![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > hashge3el3dif | Structured version Visualization version GIF version |
Description: A set with size at least 3 has at least 3 different elements. In contrast to hashge2el2dif 14446, which has an elementary proof, the dominance relation and 1-1 functions from a set with three elements which are known to be different are used to prove this theorem. Although there is also an elementary proof for this theorem, it might be much longer. After all, this proof should be kept because it can be used as template for proofs for higher cardinalities. (Contributed by AV, 20-Mar-2019.) (Proof modification is discouraged.) |
Ref | Expression |
---|---|
hashge3el3dif | ⊢ ((𝐷 ∈ 𝑉 ∧ 3 ≤ (♯‘𝐷)) → ∃𝑥 ∈ 𝐷 ∃𝑦 ∈ 𝐷 ∃𝑧 ∈ 𝐷 (𝑥 ≠ 𝑦 ∧ 𝑥 ≠ 𝑧 ∧ 𝑦 ≠ 𝑧)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 0nep0 5356 | . . . . . . . . 9 ⊢ ∅ ≠ {∅} | |
2 | 0ex 5307 | . . . . . . . . . . . 12 ⊢ ∅ ∈ V | |
3 | 2 | sneqr 4841 | . . . . . . . . . . 11 ⊢ ({∅} = {{∅}} → ∅ = {∅}) |
4 | 3 | necon3i 2972 | . . . . . . . . . 10 ⊢ (∅ ≠ {∅} → {∅} ≠ {{∅}}) |
5 | 1, 4 | ax-mp 5 | . . . . . . . . 9 ⊢ {∅} ≠ {{∅}} |
6 | snex 5431 | . . . . . . . . . 10 ⊢ {∅} ∈ V | |
7 | snnzg 4778 | . . . . . . . . . 10 ⊢ ({∅} ∈ V → {{∅}} ≠ ∅) | |
8 | 6, 7 | ax-mp 5 | . . . . . . . . 9 ⊢ {{∅}} ≠ ∅ |
9 | 1, 5, 8 | 3pm3.2i 1338 | . . . . . . . 8 ⊢ (∅ ≠ {∅} ∧ {∅} ≠ {{∅}} ∧ {{∅}} ≠ ∅) |
10 | snex 5431 | . . . . . . . . . 10 ⊢ {{∅}} ∈ V | |
11 | 2, 6, 10 | 3pm3.2i 1338 | . . . . . . . . 9 ⊢ (∅ ∈ V ∧ {∅} ∈ V ∧ {{∅}} ∈ V) |
12 | hashtpg 14451 | . . . . . . . . 9 ⊢ ((∅ ∈ V ∧ {∅} ∈ V ∧ {{∅}} ∈ V) → ((∅ ≠ {∅} ∧ {∅} ≠ {{∅}} ∧ {{∅}} ≠ ∅) ↔ (♯‘{∅, {∅}, {{∅}}}) = 3)) | |
13 | 11, 12 | ax-mp 5 | . . . . . . . 8 ⊢ ((∅ ≠ {∅} ∧ {∅} ≠ {{∅}} ∧ {{∅}} ≠ ∅) ↔ (♯‘{∅, {∅}, {{∅}}}) = 3) |
14 | 9, 13 | mpbi 229 | . . . . . . 7 ⊢ (♯‘{∅, {∅}, {{∅}}}) = 3 |
15 | 14 | eqcomi 2740 | . . . . . 6 ⊢ 3 = (♯‘{∅, {∅}, {{∅}}}) |
