| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > hashge3el3dif | Structured version Visualization version GIF version | ||
| Description: A set with size at least 3 has at least 3 different elements. In contrast to hashge2el2dif 14421, which has an elementary proof, the dominance relation and 1-1 functions from a set with three elements which are known to be different are used to prove this theorem. Although there is also an elementary proof for this theorem, it might be much longer. After all, this proof should be kept because it can be used as template for proofs for higher cardinalities. (Contributed by AV, 20-Mar-2019.) (Proof modification is discouraged.) |
| Ref | Expression |
|---|---|
| hashge3el3dif | ⊢ ((𝐷 ∈ 𝑉 ∧ 3 ≤ (♯‘𝐷)) → ∃𝑥 ∈ 𝐷 ∃𝑦 ∈ 𝐷 ∃𝑧 ∈ 𝐷 (𝑥 ≠ 𝑦 ∧ 𝑥 ≠ 𝑧 ∧ 𝑦 ≠ 𝑧)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 0nep0 5308 | . . . . . . . . 9 ⊢ ∅ ≠ {∅} | |
| 2 | 0ex 5257 | . . . . . . . . . . . 12 ⊢ ∅ ∈ V | |
| 3 | 2 | sneqr 4800 | . . . . . . . . . . 11 ⊢ ({∅} = {{∅}} → ∅ = {∅}) |
| 4 | 3 | necon3i 2957 | . . . . . . . . . 10 ⊢ (∅ ≠ {∅} → {∅} ≠ {{∅}}) |
| 5 | 1, 4 | ax-mp 5 | . . . . . . . . 9 ⊢ {∅} ≠ {{∅}} |
| 6 | snex 5386 | . . . . . . . . . 10 ⊢ {∅} ∈ V | |
| 7 | snnzg 4734 | . . . . . . . . . 10 ⊢ ({∅} ∈ V → {{∅}} ≠ ∅) | |
| 8 | 6, 7 | ax-mp 5 | . . . . . . . . 9 ⊢ {{∅}} ≠ ∅ |
| 9 | 1, 5, 8 | 3pm3.2i 1340 | . . . . . . . 8 ⊢ (∅ ≠ {∅} ∧ {∅} ≠ {{∅}} ∧ {{∅}} ≠ ∅) |
| 10 | snex 5386 | . . . . . . . . . 10 ⊢ {{∅}} ∈ V | |
| 11 | 2, 6, 10 | 3pm3.2i 1340 | . . . . . . . . 9 ⊢ (∅ ∈ V ∧ {∅} ∈ V ∧ {{∅}} ∈ V) |
| 12 | hashtpg 14426 | . . . . . . . . 9 ⊢ ((∅ ∈ V ∧ {∅} ∈ V ∧ {{∅}} ∈ V) → ((∅ ≠ {∅} ∧ {∅} ≠ {{∅}} ∧ {{∅}} ≠ ∅) ↔ (♯‘{∅, {∅}, {{∅}}}) = 3)) | |
| 13 | 11, 12 | ax-mp 5 | . . . . . . . 8 ⊢ ((∅ ≠ {∅} ∧ {∅} ≠ {{∅}} ∧ {{∅}} ≠ ∅) ↔ (♯‘{∅, {∅}, {{∅}}}) = 3) |
| 14 | 9, 13 | mpbi 230 | . . . . . . 7 ⊢ (♯‘{∅, {∅}, {{∅}}}) = 3 |
| 15 | 14 | eqcomi 2738 | . . . . . 6 ⊢ 3 = (♯‘{∅, {∅}, {{∅}}}) |
