MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  0npr Structured version   Visualization version   GIF version

Theorem 0npr 11010
Description: The empty set is not a positive real. (Contributed by NM, 15-Nov-1995.) (New usage is discouraged.)
Assertion
Ref Expression
0npr ¬ ∅ ∈ P

Proof of Theorem 0npr
StepHypRef Expression
1 eqid 2728 . 2 ∅ = ∅
2 prn0 11007 . . 3 (∅ ∈ P → ∅ ≠ ∅)
32necon2bi 2967 . 2 (∅ = ∅ → ¬ ∅ ∈ P)
41, 3ax-mp 5 1 ¬ ∅ ∈ P
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3   = wceq 1534  wcel 2099  c0 4319  Pcnp 10877
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-ext 2699
This theorem depends on definitions:  df-bi 206  df-an 396  df-3an 1087  df-tru 1537  df-fal 1547  df-ex 1775  df-sb 2061  df-clab 2706  df-cleq 2720  df-clel 2806  df-ne 2937  df-ral 3058  df-rex 3067  df-v 3472  df-dif 3948  df-in 3952  df-ss 3962  df-pss 3964  df-nul 4320  df-np 10999
This theorem is referenced by:  genpass  11027  distrpr  11046  ltaddpr2  11053  ltapr  11063  addcanpr  11064  ltsrpr  11095  ltsosr  11112  mappsrpr  11126
  Copyright terms: Public domain W3C validator