MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ltapr Structured version   Visualization version   GIF version

Theorem ltapr 11085
Description: Ordering property of addition. Proposition 9-3.5(v) of [Gleason] p. 123. (Contributed by NM, 8-Apr-1996.) (New usage is discouraged.)
Assertion
Ref Expression
ltapr (𝐶P → (𝐴<P 𝐵 ↔ (𝐶 +P 𝐴)<P (𝐶 +P 𝐵)))

Proof of Theorem ltapr
StepHypRef Expression
1 dmplp 11052 . 2 dom +P = (P × P)
2 ltrelpr 11038 . 2 <P ⊆ (P × P)
3 0npr 11032 . 2 ¬ ∅ ∈ P
4 ltaprlem 11084 . . . . . 6 (𝐶P → (𝐴<P 𝐵 → (𝐶 +P 𝐴)<P (𝐶 +P 𝐵)))
54adantr 480 . . . . 5 ((𝐶P ∧ (𝐵P𝐴P)) → (𝐴<P 𝐵 → (𝐶 +P 𝐴)<P (𝐶 +P 𝐵)))
6 olc 869 . . . . . . . . 9 ((𝐶 +P 𝐴)<P (𝐶 +P 𝐵) → ((𝐶 +P 𝐵) = (𝐶 +P 𝐴) ∨ (𝐶 +P 𝐴)<P (𝐶 +P 𝐵)))
7 ltaprlem 11084 . . . . . . . . . . . 12 (𝐶P → (𝐵<P 𝐴 → (𝐶 +P 𝐵)<P (𝐶 +P 𝐴)))
87adantr 480 . . . . . . . . . . 11 ((𝐶P ∧ (𝐵P𝐴P)) → (𝐵<P 𝐴 → (𝐶 +P 𝐵)<P (𝐶 +P 𝐴)))
9 ltsopr 11072 . . . . . . . . . . . . 13 <P Or P
10 sotric 5622 . . . . . . . . . . . . 13 ((<P Or P ∧ (𝐵P𝐴P)) → (𝐵<P 𝐴 ↔ ¬ (𝐵 = 𝐴𝐴<P 𝐵)))
119, 10mpan 690 . . . . . . . . . . . 12 ((𝐵P𝐴P) → (𝐵<P 𝐴 ↔ ¬ (𝐵 = 𝐴𝐴<P 𝐵)))
1211adantl 481 . . . . . . . . . . 11 ((𝐶P ∧ (𝐵P𝐴P)) → (𝐵<P 𝐴 ↔ ¬ (𝐵 = 𝐴𝐴<P 𝐵)))
13 addclpr 11058 . . . . . . . . . . . . 13 ((𝐶P𝐵P) → (𝐶 +P 𝐵) ∈ P)
14 addclpr 11058 . . . . . . . . . . . . 13 ((𝐶P𝐴P) → (𝐶 +P 𝐴) ∈ P)
1513, 14anim12dan 619 . . . . . . . . . . . 12 ((𝐶P ∧ (𝐵P𝐴P)) → ((𝐶 +P 𝐵) ∈ P ∧ (𝐶 +P 𝐴) ∈ P))
16 sotric 5622 . . . . . . . . . . . 12 ((<P Or P ∧ ((𝐶 +P 𝐵) ∈ P ∧ (𝐶 +P 𝐴) ∈ P)) → ((𝐶 +P 𝐵)<P (𝐶 +P 𝐴) ↔ ¬ ((𝐶 +P 𝐵) = (𝐶 +P 𝐴) ∨ (𝐶 +P 𝐴)<P (𝐶 +P 𝐵))))
179, 15, 16sylancr 587 . . . . . . . . . . 11 ((𝐶P ∧ (𝐵P𝐴P)) → ((𝐶 +P 𝐵)<P (𝐶 +P 𝐴) ↔ ¬ ((𝐶 +P 𝐵) = (𝐶 +P 𝐴) ∨ (𝐶 +P 𝐴)<P (𝐶 +P 𝐵))))
188, 12, 173imtr3d 293 . . . . . . . . . 10 ((𝐶P ∧ (𝐵P𝐴P)) → (¬ (𝐵 = 𝐴𝐴<P 𝐵) → ¬ ((𝐶 +P 𝐵) = (𝐶 +P 𝐴) ∨ (𝐶 +P 𝐴)<P (𝐶 +P 𝐵))))
1918con4d 115 . . . . . . . . 9 ((𝐶P ∧ (𝐵P𝐴P)) → (((𝐶 +P 𝐵) = (𝐶 +P 𝐴) ∨ (𝐶 +P 𝐴)<P (𝐶 +P 𝐵)) → (𝐵 = 𝐴𝐴<P 𝐵)))
206, 19syl5 34 . . . . . . . 8 ((𝐶P ∧ (𝐵P𝐴P)) → ((𝐶 +P 𝐴)<P (𝐶 +P 𝐵) → (𝐵 = 𝐴𝐴<P 𝐵)))
21 df-or 849 . . . . . . . 8 ((𝐵 = 𝐴𝐴<P 𝐵) ↔ (¬ 𝐵 = 𝐴𝐴<P 𝐵))
2220, 21imbitrdi 251 . . . . . . 7 ((𝐶P ∧ (𝐵P𝐴P)) → ((𝐶 +P 𝐴)<P (𝐶 +P 𝐵) → (¬ 𝐵 = 𝐴𝐴<P 𝐵)))
2322com23 86 . . . . . 6 ((𝐶P ∧ (𝐵P𝐴P)) → (¬ 𝐵 = 𝐴 → ((𝐶 +P 𝐴)<P (𝐶 +P 𝐵) → 𝐴<P 𝐵)))
