MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  addcanpr Structured version   Visualization version   GIF version

Theorem addcanpr 11065
Description: Addition cancellation law for positive reals. Proposition 9-3.5(vi) of [Gleason] p. 123. (Contributed by NM, 9-Apr-1996.) (New usage is discouraged.)
Assertion
Ref Expression
addcanpr ((𝐴P𝐵P) → ((𝐴 +P 𝐵) = (𝐴 +P 𝐶) → 𝐵 = 𝐶))

Proof of Theorem addcanpr
StepHypRef Expression
1 addclpr 11037 . . . 4 ((𝐴P𝐵P) → (𝐴 +P 𝐵) ∈ P)
2 eleq1 2823 . . . . 5 ((𝐴 +P 𝐵) = (𝐴 +P 𝐶) → ((𝐴 +P 𝐵) ∈ P ↔ (𝐴 +P 𝐶) ∈ P))
3 dmplp 11031 . . . . . 6 dom +P = (P × P)
4 0npr 11011 . . . . . 6 ¬ ∅ ∈ P
53, 4ndmovrcl 7598 . . . . 5 ((𝐴 +P 𝐶) ∈ P → (𝐴P𝐶P))
62, 5biimtrdi 253 . . . 4 ((𝐴 +P 𝐵) = (𝐴 +P 𝐶) → ((𝐴 +P 𝐵) ∈ P → (𝐴P𝐶P)))
71, 6syl5com 31 . . 3 ((𝐴P𝐵P) → ((𝐴 +P 𝐵) = (𝐴 +P 𝐶) → (𝐴P𝐶P)))
8 ltapr 11064 . . . . . . . 8 (𝐴P → (𝐵<P 𝐶 ↔ (𝐴 +P 𝐵)<P (𝐴 +P 𝐶)))
9 ltapr 11064 . . . . . . . 8 (𝐴P → (𝐶<P 𝐵 ↔ (𝐴 +P 𝐶)<P (𝐴 +P 𝐵)))
108, 9orbi12d 918 . . . . . . 7 (𝐴P → ((𝐵<P 𝐶𝐶<P 𝐵) ↔ ((𝐴 +P 𝐵)<P (𝐴 +P 𝐶) ∨ (𝐴 +P 𝐶)<P (𝐴 +P 𝐵))))
1110notbid 318 . . . . . 6 (𝐴P → (¬ (𝐵<P 𝐶𝐶<P 𝐵) ↔ ¬ ((𝐴 +P 𝐵)<P (𝐴 +P 𝐶) ∨ (𝐴 +P 𝐶)<P (𝐴 +P 𝐵))))
1211ad2antrr 726 . . . . 5 (((𝐴P𝐵P) ∧ (𝐴P𝐶P)) → (¬ (𝐵<P 𝐶𝐶<P 𝐵) ↔ ¬ ((𝐴 +P 𝐵)<P (𝐴 +P 𝐶) ∨ (𝐴 +P 𝐶)<P (𝐴 +P 𝐵))))
13 ltsopr 11051 . . . . . . 7 <P Or P
14 sotrieq 5597 . . . . . . 7 ((<P Or P ∧ (𝐵P𝐶P)) → (𝐵 = 𝐶 ↔ ¬ (𝐵<P 𝐶𝐶<P 𝐵)))
1513, 14mpan 690 . . . . . 6 ((𝐵P𝐶P) → (𝐵 = 𝐶 ↔ ¬ (𝐵<P 𝐶𝐶<P 𝐵)))
1615ad2ant2l 746 . . . . 5 (((𝐴P𝐵P) ∧ (𝐴P𝐶P)) → (𝐵 = 𝐶 ↔ ¬ (𝐵<P 𝐶𝐶<P 𝐵)))
17 addclpr 11037 . . . . . 6 ((𝐴P𝐶P) → (𝐴 +P 𝐶) ∈ P)
18 sotrieq 5597 . . . . . . 7 ((<P Or P ∧ ((𝐴 +P 𝐵) ∈ P ∧ (𝐴 +P 𝐶) ∈ P)) → ((𝐴 +P 𝐵) = (𝐴 +P 𝐶) ↔ ¬ ((𝐴 +P 𝐵)<P (𝐴 +P 𝐶) ∨ (𝐴 +P 𝐶)<P (𝐴 +P 𝐵))))
1913, 18mpan 690 . . . . . 6 (((𝐴 +P 𝐵) ∈ P ∧ (𝐴 +P 𝐶) ∈ P) → ((𝐴 +P 𝐵) = (𝐴 +P 𝐶) ↔ ¬ ((𝐴 +P 𝐵)<P (𝐴 +P 𝐶) ∨ (𝐴 +P 𝐶)<P (𝐴 +P 𝐵))))
201, 17, 19syl2an 596 . . . . 5 (((𝐴P𝐵P) ∧ (𝐴P𝐶P)) → ((𝐴 +P 𝐵) = (𝐴 +P 𝐶) ↔ ¬ ((𝐴 +P 𝐵)<P (𝐴 +P 𝐶) ∨ (𝐴 +P 𝐶)<P (𝐴 +P 𝐵))))
