MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  0npr Structured version   Visualization version   GIF version

Theorem 0npr 10883
Description: The empty set is not a positive real. (Contributed by NM, 15-Nov-1995.) (New usage is discouraged.)
Assertion
Ref Expression
0npr ¬ ∅ ∈ P

Proof of Theorem 0npr
StepHypRef Expression
1 eqid 2731 . 2 ∅ = ∅
2 prn0 10880 . . 3 (∅ ∈ P → ∅ ≠ ∅)
32necon2bi 2958 . 2 (∅ = ∅ → ¬ ∅ ∈ P)
41, 3ax-mp 5 1 ¬ ∅ ∈ P
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3   = wceq 1541  wcel 2111  c0 4280  Pcnp 10750
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-ext 2703
This theorem depends on definitions:  df-bi 207  df-an 396  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-sb 2068  df-clab 2710  df-cleq 2723  df-clel 2806  df-ne 2929  df-ral 3048  df-rex 3057  df-v 3438  df-dif 3900  df-ss 3914  df-pss 3917  df-nul 4281  df-np 10872
This theorem is referenced by:  genpass  10900  distrpr  10919  ltaddpr2  10926  ltapr  10936  addcanpr  10937  ltsrpr  10968  ltsosr  10985  mappsrpr  10999
  Copyright terms: Public domain W3C validator