| 16 | 15 | a1i 11 | . . . . 5 ⊢ (𝐷 ∈ 𝑉 → 3 = (♯‘{∅, {∅}, {{∅}}})) |
| 17 | 16 | breq1d 5112 | . . . 4 ⊢ (𝐷 ∈ 𝑉 → (3 ≤ (♯‘𝐷) ↔ (♯‘{∅, {∅}, {{∅}}}) ≤ (♯‘𝐷))) |
| 18 | tpfi 9252 | . . . . 5 ⊢ {∅, {∅}, {{∅}}} ∈ Fin | |
| 19 | hashdom 14320 | . . . . 5 ⊢ (({∅, {∅}, {{∅}}} ∈ Fin ∧ 𝐷 ∈ 𝑉) → ((♯‘{∅, {∅}, {{∅}}}) ≤ (♯‘𝐷) ↔ {∅, {∅}, {{∅}}} ≼ 𝐷)) | |
| 20 | 18, 19 | mpan 690 | . . . 4 ⊢ (𝐷 ∈ 𝑉 → ((♯‘{∅, {∅}, {{∅}}}) ≤ (♯‘𝐷) ↔ {∅, {∅}, {{∅}}} ≼ 𝐷)) |
| 21 | 17, 20 | bitrd 279 | . . 3 ⊢ (𝐷 ∈ 𝑉 → (3 ≤ (♯‘𝐷) ↔ {∅, {∅}, {{∅}}} ≼ 𝐷)) |
| 22 | brdomg 8907 | . . . 4 ⊢ (𝐷 ∈ 𝑉 → ({∅, {∅}, {{∅}}} ≼ 𝐷 ↔ ∃𝑓 𝑓:{∅, {∅}, {{∅}}}–1-1→𝐷)) | |
| 23 | 11 | a1i 11 | . . . . . . . 8 ⊢ ((𝐷 ∈ 𝑉 ∧ 𝑓:{∅, {∅}, {{∅}}}–1-1→𝐷) → (∅ ∈ V ∧ {∅} ∈ V ∧ {{∅}} ∈ V)) |
| 24 | 7 | necomd 2980 | . . . . . . . . . . 11 ⊢ ({∅} ∈ V → ∅ ≠ {{∅}}) |
| 25 | 6, 24 | ax-mp 5 | . . . . . . . . . 10 ⊢ ∅ ≠ {{∅}} |
| 26 | 1, 25, 5 | 3pm3.2i 1340 | . . . . . . . . 9 ⊢ (∅ ≠ {∅} ∧ ∅ ≠ {{∅}} ∧ {∅} ≠ {{∅}}) |
| 27 | 26 | a1i 11 | . . . . . . . 8 ⊢ ((𝐷 ∈ 𝑉 ∧ 𝑓:{∅, {∅}, {{∅}}}–1-1→𝐷) → (∅ ≠ {∅} ∧ ∅ ≠ {{∅}} ∧ {∅} ≠ {{∅}})) |
| 28 | simpr 484 | . . . . . . . 8 ⊢ ((𝐷 ∈ 𝑉 ∧ 𝑓:{∅, {∅}, {{∅}}}–1-1→𝐷) → 𝑓:{∅, {∅}, {{∅}}}–1-1→𝐷) | |
| 29 | 23, 27, 28 | f1dom3el3dif 7226 | . . . . . . 7 ⊢ ((𝐷 ∈ 𝑉 ∧ 𝑓:{∅, {∅}, {{∅}}}–1-1→𝐷) → ∃𝑥 ∈ 𝐷 ∃𝑦 ∈ 𝐷 ∃𝑧 ∈ 𝐷 (𝑥 ≠ 𝑦 ∧ 𝑥 ≠ 𝑧 ∧ 𝑦 ≠ 𝑧)) |
| 30 | 29 | expcom 413 | . . . . . 6 ⊢ (𝑓:{∅, {∅}, {{∅}}}–1-1→𝐷 → (𝐷 ∈ 𝑉 → ∃𝑥 ∈ 𝐷 ∃𝑦 ∈ 𝐷 ∃𝑧 ∈ 𝐷 (𝑥 ≠ 𝑦 ∧ 𝑥 ≠ 𝑧 ∧ 𝑦 ≠ 𝑧))) |
| 31 | 30 | exlimiv 1930 | . . . . 5 ⊢ (∃𝑓 𝑓:{∅, {∅}, {{∅}}}–1-1→𝐷 → (𝐷 ∈ 𝑉 → ∃𝑥 ∈ 𝐷 ∃𝑦 ∈ 𝐷 ∃𝑧 ∈ 𝐷 (𝑥 ≠ 𝑦 ∧ 𝑥 ≠ 𝑧 ∧ 𝑦 ≠ 𝑧))) |
| 32 | 31 | com12 32 | . . . 4 ⊢ (𝐷 ∈ 𝑉 → (∃𝑓 𝑓:{∅, {∅}, {{∅}}}–1-1→𝐷 → ∃𝑥 ∈ 𝐷 ∃𝑦 ∈ 𝐷 ∃𝑧 ∈ 𝐷 (𝑥 ≠ 𝑦 ∧ 𝑥 ≠ 𝑧 ∧ 𝑦 ≠ 𝑧))) |
| 33 | 22, 32 | sylbid 240 | . . 3 ⊢ (𝐷 ∈ 𝑉 → ({∅, {∅}, {{∅}}} ≼ 𝐷 → ∃𝑥 ∈ 𝐷 ∃𝑦 ∈ 𝐷 ∃𝑧 ∈ 𝐷 (𝑥 ≠ 𝑦 ∧ 𝑥 ≠ 𝑧 ∧ 𝑦 ≠ 𝑧))) |
| 34 | 21, 33 | sylbid 240 | . 2 ⊢ (𝐷 ∈ 𝑉 → (3 ≤ (♯‘𝐷) → ∃𝑥 ∈ 𝐷 ∃𝑦 ∈ 𝐷 ∃𝑧 ∈ 𝐷 (𝑥 ≠ 𝑦 ∧ 𝑥 ≠ 𝑧 ∧ 𝑦 ≠ 𝑧))) |
