| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > distrpr | Structured version Visualization version GIF version | ||
| Description: Multiplication of positive reals is distributive. Proposition 9-3.7(iii) of [Gleason] p. 124. (Contributed by NM, 2-May-1996.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| distrpr | ⊢ (𝐴 ·P (𝐵 +P 𝐶)) = ((𝐴 ·P 𝐵) +P (𝐴 ·P 𝐶)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | distrlem1pr 10908 | . . 3 ⊢ ((𝐴 ∈ P ∧ 𝐵 ∈ P ∧ 𝐶 ∈ P) → (𝐴 ·P (𝐵 +P 𝐶)) ⊆ ((𝐴 ·P 𝐵) +P (𝐴 ·P 𝐶))) | |
| 2 | distrlem5pr 10910 | . . 3 ⊢ ((𝐴 ∈ P ∧ 𝐵 ∈ P ∧ 𝐶 ∈ P) → ((𝐴 ·P 𝐵) +P (𝐴 ·P 𝐶)) ⊆ (𝐴 ·P (𝐵 +P 𝐶))) | |
| 3 | 1, 2 | eqssd 3950 | . 2 ⊢ ((𝐴 ∈ P ∧ 𝐵 ∈ P ∧ 𝐶 ∈ P) → (𝐴 ·P (𝐵 +P 𝐶)) = ((𝐴 ·P 𝐵) +P (𝐴 ·P 𝐶))) |
| 4 | dmplp 10895 | . . 3 ⊢ dom +P = (P × P) | |
| 5 | 0npr 10875 | . . 3 ⊢ ¬ ∅ ∈ P | |
| 6 | dmmp 10896 | . . 3 ⊢ dom ·P = (P × P) | |
| 7 | 4, 5, 6 | ndmovdistr 7530 | . 2 ⊢ (¬ (𝐴 ∈ P ∧ 𝐵 ∈ P ∧ 𝐶 ∈ P) → (𝐴 ·P (𝐵 +P 𝐶)) = ((𝐴 ·P 𝐵) +P (𝐴 ·P 𝐶))) |
| 8 | 3, 7 | pm2.61i 182 | 1 ⊢ (𝐴 ·P (𝐵 +P 𝐶)) = ((𝐴 ·P 𝐵) +P (𝐴 ·P 𝐶)) |
| Colors of variables: wff setvar class |
| Syntax hints: ∧ w3a 1086 = wceq 1541 ∈ wcel 2110 (class class class)co 7341 Pcnp 10742 +P cpp 10744 ·P cmp 10745 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2112 ax-9 2120 ax-10 2143 ax-11 2159 ax-12 2179 ax-ext 2702 ax-sep 5232 ax-nul 5242 ax-pow 5301 ax-pr 5368 ax-un 7663 ax-inf2 9526 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-ral 3046 df-rex 3055 df-rmo 3344 df-reu 3345 df-rab 3394 df-v 3436 df-sbc 3740 df-csb 3849 df-dif 3903 df-un 3905 df-in 3907 df-ss 3917 df-pss 3920 df-nul 4282 df-if 4474 df-pw 4550 df-sn 4575 df-pr 4577 df-op 4581 df-uni 4858 df-iun 4941 df-br 5090 df-opab 5152 df-mpt 5171 df-tr 5197 df-id 5509 df-eprel 5514 df-po 5522 df-so 5523 df-fr 5567 df-we 5569 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-pred 6244 df-ord 6305 df-on 6306 df-lim 6307 df-suc 6308 df-iota 6433 df-fun 6479 df-fn 6480 df-f 6481 df-f1 6482 df-fo 6483 df-f1o 6484 df-fv 6485 df-ov 7344 df-oprab 7345 df-mpo 7346 df-om 7792 df-1st 7916 df-2nd 7917 df-frecs 8206 df-wrecs 8237 df-recs 8286 df-rdg 8324 df-1o 8380 df-oadd 8384 df-omul 8385 df-er 8617 df-ni 10755 df-pli 10756 df-mi 10757 df-lti 10758 df-plpq 10791 df-mpq 10792 df-ltpq 10793 df-enq 10794 df-nq 10795 df-erq 10796 df-plq 10797 df-mq 10798 df-1nq 10799 df-rq 10800 df-ltnq 10801 df-np 10864 df-plp 10866 df-mp 10867 |
| This theorem is referenced by: mulcmpblnrlem 10953 mulasssr 10973 distrsr 10974 m1m1sr 10976 1idsr 10981 recexsrlem 10986 mulgt0sr 10988 |
| Copyright terms: Public domain | W3C validator |