MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ltapr Structured version   Visualization version   GIF version

Theorem ltapr 11088
Description: Ordering property of addition. Proposition 9-3.5(v) of [Gleason] p. 123. (Contributed by NM, 8-Apr-1996.) (New usage is discouraged.)
Assertion
Ref Expression
ltapr (𝐶P → (𝐴<P 𝐵 ↔ (𝐶 +P 𝐴)<P (𝐶 +P 𝐵)))

Proof of Theorem ltapr
StepHypRef Expression
1 dmplp 11055 . 2 dom +P = (P × P)
2 ltrelpr 11041 . 2 <P ⊆ (P × P)
3 0npr 11035 . 2 ¬ ∅ ∈ P
4 ltaprlem 11087 . . . . . 6 (𝐶P → (𝐴<P 𝐵 → (𝐶 +P 𝐴)<P (𝐶 +P 𝐵)))
54adantr 479 . . . . 5 ((𝐶P ∧ (𝐵P𝐴P)) → (𝐴<P 𝐵 → (𝐶 +P 𝐴)<P (𝐶 +P 𝐵)))
6 olc 866 . . . . . . . . 9 ((𝐶 +P 𝐴)<P (𝐶 +P 𝐵) → ((𝐶 +P 𝐵) = (𝐶 +P 𝐴) ∨ (𝐶 +P 𝐴)<P (𝐶 +P 𝐵)))
7 ltaprlem 11087 . . . . . . . . . . . 12 (𝐶P → (𝐵<P 𝐴 → (𝐶 +P 𝐵)<P (𝐶 +P 𝐴)))
87adantr 479 . . . . . . . . . . 11 ((𝐶P ∧ (𝐵P𝐴P)) → (𝐵<P 𝐴 → (𝐶 +P 𝐵)<P (𝐶 +P 𝐴)))
9 ltsopr 11075 . . . . . . . . . . . . 13 <P Or P
10 sotric 5622 . . . . . . . . . . . . 13 ((<P Or P ∧ (𝐵P𝐴P)) → (𝐵<P 𝐴 ↔ ¬ (𝐵 = 𝐴𝐴<P 𝐵)))
119, 10mpan 688 . . . . . . . . . . . 12 ((𝐵P𝐴P) → (𝐵<P 𝐴 ↔ ¬ (𝐵 = 𝐴𝐴<P 𝐵)))
1211adantl 480 . . . . . . . . . . 11 ((𝐶P ∧ (𝐵P𝐴P)) → (𝐵<P 𝐴 ↔ ¬ (𝐵 = 𝐴𝐴<P 𝐵)))
13 addclpr 11061 . . . . . . . . . . . . 13 ((𝐶P𝐵P) → (𝐶 +P 𝐵) ∈ P)
14 addclpr 11061 . . . . . . . . . . . . 13 ((𝐶P𝐴P) → (𝐶 +P 𝐴) ∈ P)
1513, 14anim12dan 617 . . . . . . . . . . . 12 ((𝐶P ∧ (𝐵P𝐴P)) → ((𝐶 +P 𝐵) ∈ P ∧ (𝐶 +P 𝐴) ∈ P))
16 sotric 5622 . . . . . . . . . . . 12 ((<P Or P ∧ ((𝐶 +P 𝐵) ∈ P ∧ (𝐶 +P 𝐴) ∈ P)) → ((𝐶 +P 𝐵)<P (𝐶 +P 𝐴) ↔ ¬ ((𝐶 +P 𝐵) = (𝐶 +P 𝐴) ∨ (𝐶 +P 𝐴)<P (𝐶 +P 𝐵))))
179, 15, 16sylancr 585 . . . . . . . . . . 11 ((𝐶P ∧ (𝐵P𝐴P)) → ((𝐶 +P 𝐵)<P (𝐶 +P 𝐴) ↔ ¬ ((𝐶 +P 𝐵) = (𝐶 +P 𝐴) ∨ (𝐶 +P 𝐴)<P (𝐶 +P 𝐵))))
188, 12, 173imtr3d 292 . . . . . . . . . 10 ((𝐶P ∧ (𝐵P𝐴P)) → (¬ (𝐵 = 𝐴𝐴<P 𝐵) → ¬ ((𝐶 +P 𝐵) = (𝐶 +P 𝐴) ∨ (𝐶 +P 𝐴)<P (𝐶 +P 𝐵))))
1918con4d 115 . . . . . . . . 9 ((𝐶P ∧ (𝐵P𝐴P)) → (((𝐶 +P 𝐵) = (𝐶 +P 𝐴) ∨ (𝐶 +P 𝐴)<P (𝐶 +P 𝐵)) → (𝐵 = 𝐴𝐴<P 𝐵)))
206, 19syl5 34 . . . . . . . 8 ((𝐶P ∧ (𝐵P𝐴P)) → ((𝐶 +P 𝐴)<P (𝐶 +P 𝐵) → (𝐵 = 𝐴𝐴<P 𝐵)))
21 df-or 846 . . . . . . . 8 ((𝐵 = 𝐴𝐴<P 𝐵) ↔ (¬ 𝐵 = 𝐴𝐴<P 𝐵))
2220, 21imbitrdi 250 . . . . . . 7 ((𝐶P ∧ (𝐵P𝐴P)) → ((𝐶 +P 𝐴)<P (𝐶 +P 𝐵) → (¬ 𝐵 = 𝐴𝐴<P 𝐵)))
2322com23 86 . . . . . 6 ((𝐶P ∧ (𝐵P𝐴P)) → (¬ 𝐵 = 𝐴 → ((𝐶 +P 𝐴)<P (𝐶 +P 𝐵) → 𝐴<P 𝐵)))
249, 2soirri 6138 . . . . . . . 8 ¬ (𝐶 +P 𝐴)<P (𝐶 +P 𝐴)
