![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > hashge3el3dif | Structured version Visualization version GIF version |
Description: A set with size at least 3 has at least 3 different elements. In contrast to hashge2el2dif 14438, which has an elementary proof, the dominance relation and 1-1 functions from a set with three elements which are known to be different are used to prove this theorem. Although there is also an elementary proof for this theorem, it might be much longer. After all, this proof should be kept because it can be used as template for proofs for higher cardinalities. (Contributed by AV, 20-Mar-2019.) (Proof modification is discouraged.) |
Ref | Expression |
---|---|
hashge3el3dif | ⊢ ((𝐷 ∈ 𝑉 ∧ 3 ≤ (♯‘𝐷)) → ∃𝑥 ∈ 𝐷 ∃𝑦 ∈ 𝐷 ∃𝑧 ∈ 𝐷 (𝑥 ≠ 𝑦 ∧ 𝑥 ≠ 𝑧 ∧ 𝑦 ≠ 𝑧)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 0nep0 5346 | . . . . . . . . 9 ⊢ ∅ ≠ {∅} | |
2 | 0ex 5297 | . . . . . . . . . . . 12 ⊢ ∅ ∈ V | |
3 | 2 | sneqr 4833 | . . . . . . . . . . 11 ⊢ ({∅} = {{∅}} → ∅ = {∅}) |
4 | 3 | necon3i 2965 | . . . . . . . . . 10 ⊢ (∅ ≠ {∅} → {∅} ≠ {{∅}}) |
5 | 1, 4 | ax-mp 5 | . . . . . . . . 9 ⊢ {∅} ≠ {{∅}} |
6 | snex 5421 | . . . . . . . . . 10 ⊢ {∅} ∈ V | |
7 | snnzg 4770 | . . . . . . . . . 10 ⊢ ({∅} ∈ V → {{∅}} ≠ ∅) | |
8 | 6, 7 | ax-mp 5 | . . . . . . . . 9 ⊢ {{∅}} ≠ ∅ |
9 | 1, 5, 8 | 3pm3.2i 1336 | . . . . . . . 8 ⊢ (∅ ≠ {∅} ∧ {∅} ≠ {{∅}} ∧ {{∅}} ≠ ∅) |
10 | snex 5421 | . . . . . . . . . 10 ⊢ {{∅}} ∈ V | |
11 | 2, 6, 10 | 3pm3.2i 1336 | . . . . . . . . 9 ⊢ (∅ ∈ V ∧ {∅} ∈ V ∧ {{∅}} ∈ V) |
12 | hashtpg 14443 | . . . . . . . . 9 ⊢ ((∅ ∈ V ∧ {∅} ∈ V ∧ {{∅}} ∈ V) → ((∅ ≠ {∅} ∧ {∅} ≠ {{∅}} ∧ {{∅}} ≠ ∅) ↔ (♯‘{∅, {∅}, {{∅}}}) = 3)) | |
13 | 11, 12 | ax-mp 5 | . . . . . . . 8 ⊢ ((∅ ≠ {∅} ∧ {∅} ≠ {{∅}} ∧ {{∅}} ≠ ∅) ↔ (♯‘{∅, {∅}, {{∅}}}) = 3) |
14 | 9, 13 | mpbi 229 | . . . . . . 7 ⊢ (♯‘{∅, {∅}, {{∅}}}) = 3 |
15 | 14 | eqcomi 2733 | . . . . . 6 ⊢ 3 = (♯‘{∅, {∅}, {{∅}}}) |
16 | 15 | a1i 11 | . . . . 5 ⊢ (𝐷 ∈ 𝑉 → 3 = (♯‘{∅, {∅}, {{∅}}})) |
