Proof of Theorem ltapr
| Step | Hyp | Ref
| Expression |
| 1 | | dmplp 11052 |
. 2
⊢ dom
+P = (P ×
P) |
| 2 | | ltrelpr 11038 |
. 2
⊢
<P ⊆ (P ×
P) |
| 3 | | 0npr 11032 |
. 2
⊢ ¬
∅ ∈ P |
| 4 | | ltaprlem 11084 |
. . . . . 6
⊢ (𝐶 ∈ P →
(𝐴<P 𝐵 → (𝐶 +P 𝐴)<P
(𝐶
+P 𝐵))) |
| 5 | 4 | adantr 480 |
. . . . 5
⊢ ((𝐶 ∈ P ∧
(𝐵 ∈ P
∧ 𝐴 ∈
P)) → (𝐴<P 𝐵 → (𝐶 +P 𝐴)<P
(𝐶
+P 𝐵))) |
| 6 | | olc 869 |
. . . . . . . . 9
⊢ ((𝐶 +P
𝐴)<P (𝐶 +P
𝐵) → ((𝐶 +P
𝐵) = (𝐶 +P 𝐴) ∨ (𝐶 +P 𝐴)<P
(𝐶
+P 𝐵))) |
| 7 | | ltaprlem 11084 |
. . . . . . . . . . . 12
⊢ (𝐶 ∈ P →
(𝐵<P 𝐴 → (𝐶 +P 𝐵)<P
(𝐶
+P 𝐴))) |
| 8 | 7 | adantr 480 |
. . . . . . . . . . 11
⊢ ((𝐶 ∈ P ∧
(𝐵 ∈ P
∧ 𝐴 ∈
P)) → (𝐵<P 𝐴 → (𝐶 +P 𝐵)<P
(𝐶
+P 𝐴))) |
| 9 | | ltsopr 11072 |
. . . . . . . . . . . . 13
⊢
<P Or P |
| 10 | | sotric 5622 |
. . . . . . . . . . . . 13
⊢
((<P Or P ∧ (𝐵 ∈ P ∧
𝐴 ∈ P))
→ (𝐵<P 𝐴 ↔ ¬ (𝐵 = 𝐴 ∨ 𝐴<P 𝐵))) |
| 11 | 9, 10 | mpan 690 |
. . . . . . . . . . . 12
⊢ ((𝐵 ∈ P ∧
𝐴 ∈ P)
→ (𝐵<P 𝐴 ↔ ¬ (𝐵 = 𝐴 ∨ 𝐴<P 𝐵))) |
| 12 | 11 | adantl 481 |
. . . . . . . . . . 11
⊢ ((𝐶 ∈ P ∧
(𝐵 ∈ P
∧ 𝐴 ∈
P)) → (𝐵<P 𝐴 ↔ ¬ (𝐵 = 𝐴 ∨ 𝐴<P 𝐵))) |
| 13 | | addclpr 11058 |
. . . . . . . . . . . . 13
⊢ ((𝐶 ∈ P ∧
𝐵 ∈ P)
→ (𝐶
+P 𝐵) ∈ P) |
| 14 | | addclpr 11058 |
. . . . . . . . . . . . 13
⊢ ((𝐶 ∈ P ∧
𝐴 ∈ P)
→ (𝐶
+P 𝐴) ∈ P) |
| 15 | 13, 14 | anim12dan 619 |
. . . . . . . . . . . 12
⊢ ((𝐶 ∈ P ∧
(𝐵 ∈ P
∧ 𝐴 ∈
P)) → ((𝐶 +P 𝐵) ∈ P ∧
(𝐶
+P 𝐴) ∈ P)) |
| 16 | | sotric 5622 |
. . . . . . . . . . . 12
⊢
((<P Or P ∧ ((𝐶 +P
𝐵) ∈ P
∧ (𝐶
+P 𝐴) ∈ P)) → ((𝐶 +P
𝐵)<P (𝐶 +P
𝐴) ↔ ¬ ((𝐶 +P
𝐵) = (𝐶 +P 𝐴) ∨ (𝐶 +P 𝐴)<P
(𝐶
+P 𝐵)))) |
| 17 | 9, 15, 16 | sylancr 587 |
. . . . . . . . . . 11
⊢ ((𝐶 ∈ P ∧
(𝐵 ∈ P
∧ 𝐴 ∈
P)) → ((𝐶 +P 𝐵)<P
(𝐶
