 5 ¬ ∅ = {∅}
16 f1fveq 7254 . . . . . 6 ((𝑓:{∅, {∅}}–1-1𝐴 ∧ (∅ ∈ {∅, {∅}} ∧ {∅} ∈ {∅, {∅}})) → ((𝑓‘∅) = (𝑓‘{∅}) ↔ ∅ = {∅}))
177, 11, 16mpanr12 705 . . . . 5 (𝑓:{∅, {∅}}–1-1𝐴 → ((𝑓‘∅) = (𝑓‘{∅}) ↔ ∅ = {∅}))
1815, 17mtbiri 327 . . . 4 (𝑓:{∅, {∅}}–1-1𝐴 → ¬ (𝑓‘∅) = (𝑓‘{∅}))
19 eqeq1 2739 . . . . . 6 (𝑥 = (𝑓‘∅) → (𝑥 = 𝑦 ↔ (𝑓‘∅) = 𝑦))
2019notbid 318 . . . . 5 (𝑥 = (𝑓‘∅) → (¬ 𝑥 = 𝑦 ↔ ¬ (𝑓‘∅) = 𝑦))
21 eqeq2 2747 . . . . . 6 (𝑦 = (𝑓‘{∅}) → ((𝑓‘∅) = 𝑦 ↔ (𝑓‘∅) = (𝑓‘{∅})))
2221notbid 318 . . . . 5 (𝑦 = (𝑓‘{∅}) → (¬ (𝑓‘∅) = 𝑦 ↔ ¬ (𝑓‘∅) = (𝑓‘{∅})))
2320, 22rspc2ev 3614 . . . 4 (((𝑓‘∅) ∈ 𝐴 ∧ (𝑓‘{∅}) ∈ 𝐴 ∧ ¬ (𝑓‘∅) = (𝑓‘{∅})) → ∃𝑥𝐴𝑦𝐴 ¬ 𝑥 = 𝑦)
249, 13, 18, 23syl3anc 1373 . . 3 (𝑓:{∅, {∅}}–1-1𝐴 → ∃𝑥𝐴𝑦𝐴 ¬ 𝑥 = 𝑦)
2524exlimiv 1930 . 2 (∃𝑓 𝑓:{∅, {∅}}–1-1𝐴 → ∃𝑥𝐴𝑦𝐴 ¬ 𝑥 = 𝑦)
264, 25syl 17 1 (2o𝐴 → ∃𝑥𝐴𝑦𝐴 ¬ 𝑥 = 𝑦)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206   = wceq 1540  wex 1779  wcel 2108  wrex 3060  c0 4308  {csn 4601  {cpr 4603   class class class wbr 5119  wf 6526  1-1wf1 6527  cfv 6530  2oc2o 8472  cdom 8955
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-sep 5266  ax-nul 5276  ax-pr 5402
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-ne 2933  df-ral 3052  df-rex 3061  df-rab 3416  df-v 3461  df-dif 3929  df-un 3931  df-ss 3943  df-nul 4309  df-if 4501  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-br 5120  df-opab 5182  df-id 5548  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-suc 6358  df-iota 6483  df-fun 6532  df-fn 6533  df-f 6534  df-f1 6535  df-fv 6538  df-1o 8478  df-2o 8479  df-dom 8959
This theorem is referenced by:  1sdom  9254  1sdomOLD  9255
  Copyright terms: Public domain W3C validator