MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ltapr Structured version   Visualization version   GIF version

Theorem ltapr 11059
Description: Ordering property of addition. Proposition 9-3.5(v) of [Gleason] p. 123. (Contributed by NM, 8-Apr-1996.) (New usage is discouraged.)
Assertion
Ref Expression
ltapr (𝐶P → (𝐴<P 𝐵 ↔ (𝐶 +P 𝐴)<P (𝐶 +P 𝐵)))

Proof of Theorem ltapr
StepHypRef Expression
1 dmplp 11026 . 2 dom +P = (P × P)
2 ltrelpr 11012 . 2 <P ⊆ (P × P)
3 0npr 11006 . 2 ¬ ∅ ∈ P
4 ltaprlem 11058 . . . . . 6 (𝐶P → (𝐴<P 𝐵 → (𝐶 +P 𝐴)<P (𝐶 +P 𝐵)))
54adantr 480 . . . . 5 ((𝐶P ∧ (𝐵P𝐴P)) → (𝐴<P 𝐵 → (𝐶 +P 𝐴)<P (𝐶 +P 𝐵)))
6 olc 868 . . . . . . . . 9 ((𝐶 +P 𝐴)<P (𝐶 +P 𝐵) → ((𝐶 +P 𝐵) = (𝐶 +P 𝐴) ∨ (𝐶 +P 𝐴)<P (𝐶 +P 𝐵)))
7 ltaprlem 11058 . . . . . . . . . . . 12 (𝐶P → (𝐵<P 𝐴 → (𝐶 +P 𝐵)<P (𝐶 +P 𝐴)))
87adantr 480 . . . . . . . . . . 11 ((𝐶P ∧ (𝐵P𝐴P)) → (𝐵<P 𝐴 → (𝐶 +P 𝐵)<P (𝐶 +P 𝐴)))
9 ltsopr 11046 . . . . . . . . . . . . 13 <P Or P
10 sotric 5591 . . . . . . . . . . . . 13 ((<P Or P ∧ (𝐵P𝐴P)) → (𝐵<P 𝐴 ↔ ¬ (𝐵 = 𝐴𝐴<P 𝐵)))
119, 10mpan 690 . . . . . . . . . . . 12 ((𝐵P𝐴P) → (𝐵<P 𝐴 ↔ ¬ (𝐵 = 𝐴𝐴<P 𝐵)))
1211adantl 481 . . . . . . . . . . 11 ((𝐶P ∧ (𝐵P𝐴P)) → (𝐵<P 𝐴 ↔ ¬ (𝐵 = 𝐴𝐴<P 𝐵)))
13 addclpr 11032 . . . . . . . . . . . . 13 ((𝐶P𝐵P) → (𝐶 +P 𝐵) ∈ P)
14 addclpr 11032 . . . . . . . . . . . . 13 ((𝐶P𝐴P) → (𝐶 +P 𝐴) ∈ P)
1513, 14anim12dan 619 . . . . . . . . . . . 12 ((𝐶P ∧ (𝐵P𝐴P)) → ((𝐶 +P 𝐵) ∈ P ∧ (𝐶 +P 𝐴) ∈ P))
16 sotric 5591 . . . . . . . . . . . 12 ((<P Or P ∧ ((𝐶 +P 𝐵) ∈ P ∧ (𝐶 +P 𝐴) ∈ P)) → ((𝐶 +P 𝐵)<P (𝐶 +P 𝐴) ↔ ¬ ((𝐶 +P 𝐵) = (𝐶 +P 𝐴) ∨ (𝐶 +P 𝐴)<P (𝐶 +P 𝐵))))
179, 15, 16sylancr 587 . . . . . . . . . . 11 ((𝐶P ∧ (𝐵P𝐴P)) → ((𝐶 +P 𝐵)<P (𝐶 +P 𝐴) ↔ ¬ ((𝐶 +P 𝐵) = (𝐶 +P 𝐴) ∨ (𝐶 +P 𝐴)<P (𝐶 +P 𝐵))))
188, 12, 173imtr3d 293 . . . . . . . . . 10 ((𝐶P ∧ (𝐵P𝐴P)) → (¬ (𝐵 = 𝐴𝐴<P 𝐵) → ¬ ((𝐶 +P 𝐵) = (𝐶 +P 𝐴) ∨ (𝐶 +P 𝐴)<P (𝐶 +P 𝐵))))
1918con4d 115 . . . . . . . . 9 ((𝐶P ∧ (𝐵P𝐴P)) → (((𝐶 +P 𝐵) = (𝐶 +P 𝐴) ∨ (𝐶 +P 𝐴)<P (𝐶 +P 𝐵)) → (𝐵 = 𝐴𝐴<P 𝐵)))
206, 19syl5 34 . . . . . . . 8 ((𝐶P ∧ (𝐵P𝐴P)) → ((𝐶 +P 𝐴)<P (𝐶 +P 𝐵) → (𝐵 = 𝐴𝐴<P 𝐵)))
21 df-or 848 . . . . . . . 8 ((𝐵 = 𝐴𝐴<P 𝐵) ↔ (¬ 𝐵 = 𝐴𝐴<P 𝐵))
2220, 21imbitrdi 251 . . . . . . 7 ((𝐶P ∧ (𝐵P𝐴P)) → ((𝐶 +P 𝐴)<P (𝐶 +P 𝐵) → (¬ 𝐵 = 𝐴𝐴<P 𝐵)))
