MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  prcdnq Structured version   Visualization version   GIF version

Theorem prcdnq 10884
Description: A positive real is closed downwards under the positive fractions. Definition 9-3.1 (ii) of [Gleason] p. 121. (Contributed by NM, 25-Feb-1996.) (Revised by Mario Carneiro, 11-May-2013.) (New usage is discouraged.)
Assertion
Ref Expression
prcdnq ((𝐴P𝐵𝐴) → (𝐶 <Q 𝐵𝐶𝐴))

Proof of Theorem prcdnq
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ltrelnq 10817 . . . . . . 7 <Q ⊆ (Q × Q)
2 relxp 5632 . . . . . . 7 Rel (Q × Q)
3 relss 5721 . . . . . . 7 ( <Q ⊆ (Q × Q) → (Rel (Q × Q) → Rel <Q ))
41, 2, 3mp2 9 . . . . . 6 Rel <Q
54brrelex1i 5670 . . . . 5 (𝐶 <Q 𝐵𝐶 ∈ V)
6 eleq1 2819 . . . . . . . . 9 (𝑥 = 𝐵 → (𝑥𝐴𝐵𝐴))
76anbi2d 630 . . . . . . . 8 (𝑥 = 𝐵 → ((𝐴P𝑥𝐴) ↔ (𝐴P𝐵𝐴)))
8 breq2 5093 . . . . . . . 8 (𝑥 = 𝐵 → (𝑦 <Q 𝑥𝑦 <Q 𝐵))
97, 8anbi12d 632 . . . . . . 7 (𝑥 = 𝐵 → (((𝐴P𝑥𝐴) ∧ 𝑦 <Q 𝑥) ↔ ((𝐴P𝐵𝐴) ∧ 𝑦 <Q 𝐵)))
109imbi1d 341 . . . . . 6 (𝑥 = 𝐵 → ((((𝐴P𝑥𝐴) ∧ 𝑦 <Q 𝑥) → 𝑦𝐴) ↔ (((𝐴P𝐵𝐴) ∧ 𝑦 <Q 𝐵) → 𝑦𝐴)))
11 breq1 5092 . . . . . . . 8 (𝑦 = 𝐶 → (𝑦 <Q 𝐵𝐶 <Q 𝐵))
1211anbi2d 630 . . . . . . 7 (𝑦 = 𝐶 → (((𝐴P𝐵𝐴) ∧ 𝑦 <Q 𝐵) ↔ ((𝐴P𝐵𝐴) ∧ 𝐶 <Q 𝐵)))
13 eleq1 2819 . . . . . . 7 (𝑦 = 𝐶 → (𝑦𝐴𝐶𝐴))
1412, 13imbi12d 344 . . . . . 6 (𝑦 = 𝐶 → ((((𝐴P𝐵𝐴) ∧ 𝑦 <Q 𝐵) → 𝑦𝐴) ↔ (((𝐴P𝐵𝐴) ∧ 𝐶 <Q 𝐵) → 𝐶𝐴)))
15 elnpi 10879 . . . . . . . . . . 11 (𝐴P ↔ ((𝐴 ∈ V ∧ ∅ ⊊ 𝐴𝐴Q) ∧ ∀𝑥𝐴 (∀𝑦(𝑦 <Q 𝑥𝑦𝐴) ∧ ∃𝑦𝐴 𝑥 <Q 𝑦)))
1615simprbi 496 . . . . . . . . . 10 (𝐴P → ∀𝑥𝐴 (∀𝑦(𝑦 <Q 𝑥𝑦𝐴) ∧ ∃𝑦𝐴 𝑥 <Q 𝑦))
1716r19.21bi 3224 . . . . . . . . 9 ((𝐴P𝑥𝐴) → (∀𝑦(𝑦 <Q 𝑥𝑦𝐴) ∧ ∃𝑦𝐴 𝑥 <Q 𝑦))
1817simpld 494 . . . . . . . 8 ((𝐴P𝑥𝐴) → ∀𝑦(𝑦 <Q 𝑥𝑦𝐴))
191819.21bi 2192 . . . . . . 7 ((𝐴P𝑥𝐴) → (𝑦 <Q 𝑥𝑦𝐴))
2019imp 406 . . . . . 6 (((𝐴P𝑥𝐴) ∧ 𝑦 <Q 𝑥) → 𝑦𝐴)
2110, 14, 20vtocl2g 3525 . . . . 5 ((𝐵𝐴𝐶 ∈ V) → (((𝐴P𝐵𝐴) ∧ 𝐶 <Q 𝐵) → 𝐶𝐴))
225, 21sylan2 593 . . . 4 ((𝐵𝐴𝐶 <Q 𝐵) → (((𝐴P𝐵𝐴) ∧ 𝐶 <Q 𝐵) → 𝐶𝐴))
2322adantll 714 . . 3 (((𝐴P𝐵𝐴) ∧ 𝐶 <Q 𝐵) → (((𝐴P𝐵𝐴) ∧ 𝐶 <Q 𝐵) → 𝐶𝐴))
2423pm2.43i 52 . 2 (((𝐴P𝐵𝐴) ∧ 𝐶 <Q 𝐵) → 𝐶𝐴)
2524ex 412 1 ((𝐴P𝐵𝐴) → (𝐶 <Q 𝐵𝐶𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086  wal 1539   = wceq 1541  wcel 2111  wral 3047  wrex 3056  Vcvv 3436  wss 3897  wpss 3898  c0 4280   class class class wbr 5089   × cxp 5612  Rel wrel 5619  Qcnq 10743   <Q cltq 10749  Pcnp 10750
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-12 2180  ax-ext 2703  ax-sep 5232  ax-nul 5242  ax-pr 5368
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-sb 2068  df-clab 2710  df-cleq 2723  df-clel 2806  df-ne 2929  df-ral 3048  df-rex 3057  df-rab 3396  df-v 3438  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3917  df-nul 4281  df-if 4473  df-sn 4574  df-pr 4576  df-op 4580  df-br 5090  df-opab 5152  df-xp 5620  df-rel 5621  df-ltnq 10809  df-np 10872
This theorem is referenced by:  prub  10885  addclprlem1  10907  mulclprlem  10910  distrlem4pr  10917  1idpr  10920  psslinpr  10922  prlem934  10924  ltaddpr  10925  ltexprlem2  10928  ltexprlem3  10929  ltexprlem6  10932  prlem936  10938  reclem2pr  10939  suplem1pr  10943
  Copyright terms: Public domain W3C validator