16 | 15 | a1i 11 | . . . . 5 ⊢ (𝐷 ∈ 𝑉 → 3 = (♯‘{∅, {∅}, {{∅}}})) |
17 | 16 | breq1d 5158 | . . . 4 ⊢ (𝐷 ∈ 𝑉 → (3 ≤ (♯‘𝐷) ↔ (♯‘{∅, {∅}, {{∅}}}) ≤ (♯‘𝐷))) |
18 | tpfi 9327 | . . . . 5 ⊢ {∅, {∅}, {{∅}}} ∈ Fin | |
19 | hashdom 14344 | . . . . 5 ⊢ (({∅, {∅}, {{∅}}} ∈ Fin ∧ 𝐷 ∈ 𝑉) → ((♯‘{∅, {∅}, {{∅}}}) ≤ (♯‘𝐷) ↔ {∅, {∅}, {{∅}}} ≼ 𝐷)) | |
20 | 18, 19 | mpan 687 | . . . 4 ⊢ (𝐷 ∈ 𝑉 → ((♯‘{∅, {∅}, {{∅}}}) ≤ (♯‘𝐷) ↔ {∅, {∅}, {{∅}}} ≼ 𝐷)) |
21 | 17, 20 | bitrd 279 | . . 3 ⊢ (𝐷 ∈ 𝑉 → (3 ≤ (♯‘𝐷) ↔ {∅, {∅}, {{∅}}} ≼ 𝐷)) |
22 | brdomg 8956 | . . . 4 ⊢ (𝐷 ∈ 𝑉 → ({∅, {∅}, {{∅}}} ≼ 𝐷 ↔ ∃𝑓 𝑓:{∅, {∅}, {{∅}}}–1-1→𝐷)) | |
23 | 11 | a1i 11 | . . . . . . . 8 ⊢ ((𝐷 ∈ 𝑉 ∧ 𝑓:{∅, {∅}, {{∅}}}–1-1→𝐷) → (∅ ∈ V ∧ {∅} ∈ V ∧ {{∅}} ∈ V)) |
24 | 7 | necomd 2995 | . . . . . . . . . . 11 ⊢ ({∅} ∈ V → ∅ ≠ {{∅}}) |
25 | 6, 24 | ax-mp 5 | . . . . . . . . . 10 ⊢ ∅ ≠ {{∅}} |
26 | 1, 25, 5 | 3pm3.2i 1338 | . . . . . . . . 9 ⊢ (∅ ≠ {∅} ∧ ∅ ≠ {{∅}} ∧ {∅} ≠ {{∅}}) |
27 | 26 | a1i 11 | . . . . . . . 8 ⊢ ((𝐷 ∈ 𝑉 ∧ 𝑓:{∅, {∅}, {{∅}}}–1-1→𝐷) → (∅ ≠ {∅} ∧ ∅ ≠ {{∅}} ∧ {∅} ≠ {{∅}})) |
28 | simpr 484 | . . . . . . . 8 ⊢ ((𝐷 ∈ 𝑉 ∧ 𝑓:{∅, {∅}, {{∅}}}–1-1→𝐷) → 𝑓:{∅, {∅}, {{∅}}}–1-1→𝐷) | |
29 | 23, 27, 28 | f1dom3el3dif 7271 | . . . . . . 7 ⊢ ((𝐷 ∈ 𝑉 ∧ 𝑓:{∅, {∅}, {{∅}}}–1-1→𝐷) → ∃𝑥 ∈ 𝐷 ∃𝑦 ∈ 𝐷 ∃𝑧 ∈ 𝐷 (𝑥 ≠ 𝑦 ∧ 𝑥 ≠ 𝑧 ∧ 𝑦 ≠ 𝑧)) |
30 | 29 | expcom 413 | . . . . . 6 ⊢ (𝑓:{∅, {∅}, {{∅}}}–1-1→𝐷 → (𝐷 ∈ 𝑉 → ∃𝑥 ∈ 𝐷 ∃𝑦 ∈ 𝐷 ∃𝑧 ∈ 𝐷 (𝑥 ≠ 𝑦 ∧ 𝑥 ≠ 𝑧 ∧ 𝑦 ≠ 𝑧))) |
31 | 30 | exlimiv 1932 | . . . . 5 ⊢ (∃𝑓 𝑓:{∅, {∅}, {{∅}}}–1-1→𝐷 → (𝐷 ∈ 𝑉 → ∃𝑥 ∈ 𝐷 ∃𝑦 ∈ 𝐷 ∃𝑧 ∈ 𝐷 (𝑥 ≠ 𝑦 ∧ 𝑥 ≠ 𝑧 ∧ 𝑦 ≠ 𝑧))) |
32 | 31 | com12 32 | . . . 4 ⊢ (𝐷 ∈ 𝑉 → (∃𝑓 𝑓:{∅, {∅}, {{∅}}}–1-1→𝐷 → ∃𝑥 ∈ 𝐷 ∃𝑦 ∈ 𝐷 ∃𝑧 ∈ 𝐷 (𝑥 ≠ 𝑦 ∧ 𝑥 ≠ 𝑧 ∧ 𝑦 ≠ 𝑧))) |
33 | 22, 32 | sylbid 239 | . . 3 ⊢ (𝐷 ∈ 𝑉 → ({∅, {∅}, {{∅}}} ≼ 𝐷 → ∃𝑥 ∈ 𝐷 ∃𝑦 ∈ 𝐷 ∃𝑧 ∈ 𝐷 (𝑥 ≠ 𝑦 ∧ 𝑥 ≠ 𝑧 ∧ 𝑦 ≠ 𝑧))) |
34 | 21, 33 | sylbid 239 | . 2 ⊢ (𝐷 ∈ 𝑉 → (3 ≤ (♯‘𝐷) → ∃𝑥 ∈ 𝐷 ∃𝑦 ∈ 𝐷 ∃𝑧 ∈ 𝐷 (𝑥 ≠ 𝑦 ∧ 𝑥 ≠ 𝑧 ∧ 𝑦 ≠ 𝑧))) |
