Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > 0npr | Structured version Visualization version GIF version |
Description: The empty set is not a positive real. (Contributed by NM, 15-Nov-1995.) (New usage is discouraged.) |
Ref | Expression |
---|---|
0npr | ⊢ ¬ ∅ ∈ P |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2738 | . 2 ⊢ ∅ = ∅ | |
2 | prn0 10676 | . . 3 ⊢ (∅ ∈ P → ∅ ≠ ∅) | |
3 | 2 | necon2bi 2973 | . 2 ⊢ (∅ = ∅ → ¬ ∅ ∈ P) |
4 | 1, 3 | ax-mp 5 | 1 ⊢ ¬ ∅ ∈ P |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 = wceq 1539 ∈ wcel 2108 ∅c0 4253 Pcnp 10546 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 396 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-ne 2943 df-ral 3068 df-rex 3069 df-v 3424 df-dif 3886 df-in 3890 df-ss 3900 df-pss 3902 df-nul 4254 df-np 10668 |
This theorem is referenced by: genpass 10696 distrpr 10715 ltaddpr2 10722 ltapr 10732 addcanpr 10733 ltsrpr 10764 ltsosr 10781 mappsrpr 10795 |
Copyright terms: Public domain | W3C validator |