MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  0npr Structured version   Visualization version   GIF version

Theorem 0npr 10984
Description: The empty set is not a positive real. (Contributed by NM, 15-Nov-1995.) (New usage is discouraged.)
Assertion
Ref Expression
0npr ¬ ∅ ∈ P

Proof of Theorem 0npr
StepHypRef Expression
1 eqid 2724 . 2 ∅ = ∅
2 prn0 10981 . . 3 (∅ ∈ P → ∅ ≠ ∅)
32necon2bi 2963 . 2 (∅ = ∅ → ¬ ∅ ∈ P)
41, 3ax-mp 5 1 ¬ ∅ ∈ P
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3   = wceq 1533  wcel 2098  c0 4315  Pcnp 10851
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-ext 2695
This theorem depends on definitions:  df-bi 206  df-an 396  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-sb 2060  df-clab 2702  df-cleq 2716  df-clel 2802  df-ne 2933  df-ral 3054  df-rex 3063  df-v 3468  df-dif 3944  df-in 3948  df-ss 3958  df-pss 3960  df-nul 4316  df-np 10973
This theorem is referenced by:  genpass  11001  distrpr  11020  ltaddpr2  11027  ltapr  11037  addcanpr  11038  ltsrpr  11069  ltsosr  11086  mappsrpr  11100
  Copyright terms: Public domain W3C validator