MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  prcdnq Structured version   Visualization version   GIF version

Theorem prcdnq 10936
Description: A positive real is closed downwards under the positive fractions. Definition 9-3.1 (ii) of [Gleason] p. 121. (Contributed by NM, 25-Feb-1996.) (Revised by Mario Carneiro, 11-May-2013.) (New usage is discouraged.)
Assertion
Ref Expression
prcdnq ((𝐴P𝐵𝐴) → (𝐶 <Q 𝐵𝐶𝐴))

Proof of Theorem prcdnq
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ltrelnq 10869 . . . . . . 7 <Q ⊆ (Q × Q)
2 relxp 5656 . . . . . . 7 Rel (Q × Q)
3 relss 5742 . . . . . . 7 ( <Q ⊆ (Q × Q) → (Rel (Q × Q) → Rel <Q ))
41, 2, 3mp2 9 . . . . . 6 Rel <Q
54brrelex1i 5693 . . . . 5 (𝐶 <Q 𝐵𝐶 ∈ V)
6 eleq1 2826 . . . . . . . . 9 (𝑥 = 𝐵 → (𝑥𝐴𝐵𝐴))
76anbi2d 630 . . . . . . . 8 (𝑥 = 𝐵 → ((𝐴P𝑥𝐴) ↔ (𝐴P𝐵𝐴)))
8 breq2 5114 . . . . . . . 8 (𝑥 = 𝐵 → (𝑦 <Q 𝑥𝑦 <Q 𝐵))
97, 8anbi12d 632 . . . . . . 7 (𝑥 = 𝐵 → (((𝐴P𝑥𝐴) ∧ 𝑦 <Q 𝑥) ↔ ((𝐴P𝐵𝐴) ∧ 𝑦 <Q 𝐵)))
109imbi1d 342 . . . . . 6 (𝑥 = 𝐵 → ((((𝐴P𝑥𝐴) ∧ 𝑦 <Q 𝑥) → 𝑦𝐴) ↔ (((𝐴P𝐵𝐴) ∧ 𝑦 <Q 𝐵) → 𝑦𝐴)))
11 breq1 5113 . . . . . . . 8 (𝑦 = 𝐶 → (𝑦 <Q 𝐵𝐶 <Q 𝐵))
1211anbi2d 630 . . . . . . 7 (𝑦 = 𝐶 → (((𝐴P𝐵𝐴) ∧ 𝑦 <Q 𝐵) ↔ ((𝐴P𝐵𝐴) ∧ 𝐶 <Q 𝐵)))
13 eleq1 2826 . . . . . . 7 (𝑦 = 𝐶 → (𝑦𝐴𝐶𝐴))
1412, 13imbi12d 345 . . . . . 6 (𝑦 = 𝐶 → ((((𝐴P𝐵𝐴) ∧ 𝑦 <Q 𝐵) → 𝑦𝐴) ↔ (((𝐴P𝐵𝐴) ∧ 𝐶 <Q 𝐵) → 𝐶𝐴)))
15 elnpi 10931 . . . . . . . . . . 11 (𝐴P ↔ ((𝐴 ∈ V ∧ ∅ ⊊ 𝐴𝐴Q) ∧ ∀𝑥𝐴 (∀𝑦(𝑦 <Q 𝑥𝑦𝐴) ∧ ∃𝑦𝐴 𝑥 <Q 𝑦)))
1615simprbi 498 . . . . . . . . . 10 (𝐴P → ∀𝑥𝐴 (∀𝑦(𝑦 <Q 𝑥𝑦𝐴) ∧ ∃𝑦𝐴 𝑥 <Q 𝑦))
1716r19.21bi 3237 . . . . . . . . 9 ((𝐴P𝑥𝐴) → (∀𝑦(𝑦 <Q 𝑥𝑦𝐴) ∧ ∃𝑦𝐴 𝑥 <Q 𝑦))
1817simpld 496 . . . . . . . 8 ((𝐴P𝑥𝐴) → ∀𝑦(𝑦 <Q 𝑥𝑦𝐴))
191819.21bi 2183 . . . . . . 7 ((𝐴P𝑥𝐴) → (𝑦 <Q 𝑥𝑦𝐴))
2019imp 408 . . . . . 6 (((𝐴P𝑥𝐴) ∧ 𝑦 <Q 𝑥) → 𝑦𝐴)
2110, 14, 20vtocl2g 3534 . . . . 5 ((𝐵𝐴𝐶 ∈ V) → (((𝐴P𝐵𝐴) ∧ 𝐶 <Q 𝐵) → 𝐶𝐴))
225, 21sylan2 594 . . . 4 ((𝐵𝐴𝐶 <Q 𝐵) → (((𝐴P𝐵𝐴) ∧ 𝐶 <Q 𝐵) → 𝐶𝐴))
2322adantll 713 . . 3 (((𝐴P𝐵𝐴) ∧ 𝐶 <Q 𝐵) → (((𝐴P𝐵𝐴) ∧ 𝐶 <Q 𝐵) → 𝐶𝐴))
2423pm2.43i 52 . 2 (((𝐴P𝐵𝐴) ∧ 𝐶 <Q 𝐵) → 𝐶𝐴)
2524ex 414 1 ((𝐴P𝐵𝐴) → (𝐶 <Q 𝐵𝐶𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 397  w3a 1088  wal 1540   = wceq 1542  wcel 2107  wral 3065  wrex 3074  Vcvv 3448  wss 3915  wpss 3916  c0 4287   class class class wbr 5110   × cxp 5636  Rel wrel 5643  Qcnq 10795   <Q cltq 10801  Pcnp 10802
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-12 2172  ax-ext 2708  ax-sep 5261  ax-nul 5268  ax-pr 5389
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-sb 2069  df-clab 2715  df-cleq 2729  df-clel 2815  df-ne 2945  df-ral 3066  df-rex 3075  df-rab 3411  df-v 3450  df-dif 3918  df-un 3920  df-in 3922  df-ss 3932  df-pss 3934  df-nul 4288  df-if 4492  df-sn 4592  df-pr 4594  df-op 4598  df-br 5111  df-opab 5173  df-xp 5644  df-rel 5645  df-ltnq 10861  df-np 10924
This theorem is referenced by:  prub  10937  addclprlem1  10959  mulclprlem  10962  distrlem4pr  10969  1idpr  10972  psslinpr  10974  prlem934  10976  ltaddpr  10977  ltexprlem2  10980  ltexprlem3  10981  ltexprlem6  10984  prlem936  10990  reclem2pr  10991  suplem1pr  10995
  Copyright terms: Public domain W3C validator