![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > addcanpr | Structured version Visualization version GIF version |
Description: Addition cancellation law for positive reals. Proposition 9-3.5(vi) of [Gleason] p. 123. (Contributed by NM, 9-Apr-1996.) (New usage is discouraged.) |
Ref | Expression |
---|---|
addcanpr | ⊢ ((𝐴 ∈ P ∧ 𝐵 ∈ P) → ((𝐴 +P 𝐵) = (𝐴 +P 𝐶) → 𝐵 = 𝐶)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | addclpr 11033 | . . . 4 ⊢ ((𝐴 ∈ P ∧ 𝐵 ∈ P) → (𝐴 +P 𝐵) ∈ P) | |
2 | eleq1 2816 | . . . . 5 ⊢ ((𝐴 +P 𝐵) = (𝐴 +P 𝐶) → ((𝐴 +P 𝐵) ∈ P ↔ (𝐴 +P 𝐶) ∈ P)) | |
3 | dmplp 11027 | . . . . . 6 ⊢ dom +P = (P × P) | |
4 | 0npr 11007 | . . . . . 6 ⊢ ¬ ∅ ∈ P | |
5 | 3, 4 | ndmovrcl 7601 | . . . . 5 ⊢ ((𝐴 +P 𝐶) ∈ P → (𝐴 ∈ P ∧ 𝐶 ∈ P)) |
6 | 2, 5 | biimtrdi 252 | . . . 4 ⊢ ((𝐴 +P 𝐵) = (𝐴 +P 𝐶) → ((𝐴 +P 𝐵) ∈ P → (𝐴 ∈ P ∧ 𝐶 ∈ P))) |
7 | 1, 6 | syl5com 31 | . . 3 ⊢ ((𝐴 ∈ P ∧ 𝐵 ∈ P) → ((𝐴 +P 𝐵) = (𝐴 +P 𝐶) → (𝐴 ∈ P ∧ 𝐶 ∈ P))) |
8 | ltapr 11060 | . . . . . . . 8 ⊢ (𝐴 ∈ P → (𝐵<P 𝐶 ↔ (𝐴 +P 𝐵)<P (𝐴 +P 𝐶))) | |
9 | ltapr 11060 | . . . . . . . 8 ⊢ (𝐴 ∈ P → (𝐶<P 𝐵 ↔ (𝐴 +P 𝐶)<P (𝐴 +P 𝐵))) | |
10 | 8, 9 | orbi12d 917 | . . . . . . 7 ⊢ (𝐴 ∈ P → ((𝐵<P 𝐶 ∨ 𝐶<P 𝐵) ↔ ((𝐴 +P 𝐵)<P (𝐴 +P 𝐶) ∨ (𝐴 +P 𝐶)<P (𝐴 +P 𝐵)))) |
11 | 10 | notbid 318 | . . . . . 6 ⊢ (𝐴 ∈ P → (¬ (𝐵<P 𝐶 ∨ 𝐶<P 𝐵) ↔ ¬ ((𝐴 +P 𝐵)<P (𝐴 +P 𝐶) ∨ (𝐴 +P 𝐶)<P (𝐴 +P 𝐵)))) |
12 | 11 | ad2antrr 725 | . . . . 5 ⊢ (((𝐴 ∈ P ∧ 𝐵 ∈ P) ∧ (𝐴 ∈ P ∧ 𝐶 ∈ P)) → (¬ (𝐵<P 𝐶 ∨ 𝐶<P 𝐵) ↔ ¬ ((𝐴 +P 𝐵)<P (𝐴 +P 𝐶) ∨ (𝐴 +P 𝐶)<P (𝐴 +P 𝐵)))) |
13 | ltsopr 11047 | . . . . . . 7 ⊢ <P Or P | |
14 | sotrieq 5613 | . . . . . . 7 ⊢ ((<P Or P ∧ (𝐵 ∈ P ∧ 𝐶 ∈ P)) → (𝐵 = 𝐶 ↔ ¬ (𝐵<P 𝐶 ∨ 𝐶<P 𝐵))) | |
15 | 13, 14 | mpan 689 | . . . . . 6 ⊢ ((𝐵 ∈ P ∧ 𝐶 ∈ P) → (𝐵 = 𝐶 ↔ ¬ (𝐵<P 𝐶 ∨ 𝐶<P 𝐵))) |