17 | 16 | breq1d 5148 | . . . 4 ⊢ (𝐷 ∈ 𝑉 → (3 ≤ (♯‘𝐷) ↔ (♯‘{∅, {∅}, {{∅}}}) ≤ (♯‘𝐷))) |
18 | tpfi 9319 | . . . . 5 ⊢ {∅, {∅}, {{∅}}} ∈ Fin | |
19 | hashdom 14336 | . . . . 5 ⊢ (({∅, {∅}, {{∅}}} ∈ Fin ∧ 𝐷 ∈ 𝑉) → ((♯‘{∅, {∅}, {{∅}}}) ≤ (♯‘𝐷) ↔ {∅, {∅}, {{∅}}} ≼ 𝐷)) | |
20 | 18, 19 | mpan 687 | . . . 4 ⊢ (𝐷 ∈ 𝑉 → ((♯‘{∅, {∅}, {{∅}}}) ≤ (♯‘𝐷) ↔ {∅, {∅}, {{∅}}} ≼ 𝐷)) |
21 | 17, 20 | bitrd 279 | . . 3 ⊢ (𝐷 ∈ 𝑉 → (3 ≤ (♯‘𝐷) ↔ {∅, {∅}, {{∅}}} ≼ 𝐷)) |
22 | brdomg 8948 | . . . 4 ⊢ (𝐷 ∈ 𝑉 → ({∅, {∅}, {{∅}}} ≼ 𝐷 ↔ ∃𝑓 𝑓:{∅, {∅}, {{∅}}}–1-1→𝐷)) | |
23 | 11 | a1i 11 | . . . . . . . 8 ⊢ ((𝐷 ∈ 𝑉 ∧ 𝑓:{∅, {∅}, {{∅}}}–1-1→𝐷) → (∅ ∈ V ∧ {∅} ∈ V ∧ {{∅}} ∈ V)) |
24 | 7 | necomd 2988 | . . . . . . . . . . 11 ⊢ ({∅} ∈ V → ∅ ≠ {{∅}}) |
25 | 6, 24 | ax-mp 5 | . . . . . . . . . 10 ⊢ ∅ ≠ {{∅}} |
26 | 1, 25, 5 | 3pm3.2i 1336 | . . . . . . . . 9 ⊢ (∅ ≠ {∅} ∧ ∅ ≠ {{∅}} ∧ {∅} ≠ {{∅}}) |
27 | 26 | a1i 11 | . . . . . . . 8 ⊢ ((𝐷 ∈ 𝑉 ∧ 𝑓:{∅, {∅}, {{∅}}}–1-1→𝐷) → (∅ ≠ {∅} ∧ ∅ ≠ {{∅}} ∧ {∅} ≠ {{∅}})) |
28 | simpr 484 | . . . . . . . 8 ⊢ ((𝐷 ∈ 𝑉 ∧ 𝑓:{∅, {∅}, {{∅}}}–1-1→𝐷) → 𝑓:{∅, {∅}, {{∅}}}–1-1→𝐷) | |
29 | 23, 27, 28 | f1dom3el3dif 7260 | . . . . . . 7 ⊢ ((𝐷 ∈ 𝑉 ∧ 𝑓:{∅, {∅}, {{∅}}}–1-1→𝐷) → ∃𝑥 ∈ 𝐷 ∃𝑦 ∈ 𝐷 ∃𝑧 ∈ 𝐷 (𝑥 ≠ 𝑦 ∧ 𝑥 ≠ 𝑧 ∧ 𝑦 ≠ 𝑧)) |
30 | 29 | expcom 413 | . . . . . 6 ⊢ (𝑓:{∅, {∅}, {{∅}}}–1-1→𝐷 → (𝐷 ∈ 𝑉 → ∃𝑥 ∈ 𝐷 ∃𝑦 ∈ 𝐷 ∃𝑧 ∈ 𝐷 (𝑥 ≠ 𝑦 ∧ 𝑥 ≠ 𝑧 ∧ 𝑦 ≠ 𝑧))) |
31 | 30 | exlimiv 1925 | . . . . 5 ⊢ (∃𝑓 𝑓:{∅, {∅}, {{∅}}}–1-1→𝐷 → (𝐷 ∈ 𝑉 → ∃𝑥 ∈ 𝐷 ∃𝑦 ∈ 𝐷 ∃𝑧 ∈ 𝐷 (𝑥 ≠ 𝑦 ∧ 𝑥 ≠ 𝑧 ∧ 𝑦 ≠ 𝑧))) |
32 | 31 | com12 32 | . . . 4 ⊢ (𝐷 ∈ 𝑉 → (∃𝑓 𝑓:{∅, {∅}, {{∅}}}–1-1→𝐷 → ∃𝑥 ∈ 𝐷 ∃𝑦 ∈ 𝐷 ∃𝑧 ∈ 𝐷 (𝑥 ≠ 𝑦 ∧ 𝑥 ≠ 𝑧 ∧ 𝑦 ≠ 𝑧))) |
33 | 22, 32 | sylbid 239 | . . 3 ⊢ (𝐷 ∈ 𝑉 → ({∅, {∅}, {{∅}}} ≼ 𝐷 → ∃𝑥 ∈ 𝐷 ∃𝑦 ∈ 𝐷 ∃𝑧 ∈ 𝐷 (𝑥 ≠ 𝑦 ∧ 𝑥 ≠ 𝑧 ∧ 𝑦 ≠ 𝑧))) |
34 | 21, 33 | sylbid 239 | . 2 ⊢ (𝐷 ∈ 𝑉 → (3 ≤ (♯‘𝐷) → ∃𝑥 ∈ 𝐷 ∃𝑦 ∈ 𝐷 ∃𝑧 ∈ 𝐷 (𝑥 ≠ 𝑦 ∧ 𝑥 ≠ 𝑧 ∧ 𝑦 ≠ 𝑧))) |