2112, 16, 203bitr4d 311 . . . 4 (((𝐴P𝐵P) ∧ (𝐴P𝐶P)) → (𝐵 = 𝐶 ↔ (𝐴 +P 𝐵) = (𝐴 +P 𝐶)))
2221exbiri 810 . . 3 ((𝐴P𝐵P) → ((𝐴P𝐶P) → ((𝐴 +P 𝐵) = (𝐴 +P 𝐶) → 𝐵 = 𝐶)))
237, 22syld 47 . 2 ((𝐴P𝐵P) → ((𝐴 +P 𝐵) = (𝐴 +P 𝐶) → ((𝐴 +P 𝐵) = (𝐴 +P 𝐶) → 𝐵 = 𝐶)))
2423pm2.43d 53 1 ((𝐴P𝐵P) → ((𝐴 +P 𝐵) = (𝐴 +P 𝐶) → 𝐵 = 𝐶))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  wo 847   = wceq 1540  wcel 2109   class class class wbr 5124   Or wor 5565  (class class class)co 7410  Pcnp 10878   +P cpp 10880  <P cltp 10882
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2708  ax-sep 5271  ax-nul 5281  ax-pow 5340  ax-pr 5407  ax-un 7734  ax-inf2 9660
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2728  df-clel 2810  df-nfc 2886  df-ne 2934  df-ral 3053  df-rex 3062  df-rmo 3364  df-reu 3365  df-rab 3421  df-v 3466  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-pss 3951  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4889  df-int 4928  df-iun 4974  df-br 5125  df-opab 5187  df-mpt 5207  df-tr 5235  df-id 5553  df-eprel 5558  df-po 5566  df-so 5567  df-fr 5611  df-we 5613  df-xp 5665  df-rel 5666  df-cnv 5667  df-co 5668  df-dm 5669  df-rn 5670  df-res 5671  df-ima 5672  df-pred 6295  df-ord 6360  df-on 6361  df-lim 6362  df-suc 6363  df-iota 6489  df-fun 6538  df-fn 6539  df-f 6540  df-f1 6541  df-fo 6542  df-f1o 6543  df-fv 6544  df-ov 7413  df-oprab 7414  df-mpo 7415  df-om 7867  df-1st 7993  df-2nd 7994  df-frecs 8285  df-wrecs 8316  df-recs 8390  df-rdg 8429  df-1o 8485  df-oadd 8489  df-omul 8490  df-er 8724  df-ni 10891  df-pli 10892  df-mi 10893  df-lti 10894  df-plpq 10927  df-mpq 10928  df-ltpq 10929  df-enq 10930  df-nq 10931  df-erq 10932  df-plq 10933  df-mq 10934  df-1nq 10935  df-rq 10936  df-ltnq 10937  df-np 11000  df-plp 11002  df-ltp 11004
This theorem is referenced by:  enrer  11082  mulcmpblnr  11090  mulgt0sr  11124
  Copyright terms: Public domain W3C validator