| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > distrpr | Structured version Visualization version GIF version | ||
| Description: Multiplication of positive reals is distributive. Proposition 9-3.7(iii) of [Gleason] p. 124. (Contributed by NM, 2-May-1996.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| distrpr | ⊢ (𝐴 ·P (𝐵 +P 𝐶)) = ((𝐴 ·P 𝐵) +P (𝐴 ·P 𝐶)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | distrlem1pr 10922 | . . 3 ⊢ ((𝐴 ∈ P ∧ 𝐵 ∈ P ∧ 𝐶 ∈ P) → (𝐴 ·P (𝐵 +P 𝐶)) ⊆ ((𝐴 ·P 𝐵) +P (𝐴 ·P 𝐶))) | |
| 2 | distrlem5pr 10924 | . . 3 ⊢ ((𝐴 ∈ P ∧ 𝐵 ∈ P ∧ 𝐶 ∈ P) → ((𝐴 ·P 𝐵) +P (𝐴 ·P 𝐶)) ⊆ (𝐴 ·P (𝐵 +P 𝐶))) | |
| 3 | 1, 2 | eqssd 3947 | . 2 ⊢ ((𝐴 ∈ P ∧ 𝐵 ∈ P ∧ 𝐶 ∈ P) → (𝐴 ·P (𝐵 +P 𝐶)) = ((𝐴 ·P 𝐵) +P (𝐴 ·P 𝐶))) |
| 4 | dmplp 10909 | . . 3 ⊢ dom +P = (P × P) | |
| 5 | 0npr 10889 | . . 3 ⊢ ¬ ∅ ∈ P | |
| 6 | dmmp 10910 | . . 3 ⊢ dom ·P = (P × P) | |
| 7 | 4, 5, 6 | ndmovdistr 7541 | . 2 ⊢ (¬ (𝐴 ∈ P ∧ 𝐵 ∈ P ∧ 𝐶 ∈ P) → (𝐴 ·P (𝐵 +P 𝐶)) = ((𝐴 ·P 𝐵) +P (𝐴 ·P 𝐶))) |
| 8 | 3, 7 | pm2.61i 182 | 1 ⊢ (𝐴 ·P (𝐵 +P 𝐶)) = ((𝐴 ·P 𝐵) +P (𝐴 ·P 𝐶)) |
| Colors of variables: wff setvar class |
| Syntax hints: ∧ w3a 1086 = wceq 1541 ∈ wcel 2111 (class class class)co 7352 Pcnp 10756 +P cpp 10758 ·P cmp 10759 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5236 ax-nul 5246 ax-pow 5305 ax-pr 5372 ax-un 7674 ax-inf2 9537 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-rmo 3346 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3917 df-nul 4283 df-if 4475 df-pw 4551 df-sn 4576 df-pr 4578 df-op 4582 df-uni 4859 df-iun 4943 df-br 5094 df-opab 5156 df-mpt 5175 df-tr 5201 df-id 5514 df-eprel 5519 df-po 5527 df-so 5528 df-fr 5572 df-we 5574 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-pred 6254 df-ord 6315 df-on 6316 df-lim 6317 df-suc 6318 df-iota 6443 df-fun 6489 df-fn 6490 df-f 6491 df-f1 6492 df-fo 6493 df-f1o 6494 df-fv 6495 df-ov 7355 df-oprab 7356 df-mpo 7357 df-om 7803 df-1st 7927 df-2nd 7928 df-frecs 8217 df-wrecs 8248 df-recs 8297 df-rdg 8335 df-1o 8391 df-oadd 8395 df-omul 8396 df-er 8628 df-ni 10769 df-pli 10770 df-mi 10771 df-lti 10772 df-plpq 10805 df-mpq 10806 df-ltpq 10807 df-enq 10808 df-nq 10809 df-erq 10810 df-plq 10811 df-mq 10812 df-1nq 10813 df-rq 10814 df-ltnq 10815 df-np 10878 df-plp 10880 df-mp 10881 |
| This theorem is referenced by: mulcmpblnrlem 10967 mulasssr 10987 distrsr 10988 m1m1sr 10990 1idsr 10995 recexsrlem 11000 mulgt0sr 11002 |
| Copyright terms: Public domain | W3C validator |