35 | 34 | imp 406 | 1 ⊢ ((𝐷 ∈ 𝑉 ∧ 3 ≤ (♯‘𝐷)) → ∃𝑥 ∈ 𝐷 ∃𝑦 ∈ 𝐷 ∃𝑧 ∈ 𝐷 (𝑥 ≠ 𝑦 ∧ 𝑥 ≠ 𝑧 ∧ 𝑦 ≠ 𝑧)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 ∧ w3a 1084 = wceq 1533 ∃wex 1773 ∈ wcel 2098 ≠ wne 2932 ∃wrex 3062 Vcvv 3466 ∅c0 4314 {csn 4620 {ctp 4624 class class class wbr 5138 –1-1→wf1 6530 ‘cfv 6533 ≼ cdom 8933 Fincfn 8935 ≤ cle 11246 3c3 12265 ♯chash 14287 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2163 ax-ext 2695 ax-sep 5289 ax-nul 5296 ax-pow 5353 ax-pr 5417 ax-un 7718 ax-cnex 11162 ax-resscn 11163 ax-1cn 11164 ax-icn 11165 ax-addcl 11166 ax-addrcl 11167 ax-mulcl 11168 ax-mulrcl 11169 ax-mulcom 11170 ax-addass 11171 ax-mulass 11172 ax-distr 11173 ax-i2m1 11174 ax-1ne0 11175 ax-1rid 11176 ax-rnegex 11177 ax-rrecex 11178 ax-cnre 11179 ax-pre-lttri 11180 ax-pre-lttrn 11181 ax-pre-ltadd 11182 ax-pre-mulgt0 11183 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2526 df-eu 2555 df-clab 2702 df-cleq 2716 df-clel 2802 df-nfc 2877 df-ne 2933 df-nel 3039 df-ral 3054 df-rex 3063 df-reu 3369 df-rab 3425 df-v 3468 df-sbc 3770 df-csb 3886 df-dif 3943 df-un 3945 df-in 3947 df-ss 3957 df-pss 3959 df-nul 4315 df-if 4521 df-pw 4596 df-sn 4621 df-pr 4623 df-tp 4625 df-op 4627 df-uni 4900 df-int 4941 df-iun 4989 df-br 5139 df-opab 5201 df-mpt 5222 df-tr 5256 df-id 5564 df-eprel 5570 df-po 5578 df-so 5579 df-fr 5621 df-we 5623 df-xp 5672 df-rel 5673 df-cnv 5674 df-co 5675 df-dm 5676 df-rn 5677 df-res 5678 df-ima 5679 df-pred 6290 df-ord 6357 df-on 6358 df-lim 6359 df-suc 6360 df-iota 6485 df-fun 6535 df-fn 6536 df-f 6537 df-f1 6538 df-fo 6539 df-f1o 6540 df-fv 6541 df-riota 7357 df-ov 7404 df-oprab 7405 df-mpo 7406 df-om 7849 df-1st 7968 df-2nd 7969 df-frecs 8261 df-wrecs 8292 df-recs 8366 df-rdg 8405 df-1o 8461 df-oadd 8465 df-er 8699 df-en 8936 df-dom 8937 df-sdom 8938 df-fin 8939 df-dju 9892 df-card 9930 df-pnf 11247 df-mnf 11248 df-xr 11249 df-ltxr 11250 df-le 11251 df-sub 11443 df-neg 11444 df-nn 12210 df-2 12272 df-3 12273 df-n0 12470 df-xnn0 12542 df-z 12556 df-uz 12820 df-fz 13482 df-hash 14288 |
This theorem is referenced by: pmtr3ncom 19385 |
Copyright terms: Public domain | W3C validator |