MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  2dom Structured version   Visualization version   GIF version

Theorem 2dom 9026
Description: A set that dominates ordinal 2 has at least 2 different members. (Contributed by NM, 25-Jul-2004.)
Assertion
Ref Expression
2dom (2o𝐴 → ∃𝑥𝐴𝑦𝐴 ¬ 𝑥 = 𝑦)
Distinct variable group:   𝑥,𝑦,𝐴

Proof of Theorem 2dom
Dummy variable 𝑓 is distinct from all other variables.
StepHypRef Expression
1 df2o2 8470 . . . 4 2o = {∅, {∅}}
21breq1i 5145 . . 3 (2o𝐴 ↔ {∅, {∅}} ≼ 𝐴)
3 brdomi 8950 . . 3 ({∅, {∅}} ≼ 𝐴 → ∃𝑓 𝑓:{∅, {∅}}–1-1𝐴)
42, 3sylbi 216 . 2 (2o𝐴 → ∃𝑓 𝑓:{∅, {∅}}–1-1𝐴)
5 f1f 6777 . . . . 5 (𝑓:{∅, {∅}}–1-1𝐴𝑓:{∅, {∅}}⟶𝐴)
6 0ex 5297 . . . . . 6 ∅ ∈ V
76prid1 4758 . . . . 5 ∅ ∈ {∅, {∅}}
8 ffvelcdm 7073 . . . . 5 ((𝑓:{∅, {∅}}⟶𝐴 ∧ ∅ ∈ {∅, {∅}}) → (𝑓‘∅) ∈ 𝐴)
95, 7, 8sylancl 585 . . . 4 (𝑓:{∅, {∅}}–1-1𝐴 → (𝑓‘∅) ∈ 𝐴)
10 snex 5421 . . . . . 6 {∅} ∈ V
1110prid2 4759 . . . . 5 {∅} ∈ {∅, {∅}}
12 ffvelcdm 7073 . . . . 5 ((𝑓:{∅, {∅}}⟶𝐴 ∧ {∅} ∈ {∅, {∅}}) → (𝑓‘{∅}) ∈ 𝐴)
135, 11, 12sylancl 585 . . . 4 (𝑓:{∅, {∅}}–1-1𝐴 → (𝑓‘{∅}) ∈ 𝐴)
14 0nep0 5346 . . . . . 6 ∅ ≠ {∅}
1514neii 2934 . . . . 5 ¬ ∅ = {∅}
16 f1fveq 7253 . . . . . 6 ((𝑓:{∅, {∅}}–1-1𝐴 ∧ (∅ ∈ {∅, {∅}} ∧ {∅} ∈ {∅, {∅}})) → ((𝑓‘∅) = (𝑓‘{∅}) ↔ ∅ = {∅}))
177, 11, 16mpanr12 702 . . . . 5 (𝑓:{∅, {∅}}–1-1𝐴 → ((𝑓‘∅) = (𝑓‘{∅}) ↔ ∅ = {∅}))
1815, 17mtbiri 327 . . . 4 (𝑓:{∅, {∅}}–1-1𝐴 → ¬ (𝑓‘∅) = (𝑓‘{∅}))
19 eqeq1 2728 . . . . . 6 (𝑥 = (𝑓‘∅) → (𝑥 = 𝑦 ↔ (𝑓‘∅) = 𝑦))
2019notbid 318 . . . . 5 (𝑥 = (𝑓‘∅) → (¬ 𝑥 = 𝑦 ↔ ¬ (𝑓‘∅) = 𝑦))
21 eqeq2 2736 . . . . . 6 (𝑦 = (𝑓‘{∅}) → ((𝑓‘∅) = 𝑦 ↔ (𝑓‘∅) = (𝑓‘{∅})))
2221notbid 318 . . . . 5 (𝑦 = (𝑓‘{∅}) → (¬ (𝑓‘∅) = 𝑦 ↔ ¬ (𝑓‘∅) = (𝑓‘{∅})))
2320, 22rspc2ev 3616 . . . 4 (((𝑓‘∅) ∈ 𝐴 ∧ (𝑓‘{∅}) ∈ 𝐴 ∧ ¬ (𝑓‘∅) = (𝑓‘{∅})) → ∃𝑥𝐴𝑦𝐴 ¬ 𝑥 = 𝑦)
249, 13, 18, 23syl3anc 1368 . . 3 (𝑓:{∅, {∅}}–1-1𝐴 → ∃𝑥𝐴𝑦𝐴 ¬ 𝑥 = 𝑦)
2524exlimiv 1925 . 2 (∃𝑓 𝑓:{∅, {∅}}–1-1𝐴 → ∃𝑥𝐴𝑦𝐴 ¬ 𝑥 = 𝑦)
264, 25syl 17 1 (2o𝐴 → ∃𝑥𝐴𝑦𝐴 ¬ 𝑥 = 𝑦)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205   = wceq 1533  wex 1773  wcel 2098  wrex 3062  c0 4314  {csn 4620  {cpr 4622   class class class wbr 5138  wf 6529  1-1wf1 6530  cfv 6533  2oc2o 8455  cdom 8933
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2163  ax-ext 2695  ax-sep 5289  ax-nul 5296  ax-pr 5417
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2526  df-eu 2555  df-clab 2702  df-cleq 2716  df-clel 2802  df-ne 2933  df-ral 3054  df-rex 3063  df-rab 3425  df-v 3468  df-dif 3943  df-un 3945  df-in 3947  df-ss 3957  df-nul 4315  df-if 4521  df-sn 4621  df-pr 4623  df-op 4627  df-uni 4900  df-br 5139  df-opab 5201  df-id 5564  df-xp 5672  df-rel 5673  df-cnv 5674  df-co 5675  df-dm 5676  df-rn 5677  df-suc 6360  df-iota 6485  df-fun 6535  df-fn 6536  df-f 6537  df-f1 6538  df-fv 6541  df-1o 8461  df-2o 8462  df-dom 8937
This theorem is referenced by:  1sdom  9244  1sdomOLD  9245
  Copyright terms: Public domain W3C validator