MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ltapr Structured version   Visualization version   GIF version

Theorem ltapr 10202
Description: Ordering property of addition. Proposition 9-3.5(v) of [Gleason] p. 123. (Contributed by NM, 8-Apr-1996.) (New usage is discouraged.)
Assertion
Ref Expression
ltapr (𝐶P → (𝐴<P 𝐵 ↔ (𝐶 +P 𝐴)<P (𝐶 +P 𝐵)))

Proof of Theorem ltapr
StepHypRef Expression
1 dmplp 10169 . 2 dom +P = (P × P)
2 ltrelpr 10155 . 2 <P ⊆ (P × P)
3 0npr 10149 . 2 ¬ ∅ ∈ P
4 ltaprlem 10201 . . . . . 6 (𝐶P → (𝐴<P 𝐵 → (𝐶 +P 𝐴)<P (𝐶 +P 𝐵)))
54adantr 474 . . . . 5 ((𝐶P ∧ (𝐵P𝐴P)) → (𝐴<P 𝐵 → (𝐶 +P 𝐴)<P (𝐶 +P 𝐵)))
6 olc 857 . . . . . . . . 9 ((𝐶 +P 𝐴)<P (𝐶 +P 𝐵) → ((𝐶 +P 𝐵) = (𝐶 +P 𝐴) ∨ (𝐶 +P 𝐴)<P (𝐶 +P 𝐵)))
7 ltaprlem 10201 . . . . . . . . . . . 12 (𝐶P → (𝐵<P 𝐴 → (𝐶 +P 𝐵)<P (𝐶 +P 𝐴)))
87adantr 474 . . . . . . . . . . 11 ((𝐶P ∧ (𝐵P𝐴P)) → (𝐵<P 𝐴 → (𝐶 +P 𝐵)<P (𝐶 +P 𝐴)))
9 ltsopr 10189 . . . . . . . . . . . . 13 <P Or P
10 sotric 5301 . . . . . . . . . . . . 13 ((<P Or P ∧ (𝐵P𝐴P)) → (𝐵<P 𝐴 ↔ ¬ (𝐵 = 𝐴𝐴<P 𝐵)))
119, 10mpan 680 . . . . . . . . . . . 12 ((𝐵P𝐴P) → (𝐵<P 𝐴 ↔ ¬ (𝐵 = 𝐴𝐴<P 𝐵)))
1211adantl 475 . . . . . . . . . . 11 ((𝐶P ∧ (𝐵P𝐴P)) → (𝐵<P 𝐴 ↔ ¬ (𝐵 = 𝐴𝐴<P 𝐵)))
13 addclpr 10175 . . . . . . . . . . . . 13 ((𝐶P𝐵P) → (𝐶 +P 𝐵) ∈ P)
14 addclpr 10175 . . . . . . . . . . . . 13 ((𝐶P𝐴P) → (𝐶 +P 𝐴) ∈ P)
1513, 14anim12dan 612 . . . . . . . . . . . 12 ((𝐶P ∧ (𝐵P𝐴P)) → ((𝐶 +P 𝐵) ∈ P ∧ (𝐶 +P 𝐴) ∈ P))
16 sotric 5301 . . . . . . . . . . . 12 ((<P Or P ∧ ((𝐶 +P 𝐵) ∈ P ∧ (𝐶 +P 𝐴) ∈ P)) → ((𝐶 +P 𝐵)<P (𝐶 +P 𝐴) ↔ ¬ ((𝐶 +P 𝐵) = (𝐶 +P 𝐴) ∨ (𝐶 +P 𝐴)<P (𝐶 +P 𝐵))))
179, 15, 16sylancr 581 . . . . . . . . . . 11 ((𝐶P ∧ (𝐵P𝐴P)) → ((𝐶 +P 𝐵)<P (𝐶 +P 𝐴) ↔ ¬ ((𝐶 +P 𝐵) = (𝐶 +P 𝐴) ∨ (𝐶 +P 𝐴)<P (𝐶 +P 𝐵))))
188, 12, 173imtr3d 285 . . . . . . . . . 10 ((𝐶P ∧ (𝐵P𝐴P)) → (¬ (𝐵 = 𝐴𝐴<P 𝐵) → ¬ ((𝐶 +P 𝐵) = (𝐶 +P 𝐴) ∨ (𝐶 +P 𝐴)<P (𝐶 +P 𝐵))))
1918con4d 115 . . . . . . . . 9 ((𝐶P ∧ (𝐵P𝐴P)) → (((𝐶 +P 𝐵) = (𝐶 +P 𝐴) ∨ (𝐶 +P 𝐴)<P (𝐶 +P 𝐵)) → (𝐵 = 𝐴𝐴<P 𝐵)))
206, 19syl5 34 . . . . . . . 8 ((𝐶P ∧ (𝐵P𝐴P)) → ((𝐶 +P 𝐴)<P (𝐶 +P 𝐵) → (𝐵 = 𝐴𝐴<P 𝐵)))
21 df-or 837 . . . . . . . 8 ((𝐵 = 𝐴𝐴<P 𝐵) ↔ (¬ 𝐵 = 𝐴𝐴<P 𝐵))
2220, 21syl6ib 243 . . . . . . 7 ((𝐶P ∧ (𝐵P𝐴P)) → ((𝐶 +P 𝐴)<P (𝐶 +P 𝐵) → (¬ 𝐵 = 𝐴𝐴<P 𝐵)))
2322com23 86 . . . . . 6 ((𝐶P ∧ (𝐵P𝐴P)) → (¬ 𝐵 = 𝐴 → ((𝐶 +P 𝐴)<P (𝐶 +P 𝐵) → 𝐴<P 𝐵)))
249, 2soirri 5777 . . . . . . . 8 ¬ (𝐶 +P 𝐴)<P (𝐶 +P 𝐴)
25 oveq2 6930 . . . . . . . . 9 (𝐵 = 𝐴 → (𝐶 +P 𝐵) = (𝐶 +P 𝐴))
2625breq2d 4898 . . . . . . . 8 (𝐵 = 𝐴 → ((𝐶 +P 𝐴)<P (𝐶 +P 𝐵) ↔ (𝐶 +P 𝐴)<P (𝐶 +P 𝐴)))
