| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > hashge3el3dif | Structured version Visualization version GIF version | ||
| Description: A set with size at least 3 has at least 3 different elements. In contrast to hashge2el2dif 14503, which has an elementary proof, the dominance relation and 1-1 functions from a set with three elements which are known to be different are used to prove this theorem. Although there is also an elementary proof for this theorem, it might be much longer. After all, this proof should be kept because it can be used as template for proofs for higher cardinalities. (Contributed by AV, 20-Mar-2019.) (Proof modification is discouraged.) |
| Ref | Expression |
|---|---|
| hashge3el3dif | ⊢ ((𝐷 ∈ 𝑉 ∧ 3 ≤ (♯‘𝐷)) → ∃𝑥 ∈ 𝐷 ∃𝑦 ∈ 𝐷 ∃𝑧 ∈ 𝐷 (𝑥 ≠ 𝑦 ∧ 𝑥 ≠ 𝑧 ∧ 𝑦 ≠ 𝑧)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 0nep0 5333 | . . . . . . . . 9 ⊢ ∅ ≠ {∅} | |
| 2 | 0ex 5282 | . . . . . . . . . . . 12 ⊢ ∅ ∈ V | |
| 3 | 2 | sneqr 4821 | . . . . . . . . . . 11 ⊢ ({∅} = {{∅}} → ∅ = {∅}) |
| 4 | 3 | necon3i 2965 | . . . . . . . . . 10 ⊢ (∅ ≠ {∅} → {∅} ≠ {{∅}}) |
| 5 | 1, 4 | ax-mp 5 | . . . . . . . . 9 ⊢ {∅} ≠ {{∅}} |
| 6 | snex 5411 | . . . . . . . . . 10 ⊢ {∅} ∈ V | |
| 7 | snnzg 4755 | . . . . . . . . . 10 ⊢ ({∅} ∈ V → {{∅}} ≠ ∅) | |
| 8 | 6, 7 | ax-mp 5 | . . . . . . . . 9 ⊢ {{∅}} ≠ ∅ |
| 9 | 1, 5, 8 | 3pm3.2i 1340 | . . . . . . . 8 ⊢ (∅ ≠ {∅} ∧ {∅} ≠ {{∅}} ∧ {{∅}} ≠ ∅) |
| 10 | snex 5411 | . . . . . . . . . 10 ⊢ {{∅}} ∈ V | |
| 11 | 2, 6, 10 | 3pm3.2i 1340 | . . . . . . . . 9 ⊢ (∅ ∈ V ∧ {∅} ∈ V ∧ {{∅}} ∈ V) |
| 12 | hashtpg 14508 | . . . . . . . . 9 ⊢ ((∅ ∈ V ∧ {∅} ∈ V ∧ {{∅}} ∈ V) → ((∅ ≠ {∅} ∧ {∅} ≠ {{∅}} ∧ {{∅}} ≠ ∅) ↔ (♯‘{∅, {∅}, {{∅}}}) = 3)) | |
| 13 | 11, 12 | ax-mp 5 | . . . . . . . 8 ⊢ ((∅ ≠ {∅} ∧ {∅} ≠ {{∅}} ∧ {{∅}} ≠ ∅) ↔ (♯‘{∅, {∅}, {{∅}}}) = 3) |
| 14 | 9, 13 | mpbi 230 | . . . . . . 7 ⊢ (♯‘{∅, {∅}, {{∅}}}) = 3 |
| 15 | 14 | eqcomi 2745 | . . . . . 6 ⊢ 3 = (♯‘{∅, {∅}, {{∅}}}) |
