MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  0npr Structured version   Visualization version   GIF version

Theorem 0npr 10748
Description: The empty set is not a positive real. (Contributed by NM, 15-Nov-1995.) (New usage is discouraged.)
Assertion
Ref Expression
0npr ¬ ∅ ∈ P

Proof of Theorem 0npr
StepHypRef Expression
1 eqid 2738 . 2 ∅ = ∅
2 prn0 10745 . . 3 (∅ ∈ P → ∅ ≠ ∅)
32necon2bi 2974 . 2 (∅ = ∅ → ¬ ∅ ∈ P)
41, 3ax-mp 5 1 ¬ ∅ ∈ P
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3   = wceq 1539  wcel 2106  c0 4256  Pcnp 10615
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-ext 2709
This theorem depends on definitions:  df-bi 206  df-an 397  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-sb 2068  df-clab 2716  df-cleq 2730  df-clel 2816  df-ne 2944  df-ral 3069  df-rex 3070  df-v 3434  df-dif 3890  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-np 10737
This theorem is referenced by:  genpass  10765  distrpr  10784  ltaddpr2  10791  ltapr  10801  addcanpr  10802  ltsrpr  10833  ltsosr  10850  mappsrpr  10864
  Copyright terms: Public domain W3C validator