2724, 26mtbiri 319 . . . . . . 7 (𝐵 = 𝐴 → ¬ (𝐶 +P 𝐴)<P (𝐶 +P 𝐵))
2827pm2.21d 119 . . . . . 6 (𝐵 = 𝐴 → ((𝐶 +P 𝐴)<P (𝐶 +P 𝐵) → 𝐴<P 𝐵))
2923, 28pm2.61d2 174 . . . . 5 ((𝐶P ∧ (𝐵P𝐴P)) → ((𝐶 +P 𝐴)<P (𝐶 +P 𝐵) → 𝐴<P 𝐵))
305, 29impbid 204 . . . 4 ((𝐶P ∧ (𝐵P𝐴P)) → (𝐴<P 𝐵 ↔ (𝐶 +P 𝐴)<P (𝐶 +P 𝐵)))
31303impb 1104 . . 3 ((𝐶P𝐵P𝐴P) → (𝐴<P 𝐵 ↔ (𝐶 +P 𝐴)<P (𝐶 +P 𝐵)))
32313com13 1115 . 2 ((𝐴P𝐵P𝐶P) → (𝐴<P 𝐵 ↔ (𝐶 +P 𝐴)<P (𝐶 +P 𝐵)))
331, 2, 3, 32ndmovord 7101 1 (𝐶P → (𝐴<P 𝐵 ↔ (𝐶 +P 𝐴)<P (𝐶 +P 𝐵)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 198  wa 386  wo 836   = wceq 1601  wcel 2107   class class class wbr 4886   Or wor 5273  (class class class)co 6922  Pcnp 10016   +P cpp 10018  <P cltp 10020
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1839  ax-4 1853  ax-5 1953  ax-6 2021  ax-7 2055  ax-8 2109  ax-9 2116  ax-10 2135  ax-11 2150  ax-12 2163  ax-13 2334  ax-ext 2754  ax-sep 5017  ax-nul 5025  ax-pow 5077  ax-pr 5138  ax-un 7226  ax-inf2 8835
This theorem depends on definitions:  df-bi 199  df-an 387  df-or 837  df-3or 1072  df-3an 1073  df-tru 1605  df-ex 1824  df-nf 1828  df-sb 2012  df-mo 2551  df-eu 2587  df-clab 2764  df-cleq 2770  df-clel 2774  df-nfc 2921  df-ne 2970  df-ral 3095  df-rex 3096  df-reu 3097  df-rmo 3098  df-rab 3099  df-v 3400  df-sbc 3653  df-csb 3752  df-dif 3795  df-un 3797  df-in 3799  df-ss 3806  df-pss 3808  df-nul 4142  df-if 4308  df-pw 4381  df-sn 4399  df-pr 4401  df-tp 4403  df-op 4405  df-uni 4672  df-int 4711  df-iun 4755  df-br 4887  df-opab 4949  df-mpt 4966  df-tr 4988  df-id 5261  df-eprel 5266  df-po 5274  df-so 5275  df-fr 5314  df-we 5316  df-xp 5361  df-rel 5362  df-cnv 5363  df-co 5364  df-dm 5365  df-rn 5366  df-res 5367  df-ima 5368  df-pred 5933  df-ord 5979  df-on 5980  df-lim 5981  df-suc 5982  df-iota 6099  df-fun 6137  df-fn 6138  df-f 6139  df-f1 6140  df-fo 6141  df-f1o 6142  df-fv 6143  df-ov 6925  df-oprab 6926  df-mpt2 6927  df-om 7344  df-1st 7445  df-2nd 7446  df-wrecs 7689  df-recs 7751  df-rdg 7789  df-1o 7843  df-oadd 7847  df-omul 7848  df-er 8026  df-ni 10029  df-pli 10030  df-mi 10031  df-lti 10032  df-plpq 10065  df-mpq 10066  df-ltpq 10067  df-enq 10068  df-nq 10069  df-erq 10070  df-plq 10071  df-mq 10072  df-1nq 10073  df-rq 10074  df-ltnq 10075  df-np 10138  df-plp 10140  df-ltp 10142
This theorem is referenced by:  addcanpr  10203  ltsrpr  10234  gt0srpr  10235  ltsosr  10251  ltasr  10257  ltpsrpr  10266  map2psrpr  10267
  Copyright terms: Public domain W3C validator