MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  0npr Structured version   Visualization version   GIF version

Theorem 0npr 10935
Description: The empty set is not a positive real. (Contributed by NM, 15-Nov-1995.) (New usage is discouraged.)
Assertion
Ref Expression
0npr ¬ ∅ ∈ P

Proof of Theorem 0npr
StepHypRef Expression
1 eqid 2737 . 2 ∅ = ∅
2 prn0 10932 . . 3 (∅ ∈ P → ∅ ≠ ∅)
32necon2bi 2975 . 2 (∅ = ∅ → ¬ ∅ ∈ P)
41, 3ax-mp 5 1 ¬ ∅ ∈ P
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3   = wceq 1542  wcel 2107  c0 4287  Pcnp 10802
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-ext 2708
This theorem depends on definitions:  df-bi 206  df-an 398  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-sb 2069  df-clab 2715  df-cleq 2729  df-clel 2815  df-ne 2945  df-ral 3066  df-rex 3075  df-v 3450  df-dif 3918  df-in 3922  df-ss 3932  df-pss 3934  df-nul 4288  df-np 10924
This theorem is referenced by:  genpass  10952  distrpr  10971  ltaddpr2  10978  ltapr  10988  addcanpr  10989  ltsrpr  11020  ltsosr  11037  mappsrpr  11051
  Copyright terms: Public domain W3C validator