| 16 | 15 | a1i 11 | . . . . 5 ⊢ (𝐷 ∈ 𝑉 → 3 = (♯‘{∅, {∅}, {{∅}}})) |
| 17 | 16 | breq1d 5134 | . . . 4 ⊢ (𝐷 ∈ 𝑉 → (3 ≤ (♯‘𝐷) ↔ (♯‘{∅, {∅}, {{∅}}}) ≤ (♯‘𝐷))) |
| 18 | tpfi 9342 | . . . . 5 ⊢ {∅, {∅}, {{∅}}} ∈ Fin | |
| 19 | hashdom 14402 | . . . . 5 ⊢ (({∅, {∅}, {{∅}}} ∈ Fin ∧ 𝐷 ∈ 𝑉) → ((♯‘{∅, {∅}, {{∅}}}) ≤ (♯‘𝐷) ↔ {∅, {∅}, {{∅}}} ≼ 𝐷)) | |
| 20 | 18, 19 | mpan 690 | . . . 4 ⊢ (𝐷 ∈ 𝑉 → ((♯‘{∅, {∅}, {{∅}}}) ≤ (♯‘𝐷) ↔ {∅, {∅}, {{∅}}} ≼ 𝐷)) |
| 21 | 17, 20 | bitrd 279 | . . 3 ⊢ (𝐷 ∈ 𝑉 → (3 ≤ (♯‘𝐷) ↔ {∅, {∅}, {{∅}}} ≼ 𝐷)) |
| 22 | brdomg 8976 | . . . 4 ⊢ (𝐷 ∈ 𝑉 → ({∅, {∅}, {{∅}}} ≼ 𝐷 ↔ ∃𝑓 𝑓:{∅, {∅}, {{∅}}}–1-1→𝐷)) | |
| 23 | 11 | a1i 11 | . . . . . . . 8 ⊢ ((𝐷 ∈ 𝑉 ∧ 𝑓:{∅, {∅}, {{∅}}}–1-1→𝐷) → (∅ ∈ V ∧ {∅} ∈ V ∧ {{∅}} ∈ V)) |
| 24 | 7 | necomd 2988 | . . . . . . . . . . 11 ⊢ ({∅} ∈ V → ∅ ≠ {{∅}}) |
| 25 | 6, 24 | ax-mp 5 | . . . . . . . . . 10 ⊢ ∅ ≠ {{∅}} |
| 26 | 1, 25, 5 | 3pm3.2i 1340 | . . . . . . . . 9 ⊢ (∅ ≠ {∅} ∧ ∅ ≠ {{∅}} ∧ {∅} ≠ {{∅}}) |
| 27 | 26 | a1i 11 | . . . . . . . 8 ⊢ ((𝐷 ∈ 𝑉 ∧ 𝑓:{∅, {∅}, {{∅}}}–1-1→𝐷) → (∅ ≠ {∅} ∧ ∅ ≠ {{∅}} ∧ {∅} ≠ {{∅}})) |
| 28 | simpr 484 | . . . . . . . 8 ⊢ ((𝐷 ∈ 𝑉 ∧ 𝑓:{∅, {∅}, {{∅}}}–1-1→𝐷) → 𝑓:{∅, {∅}, {{∅}}}–1-1→𝐷) | |
| 29 | 23, 27, 28 | f1dom3el3dif 7267 | . . . . . . 7 ⊢ ((𝐷 ∈ 𝑉 ∧ 𝑓:{∅, {∅}, {{∅}}}–1-1→𝐷) → ∃𝑥 ∈ 𝐷 ∃𝑦 ∈ 𝐷 ∃𝑧 ∈ 𝐷 (𝑥 ≠ 𝑦 ∧ 𝑥 ≠ 𝑧 ∧ 𝑦 ≠ 𝑧)) |
| 30 | 29 | expcom 413 | . . . . . 6 ⊢ (𝑓:{∅, {∅}, {{∅}}}–1-1→𝐷 → (𝐷 ∈ 𝑉 → ∃𝑥 ∈ 𝐷 ∃𝑦 ∈ 𝐷 ∃𝑧 ∈ 𝐷 (𝑥 ≠ 𝑦 ∧ 𝑥 ≠ 𝑧 ∧ 𝑦 ≠ 𝑧))) |
| 31 | 30 | exlimiv 1930 | . . . . 5 ⊢ (∃𝑓 𝑓:{∅, {∅}, {{∅}}}–1-1→𝐷 → (𝐷 ∈ 𝑉 → ∃𝑥 ∈ 𝐷 ∃𝑦 ∈ 𝐷 ∃𝑧 ∈ 𝐷 (𝑥 ≠ 𝑦 ∧ 𝑥 ≠ 𝑧 ∧ 𝑦 ≠ 𝑧))) |
| 32 | 31 | com12 32 | . . . 4 ⊢ (𝐷 ∈ 𝑉 → (∃𝑓 𝑓:{∅, {∅}, {{∅}}}–1-1→𝐷 → ∃𝑥 ∈ 𝐷 ∃𝑦 ∈ 𝐷 ∃𝑧 ∈ 𝐷 (𝑥 ≠ 𝑦 ∧ 𝑥 ≠ 𝑧 ∧ 𝑦 ≠ 𝑧))) |
| 33 | 22, 32 | sylbid 240 | . . 3 ⊢ (𝐷 ∈ 𝑉 → ({∅, {∅}, {{∅}}} ≼ 𝐷 → ∃𝑥 ∈ 𝐷 ∃𝑦 ∈ 𝐷 ∃𝑧 ∈ 𝐷 (𝑥 ≠ 𝑦 ∧ 𝑥 ≠ 𝑧 ∧ 𝑦 ≠ 𝑧))) |
| 34 | 21, 33 | sylbid 240 | . 2 ⊢ (𝐷 ∈ 𝑉 → (3 ≤ (♯‘𝐷) → ∃𝑥 ∈ 𝐷 ∃𝑦 ∈ 𝐷 ∃𝑧 ∈ 𝐷 (𝑥 ≠ 𝑦 ∧ 𝑥 ≠ 𝑧 ∧ 𝑦 ≠ 𝑧))) |