35 | 34 | imp 406 | 1 ⊢ ((𝐷 ∈ 𝑉 ∧ 3 ≤ (♯‘𝐷)) → ∃𝑥 ∈ 𝐷 ∃𝑦 ∈ 𝐷 ∃𝑧 ∈ 𝐷 (𝑥 ≠ 𝑦 ∧ 𝑥 ≠ 𝑧 ∧ 𝑦 ≠ 𝑧)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∃wex 1780 ∈ wcel 2105 ≠ wne 2939 ∃wrex 3069 Vcvv 3473 ∅c0 4322 {csn 4628 {ctp 4632 class class class wbr 5148 –1-1→wf1 6540 ‘cfv 6543 ≼ cdom 8941 Fincfn 8943 ≤ cle 11254 3c3 12273 ♯chash 14295 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2702 ax-sep 5299 ax-nul 5306 ax-pow 5363 ax-pr 5427 ax-un 7729 ax-cnex 11170 ax-resscn 11171 ax-1cn 11172 ax-icn 11173 ax-addcl 11174 ax-addrcl 11175 ax-mulcl 11176 ax-mulrcl 11177 ax-mulcom 11178 ax-addass 11179 ax-mulass 11180 ax-distr 11181 ax-i2m1 11182 ax-1ne0 11183 ax-1rid 11184 ax-rnegex 11185 ax-rrecex 11186 ax-cnre 11187 ax-pre-lttri 11188 ax-pre-lttrn 11189 ax-pre-ltadd 11190 ax-pre-mulgt0 11191 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2533 df-eu 2562 df-clab 2709 df-cleq 2723 df-clel 2809 df-nfc 2884 df-ne 2940 df-nel 3046 df-ral 3061 df-rex 3070 df-reu 3376 df-rab 3432 df-v 3475 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-pss 3967 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-tp 4633 df-op 4635 df-uni 4909 df-int 4951 df-iun 4999 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5574 df-eprel 5580 df-po 5588 df-so 5589 df-fr 5631 df-we 5633 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-pred 6300 df-ord 6367 df-on 6368 df-lim 6369 df-suc 6370 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-riota 7368 df-ov 7415 df-oprab 7416 df-mpo 7417 df-om 7860 df-1st 7979 df-2nd 7980 df-frecs 8270 df-wrecs 8301 df-recs 8375 df-rdg 8414 df-1o 8470 df-oadd 8474 df-er 8707 df-en 8944 df-dom 8945 df-sdom 8946 df-fin 8947 df-dju 9900 df-card 9938 df-pnf 11255 df-mnf 11256 df-xr 11257 df-ltxr 11258 df-le 11259 df-sub 11451 df-neg 11452 df-nn 12218 df-2 12280 df-3 12281 df-n0 12478 df-xnn0 12550 df-z 12564 df-uz 12828 df-fz 13490 df-hash 14296 |
This theorem is referenced by: pmtr3ncom 19385 |
Copyright terms: Public domain | W3C validator |