+P 𝐴) ↔ ¬ ((𝐶 +P 𝐵) = (𝐶 +P 𝐴) ∨ (𝐶 +P 𝐴)<P
(𝐶
+P 𝐵)))) |
| 18 | 8, 12, 17 | 3imtr3d 293 |
. . . . . . . . . 10
⊢ ((𝐶 ∈ P ∧
(𝐵 ∈ P
∧ 𝐴 ∈
P)) → (¬ (𝐵 = 𝐴 ∨ 𝐴<P 𝐵) → ¬ ((𝐶 +P
𝐵) = (𝐶 +P 𝐴) ∨ (𝐶 +P 𝐴)<P
(𝐶
+P 𝐵)))) |
| 19 | 18 | con4d 115 |
. . . . . . . . 9
⊢ ((𝐶 ∈ P ∧
(𝐵 ∈ P
∧ 𝐴 ∈
P)) → (((𝐶 +P 𝐵) = (𝐶 +P 𝐴) ∨ (𝐶 +P 𝐴)<P
(𝐶
+P 𝐵)) → (𝐵 = 𝐴 ∨ 𝐴<P 𝐵))) |
| 20 | 6, 19 | syl5 34 |
. . . . . . . 8
⊢ ((𝐶 ∈ P ∧
(𝐵 ∈ P
∧ 𝐴 ∈
P)) → ((𝐶 +P 𝐴)<P
(𝐶
+P 𝐵) → (𝐵 = 𝐴 ∨ 𝐴<P 𝐵))) |
| 21 | | df-or 849 |
. . . . . . . 8
⊢ ((𝐵 = 𝐴 ∨ 𝐴<P 𝐵) ↔ (¬ 𝐵 = 𝐴 → 𝐴<P 𝐵)) |
| 22 | 20, 21 | imbitrdi 251 |
. . . . . . 7
⊢ ((𝐶 ∈ P ∧
(𝐵 ∈ P
∧ 𝐴 ∈
P)) → ((𝐶 +P 𝐴)<P
(𝐶
+P 𝐵) → (¬ 𝐵 = 𝐴 → 𝐴<P 𝐵))) |
| 23 | 22 | com23 86 |
. . . . . 6
⊢ ((𝐶 ∈ P ∧
(𝐵 ∈ P
∧ 𝐴 ∈
P)) → (¬ 𝐵 = 𝐴 → ((𝐶 +P 𝐴)<P
(𝐶
+P 𝐵) → 𝐴<P 𝐵))) |
| 24 | 9, 2 | soirri 6146 |
. . . . . . . 8
⊢ ¬
(𝐶
+P 𝐴)<P (𝐶 +P
𝐴) |
| 25 | | oveq2 7439 |
. . . . . . . . 9
⊢ (𝐵 = 𝐴 → (𝐶 +P 𝐵) = (𝐶 +P 𝐴)) |
| 26 | 25 | breq2d 5155 |
. . . . . . . 8
⊢ (𝐵 = 𝐴 → ((𝐶 +P 𝐴)<P
(𝐶
+P 𝐵) ↔ (𝐶 +P 𝐴)<P
(𝐶
+P 𝐴))) |
| 27 | 24, 26 | mtbiri 327 |
. . . . . . 7
⊢ (𝐵 = 𝐴 → ¬ (𝐶 +P 𝐴)<P
(𝐶
+P 𝐵)) |
| 28 | 27 | pm2.21d 121 |
. . . . . 6
⊢ (𝐵 = 𝐴 → ((𝐶 +P 𝐴)<P
(𝐶
+P 𝐵) → 𝐴<P 𝐵)) |
| 29 | 23, 28 | pm2.61d2 181 |
. . . . 5
⊢ ((𝐶 ∈ P ∧
(𝐵 ∈ P
∧ 𝐴 ∈
P)) → ((𝐶 +P 𝐴)<P
(𝐶
+P 𝐵) → 𝐴<P 𝐵)) |
| 30 | 5, 29 | impbid 212 |
. . . 4
⊢ ((𝐶 ∈ P ∧
(𝐵 ∈ P
∧ 𝐴 ∈
P)) → (𝐴<P 𝐵 ↔ (𝐶 +P 𝐴)<P
(𝐶
+P 𝐵))) |
| 31 | 30 | 3impb 1115 |
. . 3
⊢ ((𝐶 ∈ P ∧
𝐵 ∈ P
∧ 𝐴 ∈
P) → (𝐴<P 𝐵 ↔ (𝐶 +P 𝐴)<P
(𝐶
+P 𝐵))) |
| 32 | 31 | 3com13 1125 |
. 2
⊢ ((𝐴 ∈ P ∧
𝐵 ∈ P
∧ 𝐶 ∈
P) → (𝐴<P 𝐵 ↔ (𝐶 +P 𝐴)<P
(𝐶
+P 𝐵))) |
| 33 | 1, 2, 3, 32 | ndmovord 7623 |
1
⊢ (𝐶 ∈ P →
(𝐴<P 𝐵 ↔ (𝐶 +P 𝐴)<P
(𝐶
+P 𝐵))) |