249, 2soirri 6146 . . . . . . . 8 ¬ (𝐶 +P 𝐴)<P (𝐶 +P 𝐴)
25 oveq2 7439 . . . . . . . . 9 (𝐵 = 𝐴 → (𝐶 +P 𝐵) = (𝐶 +P 𝐴))
2625breq2d 5155 . . . . . . . 8 (𝐵 = 𝐴 → ((𝐶 +P 𝐴)<P (𝐶 +P 𝐵) ↔ (𝐶 +P 𝐴)<P (𝐶 +P 𝐴)))
2724, 26mtbiri 327 . . . . . . 7 (𝐵 = 𝐴 → ¬ (𝐶 +P 𝐴)<P (𝐶 +P 𝐵))
2827pm2.21d 121 . . . . . 6 (𝐵 = 𝐴 → ((𝐶 +P 𝐴)<P (𝐶 +P 𝐵) → 𝐴<P 𝐵))
2923, 28pm2.61d2 181 . . . . 5 ((𝐶P ∧ (𝐵P𝐴P)) → ((𝐶 +P 𝐴)<P (𝐶 +P 𝐵) → 𝐴<P 𝐵))
305, 29impbid 212 . . . 4 ((𝐶P ∧ (𝐵P𝐴P)) → (𝐴<P 𝐵 ↔ (𝐶 +P 𝐴)<P (𝐶 +P 𝐵)))
31303impb 1115 . . 3 ((𝐶P𝐵P𝐴P) → (𝐴<P 𝐵 ↔ (𝐶 +P 𝐴)<P (𝐶 +P 𝐵)))
32313com13 1125 . 2 ((𝐴P𝐵P𝐶P) → (𝐴<P 𝐵 ↔ (𝐶 +P 𝐴)<P (𝐶 +P 𝐵)))
331, 2, 3, 32ndmovord 7623 1 (𝐶P → (𝐴<P 𝐵 ↔ (𝐶 +P 𝐴)<P (𝐶 +P 𝐵)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  wo 848   = wceq 1540  wcel 2108   class class class wbr 5143   Or wor 5591  (class class class)co 7431  Pcnp 10899   +P cpp 10901  <P cltp 10903
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432  ax-un 7755  ax-inf2 9681
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3or 1088  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-ral 3062  df-rex 3071  df-rmo 3380  df-reu 3381  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-pss 3971  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-op 4633  df-uni 4908  df-int 4947  df-iun 4993  df-br 5144  df-opab 5206  df-mpt 5226  df-tr 5260  df-id 5578  df-eprel 5584  df-po 5592  df-so 5593  df-fr 5637  df-we 5639  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-pred 6321  df-ord 6387  df-on 6388  df-lim 6389  df-suc 6390  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-f1o 6568  df-fv 6569  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-1st 8014  df-2nd 8015  df-frecs 8306  df-wrecs 8337  df-recs 8411  df-rdg 8450  df-1o 8506  df-oadd 8510  df-omul 8511  df-er 8745  df-ni 10912  df-pli 10913  df-mi 10914  df-lti 10915  df-plpq 10948  df-mpq 10949  df-ltpq 10950  df-enq 10951  df-nq 10952  df-erq 10953  df-plq 10954  df-mq 10955  df-1nq 10956  df-rq 10957  df-ltnq 10958  df-np 11021  df-plp 11023  df-ltp 11025
This theorem is referenced by:  addcanpr  11086  ltsrpr  11117  gt0srpr  11118  ltsosr  11134  ltasr  11140  ltpsrpr  11149  map2psrpr  11150
  Copyright terms: Public domain W3C validator