| 35 | 34 | imp 406 | 1 ⊢ ((𝐷 ∈ 𝑉 ∧ 3 ≤ (♯‘𝐷)) → ∃𝑥 ∈ 𝐷 ∃𝑦 ∈ 𝐷 ∃𝑧 ∈ 𝐷 (𝑥 ≠ 𝑦 ∧ 𝑥 ≠ 𝑧 ∧ 𝑦 ≠ 𝑧)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∃wex 1779 ∈ wcel 2109 ≠ wne 2925 ∃wrex 3053 Vcvv 3444 ∅c0 4292 {csn 4585 {ctp 4589 class class class wbr 5102 –1-1→wf1 6496 ‘cfv 6499 ≼ cdom 8893 Fincfn 8895 ≤ cle 11185 3c3 12218 ♯chash 14271 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5246 ax-nul 5256 ax-pow 5315 ax-pr 5382 ax-un 7691 ax-cnex 11100 ax-resscn 11101 ax-1cn 11102 ax-icn 11103 ax-addcl 11104 ax-addrcl 11105 ax-mulcl 11106 ax-mulrcl 11107 ax-mulcom 11108 ax-addass 11109 ax-mulass 11110 ax-distr 11111 ax-i2m1 11112 ax-1ne0 11113 ax-1rid 11114 ax-rnegex 11115 ax-rrecex 11116 ax-cnre 11117 ax-pre-lttri 11118 ax-pre-lttrn 11119 ax-pre-ltadd 11120 ax-pre-mulgt0 11121 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-reu 3352 df-rab 3403 df-v 3446 df-sbc 3751 df-csb 3860 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-pss 3931 df-nul 4293 df-if 4485 df-pw 4561 df-sn 4586 df-pr 4588 df-tp 4590 df-op 4592 df-uni 4868 df-int 4907 df-iun 4953 df-br 5103 df-opab 5165 df-mpt 5184 df-tr 5210 df-id 5526 df-eprel 5531 df-po 5539 df-so 5540 df-fr 5584 df-we 5586 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-pred 6262 df-ord 6323 df-on 6324 df-lim 6325 df-suc 6326 df-iota 6452 df-fun 6501 df-fn 6502 df-f 6503 df-f1 6504 df-fo 6505 df-f1o 6506 df-fv 6507 df-riota 7326 df-ov 7372 df-oprab 7373 df-mpo 7374 df-om 7823 df-1st 7947 df-2nd 7948 df-frecs 8237 df-wrecs 8268 df-recs 8317 df-rdg 8355 df-1o 8411 df-2o 8412 df-oadd 8415 df-er 8648 df-en 8896 df-dom 8897 df-sdom 8898 df-fin 8899 df-dju 9830 df-card 9868 df-pnf 11186 df-mnf 11187 df-xr 11188 df-ltxr 11189 df-le 11190 df-sub 11383 df-neg 11384 df-nn 12163 df-2 12225 df-3 12226 df-n0 12419 df-xnn0 12492 df-z 12506 df-uz 12770 df-fz 13445 df-hash 14272 |
| This theorem is referenced by: pmtr3ncom 19381 |
| Copyright terms: Public domain | W3C validator |