![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > 0npr | Structured version Visualization version GIF version |
Description: The empty set is not a positive real. (Contributed by NM, 15-Nov-1995.) (New usage is discouraged.) |
Ref | Expression |
---|---|
0npr | ⊢ ¬ ∅ ∈ P |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2740 | . 2 ⊢ ∅ = ∅ | |
2 | prn0 11058 | . . 3 ⊢ (∅ ∈ P → ∅ ≠ ∅) | |
3 | 2 | necon2bi 2977 | . 2 ⊢ (∅ = ∅ → ¬ ∅ ∈ P) |
4 | 1, 3 | ax-mp 5 | 1 ⊢ ¬ ∅ ∈ P |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 = wceq 1537 ∈ wcel 2108 ∅c0 4352 Pcnp 10928 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 |
This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-ne 2947 df-ral 3068 df-rex 3077 df-v 3490 df-dif 3979 df-ss 3993 df-pss 3996 df-nul 4353 df-np 11050 |
This theorem is referenced by: genpass 11078 distrpr 11097 ltaddpr2 11104 ltapr 11114 addcanpr 11115 ltsrpr 11146 ltsosr 11163 mappsrpr 11177 |
Copyright terms: Public domain | W3C validator |