2322com23 86 . . . . . 6 ((𝐶P ∧ (𝐵P𝐴P)) → (¬ 𝐵 = 𝐴 → ((𝐶 +P 𝐴)<P (𝐶 +P 𝐵) → 𝐴<P 𝐵)))
249, 2soirri 6115 . . . . . . . 8 ¬ (𝐶 +P 𝐴)<P (𝐶 +P 𝐴)
25 oveq2 7413 . . . . . . . . 9 (𝐵 = 𝐴 → (𝐶 +P 𝐵) = (𝐶 +P 𝐴))
2625breq2d 5131 . . . . . . . 8 (𝐵 = 𝐴 → ((𝐶 +P 𝐴)<P (𝐶 +P 𝐵) ↔ (𝐶 +P 𝐴)<P (𝐶 +P 𝐴)))
2724, 26mtbiri 327 . . . . . . 7 (𝐵 = 𝐴 → ¬ (𝐶 +P 𝐴)<P (𝐶 +P 𝐵))
2827pm2.21d 121 . . . . . 6 (𝐵 = 𝐴 → ((𝐶 +P 𝐴)<P (𝐶 +P 𝐵) → 𝐴<P 𝐵))
2923, 28pm2.61d2 181 . . . . 5 ((𝐶P ∧ (𝐵P𝐴P)) → ((𝐶 +P 𝐴)<P (𝐶 +P 𝐵) → 𝐴<P 𝐵))
305, 29impbid 212 . . . 4 ((𝐶P ∧ (𝐵P𝐴P)) → (𝐴<P 𝐵 ↔ (𝐶 +P 𝐴)<P (𝐶 +P 𝐵)))
31303impb 1114 . . 3 ((𝐶P𝐵P𝐴P) → (𝐴<P 𝐵 ↔ (𝐶 +P 𝐴)<P (𝐶 +P 𝐵)))
32313com13 1124 . 2 ((𝐴P𝐵P𝐶P) → (𝐴<P 𝐵 ↔ (𝐶 +P 𝐴)<P (𝐶 +P 𝐵)))
331, 2, 3, 32ndmovord 7597 1 (𝐶P → (𝐴<P 𝐵 ↔ (𝐶 +P 𝐴)<P (𝐶 +P 𝐵)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  wo 847   = wceq 1540  wcel 2108   class class class wbr 5119   Or wor 5560  (class class class)co 7405  Pcnp 10873   +P cpp 10875  <P cltp 10877
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402  ax-un 7729  ax-inf2 9655
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-ral 3052  df-rex 3061  df-rmo 3359  df-reu 3360  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-pss 3946  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-int 4923  df-iun 4969  df-br 5120  df-opab 5182  df-mpt 5202  df-tr 5230  df-id 5548  df-eprel 5553  df-po 5561  df-so 5562  df-fr 5606  df-we 5608  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-pred 6290  df-ord 6355  df-on 6356  df-lim 6357  df-suc 6358  df-iota 6484  df-fun 6533  df-fn 6534  df-f 6535  df-f1 6536  df-fo 6537  df-f1o 6538  df-fv 6539  df-ov 7408  df-oprab 7409  df-mpo 7410  df-om 7862  df-1st 7988  df-2nd 7989  df-frecs 8280  df-wrecs 8311  df-recs 8385  df-rdg 8424  df-1o 8480  df-oadd 8484  df-omul 8485  df-er 8719  df-ni 10886  df-pli 10887  df-mi 10888  df-lti 10889  df-plpq 10922  df-mpq 10923  df-ltpq 10924  df-enq 10925  df-nq 10926  df-erq 10927  df-plq 10928  df-mq 10929  df-1nq 10930  df-rq 10931  df-ltnq 10932  df-np 10995  df-plp 10997  df-ltp 10999
This theorem is referenced by:  addcanpr  11060  ltsrpr  11091  gt0srpr  11092  ltsosr  11108  ltasr  11114  ltpsrpr  11123  map2psrpr  11124
  Copyright terms: Public domain W3C validator