| 35 | 34 | imp 406 | 1 ⊢ ((𝐷 ∈ 𝑉 ∧ 3 ≤ (♯‘𝐷)) → ∃𝑥 ∈ 𝐷 ∃𝑦 ∈ 𝐷 ∃𝑧 ∈ 𝐷 (𝑥 ≠ 𝑦 ∧ 𝑥 ≠ 𝑧 ∧ 𝑦 ≠ 𝑧)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∃wex 1779 ∈ wcel 2109 ≠ wne 2933 ∃wrex 3061 Vcvv 3464 ∅c0 4313 {csn 4606 {ctp 4610 class class class wbr 5124 –1-1→wf1 6533 ‘cfv 6536 ≼ cdom 8962 Fincfn 8964 ≤ cle 11275 3c3 12301 ♯chash 14353 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2708 ax-sep 5271 ax-nul 5281 ax-pow 5340 ax-pr 5407 ax-un 7734 ax-cnex 11190 ax-resscn 11191 ax-1cn 11192 ax-icn 11193 ax-addcl 11194 ax-addrcl 11195 ax-mulcl 11196 ax-mulrcl 11197 ax-mulcom 11198 ax-addass 11199 ax-mulass 11200 ax-distr 11201 ax-i2m1 11202 ax-1ne0 11203 ax-1rid 11204 ax-rnegex 11205 ax-rrecex 11206 ax-cnre 11207 ax-pre-lttri 11208 ax-pre-lttrn 11209 ax-pre-ltadd 11210 ax-pre-mulgt0 11211 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2728 df-clel 2810 df-nfc 2886 df-ne 2934 df-nel 3038 df-ral 3053 df-rex 3062 df-reu 3365 df-rab 3421 df-v 3466 df-sbc 3771 df-csb 3880 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-pss 3951 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-tp 4611 df-op 4613 df-uni 4889 df-int 4928 df-iun 4974 df-br 5125 df-opab 5187 df-mpt 5207 df-tr 5235 df-id 5553 df-eprel 5558 df-po 5566 df-so 5567 df-fr 5611 df-we 5613 df-xp 5665 df-rel 5666 df-cnv 5667 df-co 5668 df-dm 5669 df-rn 5670 df-res 5671 df-ima 5672 df-pred 6295 df-ord 6360 df-on 6361 df-lim 6362 df-suc 6363 df-iota 6489 df-fun 6538 df-fn 6539 df-f 6540 df-f1 6541 df-fo 6542 df-f1o 6543 df-fv 6544 df-riota 7367 df-ov 7413 df-oprab 7414 df-mpo 7415 df-om 7867 df-1st 7993 df-2nd 7994 df-frecs 8285 df-wrecs 8316 df-recs 8390 df-rdg 8429 df-1o 8485 df-2o 8486 df-oadd 8489 df-er 8724 df-en 8965 df-dom 8966 df-sdom 8967 df-fin 8968 df-dju 9920 df-card 9958 df-pnf 11276 df-mnf 11277 df-xr 11278 df-ltxr 11279 df-le 11280 df-sub 11473 df-neg 11474 df-nn 12246 df-2 12308 df-3 12309 df-n0 12507 df-xnn0 12580 df-z 12594 df-uz 12858 df-fz 13530 df-hash 14354 |
| This theorem is referenced by: pmtr3ncom 19461 |
| Copyright terms: Public domain | W3C validator |