MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  prcdnq Structured version   Visualization version   GIF version

Theorem prcdnq 10990
Description: A positive real is closed downwards under the positive fractions. Definition 9-3.1 (ii) of [Gleason] p. 121. (Contributed by NM, 25-Feb-1996.) (Revised by Mario Carneiro, 11-May-2013.) (New usage is discouraged.)
Assertion
Ref Expression
prcdnq ((𝐴P𝐵𝐴) → (𝐶 <Q 𝐵𝐶𝐴))

Proof of Theorem prcdnq
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ltrelnq 10923 . . . . . . 7 <Q ⊆ (Q × Q)
2 relxp 5693 . . . . . . 7 Rel (Q × Q)
3 relss 5780 . . . . . . 7 ( <Q ⊆ (Q × Q) → (Rel (Q × Q) → Rel <Q ))
41, 2, 3mp2 9 . . . . . 6 Rel <Q
54brrelex1i 5731 . . . . 5 (𝐶 <Q 𝐵𝐶 ∈ V)
6 eleq1 2819 . . . . . . . . 9 (𝑥 = 𝐵 → (𝑥𝐴𝐵𝐴))
76anbi2d 627 . . . . . . . 8 (𝑥 = 𝐵 → ((𝐴P𝑥𝐴) ↔ (𝐴P𝐵𝐴)))
8 breq2 5151 . . . . . . . 8 (𝑥 = 𝐵 → (𝑦 <Q 𝑥𝑦 <Q 𝐵))
97, 8anbi12d 629 . . . . . . 7 (𝑥 = 𝐵 → (((𝐴P𝑥𝐴) ∧ 𝑦 <Q 𝑥) ↔ ((𝐴P𝐵𝐴) ∧ 𝑦 <Q 𝐵)))
109imbi1d 340 . . . . . 6 (𝑥 = 𝐵 → ((((𝐴P𝑥𝐴) ∧ 𝑦 <Q 𝑥) → 𝑦𝐴) ↔ (((𝐴P𝐵𝐴) ∧ 𝑦 <Q 𝐵) → 𝑦𝐴)))
11 breq1 5150 . . . . . . . 8 (𝑦 = 𝐶 → (𝑦 <Q 𝐵𝐶 <Q 𝐵))
1211anbi2d 627 . . . . . . 7 (𝑦 = 𝐶 → (((𝐴P𝐵𝐴) ∧ 𝑦 <Q 𝐵) ↔ ((𝐴P𝐵𝐴) ∧ 𝐶 <Q 𝐵)))
13 eleq1 2819 . . . . . . 7 (𝑦 = 𝐶 → (𝑦𝐴𝐶𝐴))
1412, 13imbi12d 343 . . . . . 6 (𝑦 = 𝐶 → ((((𝐴P𝐵𝐴) ∧ 𝑦 <Q 𝐵) → 𝑦𝐴) ↔ (((𝐴P𝐵𝐴) ∧ 𝐶 <Q 𝐵) → 𝐶𝐴)))
15 elnpi 10985 . . . . . . . . . . 11 (𝐴P ↔ ((𝐴 ∈ V ∧ ∅ ⊊ 𝐴𝐴Q) ∧ ∀𝑥𝐴 (∀𝑦(𝑦 <Q 𝑥𝑦𝐴) ∧ ∃𝑦𝐴 𝑥 <Q 𝑦)))
1615simprbi 495 . . . . . . . . . 10 (𝐴P → ∀𝑥𝐴 (∀𝑦(𝑦 <Q 𝑥𝑦𝐴) ∧ ∃𝑦𝐴 𝑥 <Q 𝑦))
1716r19.21bi 3246 . . . . . . . . 9 ((𝐴P𝑥𝐴) → (∀𝑦(𝑦 <Q 𝑥𝑦𝐴) ∧ ∃𝑦𝐴 𝑥 <Q 𝑦))
1817simpld 493 . . . . . . . 8 ((𝐴P𝑥𝐴) → ∀𝑦(𝑦 <Q 𝑥𝑦𝐴))
191819.21bi 2180 . . . . . . 7 ((𝐴P𝑥𝐴) → (𝑦 <Q 𝑥𝑦𝐴))
2019imp 405 . . . . . 6 (((𝐴P𝑥𝐴) ∧ 𝑦 <Q 𝑥) → 𝑦𝐴)
2110, 14, 20vtocl2g 3562 . . . . 5 ((𝐵𝐴𝐶 ∈ V) → (((𝐴P𝐵𝐴) ∧ 𝐶 <Q 𝐵) → 𝐶𝐴))
225, 21sylan2 591 . . . 4 ((𝐵𝐴𝐶 <Q 𝐵) → (((𝐴P𝐵𝐴) ∧ 𝐶 <Q 𝐵) → 𝐶𝐴))
2322adantll 710 . . 3 (((𝐴P𝐵𝐴) ∧ 𝐶 <Q 𝐵) → (((𝐴P𝐵𝐴) ∧ 𝐶 <Q 𝐵) → 𝐶𝐴))
2423pm2.43i 52 . 2 (((𝐴P𝐵𝐴) ∧ 𝐶 <Q 𝐵) → 𝐶𝐴)
2524ex 411 1 ((𝐴P𝐵𝐴) → (𝐶 <Q 𝐵𝐶𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 394  w3a 1085  wal 1537   = wceq 1539  wcel 2104  wral 3059  wrex 3068  Vcvv 3472  wss 3947  wpss 3948  c0 4321   class class class wbr 5147   × cxp 5673  Rel wrel 5680  Qcnq 10849   <Q cltq 10855  Pcnp 10856
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1911  ax-6 1969  ax-7 2009  ax-8 2106  ax-9 2114  ax-12 2169  ax-ext 2701  ax-sep 5298  ax-nul 5305  ax-pr 5426
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1780  df-sb 2066  df-clab 2708  df-cleq 2722  df-clel 2808  df-ne 2939  df-ral 3060  df-rex 3069  df-rab 3431  df-v 3474  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-pss 3966  df-nul 4322  df-if 4528  df-sn 4628  df-pr 4630  df-op 4634  df-br 5148  df-opab 5210  df-xp 5681  df-rel 5682  df-ltnq 10915  df-np 10978
This theorem is referenced by:  prub  10991  addclprlem1  11013  mulclprlem  11016  distrlem4pr  11023  1idpr  11026  psslinpr  11028  prlem934  11030  ltaddpr  11031  ltexprlem2  11034  ltexprlem3  11035  ltexprlem6  11038  prlem936  11044  reclem2pr  11045  suplem1pr  11049
  Copyright terms: Public domain W3C validator