25 oveq2 7432 . . . . . . . . 9 (𝐵 = 𝐴 → (𝐶 +P 𝐵) = (𝐶 +P 𝐴))
2625breq2d 5165 . . . . . . . 8 (𝐵 = 𝐴 → ((𝐶 +P 𝐴)<P (𝐶 +P 𝐵) ↔ (𝐶 +P 𝐴)<P (𝐶 +P 𝐴)))
2724, 26mtbiri 326 . . . . . . 7 (𝐵 = 𝐴 → ¬ (𝐶 +P 𝐴)<P (𝐶 +P 𝐵))
2827pm2.21d 121 . . . . . 6 (𝐵 = 𝐴 → ((𝐶 +P 𝐴)<P (𝐶 +P 𝐵) → 𝐴<P 𝐵))
2923, 28pm2.61d2 181 . . . . 5 ((𝐶P ∧ (𝐵P𝐴P)) → ((𝐶 +P 𝐴)<P (𝐶 +P 𝐵) → 𝐴<P 𝐵))
305, 29impbid 211 . . . 4 ((𝐶P ∧ (𝐵P𝐴P)) → (𝐴<P 𝐵 ↔ (𝐶 +P 𝐴)<P (𝐶 +P 𝐵)))
31303impb 1112 . . 3 ((𝐶P𝐵P𝐴P) → (𝐴<P 𝐵 ↔ (𝐶 +P 𝐴)<P (𝐶 +P 𝐵)))
32313com13 1121 . 2 ((𝐴P𝐵P𝐶P) → (𝐴<P 𝐵 ↔ (𝐶 +P 𝐴)<P (𝐶 +P 𝐵)))
331, 2, 3, 32ndmovord 7616 1 (𝐶P → (𝐴<P 𝐵 ↔ (𝐶 +P 𝐴)<P (𝐶 +P 𝐵)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 394  wo 845   = wceq 1534  wcel 2099   class class class wbr 5153   Or wor 5593  (class class class)co 7424  Pcnp 10902   +P cpp 10904  <P cltp 10906
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2167  ax-ext 2697  ax-sep 5304  ax-nul 5311  ax-pow 5369  ax-pr 5433  ax-un 7746  ax-inf2 9684
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2529  df-eu 2558  df-clab 2704  df-cleq 2718  df-clel 2803  df-nfc 2878  df-ne 2931  df-ral 3052  df-rex 3061  df-rmo 3364  df-reu 3365  df-rab 3420  df-v 3464  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-pss 3967  df-nul 4326  df-if 4534  df-pw 4609  df-sn 4634  df-pr 4636  df-op 4640  df-uni 4914  df-int 4955  df-iun 5003  df-br 5154  df-opab 5216  df-mpt 5237  df-tr 5271  df-id 5580  df-eprel 5586  df-po 5594  df-so 5595  df-fr 5637  df-we 5639  df-xp 5688  df-rel 5689  df-cnv 5690  df-co 5691  df-dm 5692  df-rn 5693  df-res 5694  df-ima 5695  df-pred 6312  df-ord 6379  df-on 6380  df-lim 6381  df-suc 6382  df-iota 6506  df-fun 6556  df-fn 6557  df-f 6558  df-f1 6559  df-fo 6560  df-f1o 6561  df-fv 6562  df-ov 7427  df-oprab 7428  df-mpo 7429  df-om 7877  df-1st 8003  df-2nd 8004  df-frecs 8296  df-wrecs 8327  df-recs 8401  df-rdg 8440  df-1o 8496  df-oadd 8500  df-omul 8501  df-er 8734  df-ni 10915  df-pli 10916  df-mi 10917  df-lti 10918  df-plpq 10951  df-mpq 10952  df-ltpq 10953  df-enq 10954  df-nq 10955  df-erq 10956  df-plq 10957  df-mq 10958  df-1nq 10959  df-rq 10960  df-ltnq 10961  df-np 11024  df-plp 11026  df-ltp 11028
This theorem is referenced by:  addcanpr  11089  ltsrpr  11120  gt0srpr  11121  ltsosr  11137  ltasr  11143  ltpsrpr  11152  map2psrpr  11153
  Copyright terms: Public domain W3C validator