Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > 0npr | Structured version Visualization version GIF version |
Description: The empty set is not a positive real. (Contributed by NM, 15-Nov-1995.) (New usage is discouraged.) |
Ref | Expression |
---|---|
0npr | ⊢ ¬ ∅ ∈ P |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2738 | . 2 ⊢ ∅ = ∅ | |
2 | prn0 10745 | . . 3 ⊢ (∅ ∈ P → ∅ ≠ ∅) | |
3 | 2 | necon2bi 2974 | . 2 ⊢ (∅ = ∅ → ¬ ∅ ∈ P) |
4 | 1, 3 | ax-mp 5 | 1 ⊢ ¬ ∅ ∈ P |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 = wceq 1539 ∈ wcel 2106 ∅c0 4256 Pcnp 10615 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 397 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-sb 2068 df-clab 2716 df-cleq 2730 df-clel 2816 df-ne 2944 df-ral 3069 df-rex 3070 df-v 3434 df-dif 3890 df-in 3894 df-ss 3904 df-pss 3906 df-nul 4257 df-np 10737 |
This theorem is referenced by: genpass 10765 distrpr 10784 ltaddpr2 10791 ltapr 10801 addcanpr 10802 ltsrpr 10833 ltsosr 10850 mappsrpr 10864 |
Copyright terms: Public domain | W3C validator |