Step | Hyp | Ref
| Expression |
1 | | df2o2 8306 |
. . . 4
⊢
2o = {∅, {∅}} |
2 | 1 | breq1i 5081 |
. . 3
⊢
(2o ≼ 𝐴 ↔ {∅, {∅}} ≼ 𝐴) |
3 | | brdomi 8748 |
. . 3
⊢
({∅, {∅}} ≼ 𝐴 → ∃𝑓 𝑓:{∅, {∅}}–1-1→𝐴) |
4 | 2, 3 | sylbi 216 |
. 2
⊢
(2o ≼ 𝐴 → ∃𝑓 𝑓:{∅, {∅}}–1-1→𝐴) |
5 | | f1f 6670 |
. . . . 5
⊢ (𝑓:{∅,
{∅}}–1-1→𝐴 → 𝑓:{∅, {∅}}⟶𝐴) |
6 | | 0ex 5231 |
. . . . . 6
⊢ ∅
∈ V |
7 | 6 | prid1 4698 |
. . . . 5
⊢ ∅
∈ {∅, {∅}} |
8 | | ffvelrn 6959 |
. . . . 5
⊢ ((𝑓:{∅,
{∅}}⟶𝐴 ∧
∅ ∈ {∅, {∅}}) → (𝑓‘∅) ∈ 𝐴) |
9 | 5, 7, 8 | sylancl 586 |
. . . 4
⊢ (𝑓:{∅,
{∅}}–1-1→𝐴 → (𝑓‘∅) ∈ 𝐴) |
10 | | snex 5354 |
. . . . . 6
⊢ {∅}
∈ V |
11 | 10 | prid2 4699 |
. . . . 5
⊢ {∅}
∈ {∅, {∅}} |
12 | | ffvelrn 6959 |
. . . . 5
⊢ ((𝑓:{∅,
{∅}}⟶𝐴 ∧
{∅} ∈ {∅, {∅}}) → (𝑓‘{∅}) ∈ 𝐴) |
13 | 5, 11, 12 | sylancl 586 |
. . . 4
⊢ (𝑓:{∅,
{∅}}–1-1→𝐴 → (𝑓‘{∅}) ∈ 𝐴) |
14 | | 0nep0 5280 |
. . . . . 6
⊢ ∅
≠ {∅} |
15 | 14 | neii 2945 |
. . . . 5
⊢ ¬
∅ = {∅} |
16 | | f1fveq 7135 |
. . . . . 6
⊢ ((𝑓:{∅,
{∅}}–1-1→𝐴 ∧ (∅ ∈ {∅,
{∅}} ∧ {∅} ∈ {∅, {∅}})) → ((𝑓‘∅) = (𝑓‘{∅}) ↔ ∅
= {∅})) |
17 | 7, 11, 16 | mpanr12 702 |
. . . . 5
⊢ (𝑓:{∅,
{∅}}–1-1→𝐴 → ((𝑓‘∅) = (𝑓‘{∅}) ↔ ∅ =
{∅})) |
18 | 15, 17 | mtbiri 327 |
. . . 4
⊢ (𝑓:{∅,
{∅}}–1-1→𝐴 → ¬ (𝑓‘∅) = (𝑓‘{∅})) |
19 | | eqeq1 2742 |
. . . . . 6
⊢ (𝑥 = (𝑓‘∅) → (𝑥 = 𝑦 ↔ (𝑓‘∅) = 𝑦)) |
20 | 19 | notbid 318 |
. . . . 5
⊢ (𝑥 = (𝑓‘∅) → (¬ 𝑥 = 𝑦 ↔ ¬ (𝑓‘∅) = 𝑦)) |
21 | | eqeq2 2750 |
. . . . . 6
⊢ (𝑦 = (𝑓‘{∅}) → ((𝑓‘∅) = 𝑦 ↔ (𝑓‘∅) = (𝑓‘{∅}))) |
22 | 21 | notbid 318 |
. . . . 5
⊢ (𝑦 = (𝑓‘{∅}) → (¬ (𝑓‘∅) = 𝑦 ↔ ¬ (𝑓‘∅) = (𝑓‘{∅}))) |
23 | 20, 22 | rspc2ev 3572 |
. . . 4
⊢ (((𝑓‘∅) ∈ 𝐴 ∧ (𝑓‘{∅}) ∈ 𝐴 ∧ ¬ (𝑓‘∅) = (𝑓‘{∅})) → ∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐴 ¬ 𝑥 = 𝑦) |
24 | 9, 13, 18, 23 | syl3anc 1370 |
. . 3
⊢ (𝑓:{∅,
{∅}}–1-1→𝐴 → ∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐴 ¬ 𝑥 = 𝑦) |
25 | 24 | exlimiv 1933 |
. 2
⊢
(∃𝑓 𝑓:{∅,
{∅}}–1-1→𝐴 → ∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐴 ¬ 𝑥 = 𝑦) |
26 | 4, 25 | syl 17 |
1
⊢
(2o ≼ 𝐴 → ∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐴 ¬ 𝑥 = 𝑦) |