16 | 15 | ad2ant2l 745 | . . . . 5 ⊢ (((𝐴 ∈ P ∧ 𝐵 ∈ P) ∧ (𝐴 ∈ P ∧ 𝐶 ∈ P)) → (𝐵 = 𝐶 ↔ ¬ (𝐵<P 𝐶 ∨ 𝐶<P 𝐵))) |
17 | addclpr 11033 | . . . . . 6 ⊢ ((𝐴 ∈ P ∧ 𝐶 ∈ P) → (𝐴 +P 𝐶) ∈ P) | |
18 | sotrieq 5613 | . . . . . . 7 ⊢ ((<P Or P ∧ ((𝐴 +P 𝐵) ∈ P ∧ (𝐴 +P 𝐶) ∈ P)) → ((𝐴 +P 𝐵) = (𝐴 +P 𝐶) ↔ ¬ ((𝐴 +P 𝐵)<P (𝐴 +P 𝐶) ∨ (𝐴 +P 𝐶)<P (𝐴 +P 𝐵)))) | |
19 | 13, 18 | mpan 689 | . . . . . 6 ⊢ (((𝐴 +P 𝐵) ∈ P ∧ (𝐴 +P 𝐶) ∈ P) → ((𝐴 +P 𝐵) = (𝐴 +P 𝐶) ↔ ¬ ((𝐴 +P 𝐵)<P (𝐴 +P 𝐶) ∨ (𝐴 +P 𝐶)<P (𝐴 +P 𝐵)))) |
20 | 1, 17, 19 | syl2an 595 | . . . . 5 ⊢ (((𝐴 ∈ P ∧ 𝐵 ∈ P) ∧ (𝐴 ∈ P ∧ 𝐶 ∈ P)) → ((𝐴 +P 𝐵) = (𝐴 +P 𝐶) ↔ ¬ ((𝐴 +P 𝐵)<P (𝐴 +P 𝐶) ∨ (𝐴 +P 𝐶)<P (𝐴 +P 𝐵)))) |
21 | 12, 16, 20 | 3bitr4d 311 | . . . 4 ⊢ (((𝐴 ∈ P ∧ 𝐵 ∈ P) ∧ (𝐴 ∈ P ∧ 𝐶 ∈ P)) → (𝐵 = 𝐶 ↔ (𝐴 +P 𝐵) = (𝐴 +P 𝐶))) |
22 | 21 | exbiri 810 | . . 3 ⊢ ((𝐴 ∈ P ∧ 𝐵 ∈ P) → ((𝐴 ∈ P ∧ 𝐶 ∈ P) → ((𝐴 +P 𝐵) = (𝐴 +P 𝐶) → 𝐵 = 𝐶))) |
23 | 7, 22 | syld 47 | . 2 ⊢ ((𝐴 ∈ P ∧ 𝐵 ∈ P) → ((𝐴 +P 𝐵) = (𝐴 +P 𝐶) → ((𝐴 +P 𝐵) = (𝐴 +P 𝐶) → 𝐵 = 𝐶))) |
24 | 23 | pm2.43d 53 | 1 ⊢ ((𝐴 ∈ P ∧ 𝐵 ∈ P) → ((𝐴 +P 𝐵) = (𝐴 +P 𝐶) → 𝐵 = 𝐶)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 205 ∧ wa 395 ∨ wo 846 = wceq 1534 ∈ wcel 2099 class class class wbr 5142 Or wor 5583 (class class class)co 7414 Pcnp 10874 +P cpp 10876 <P cltp 10878 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2164 ax-ext 2698 ax-sep 5293 ax-nul 5300 ax-pow 5359 ax-pr 5423 ax-un 7734 ax-inf2 9656 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-3or 1086 df-3an 1087 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2529 df-eu 2558 df-clab 2705 df-cleq 2719 df-clel 2805 df-nfc 2880 df-ne 2936 df-ral 3057 df-rex 3066 df-rmo 3371 df-reu 3372 df-rab 3428 df-v 3471 df-sbc 3775 df-csb 3890 df-dif 3947 df-un 3949 df-in 3951 df-ss 3961 df-pss 3963 df-nul 4319 df-if 4525 df-pw 4600 df-sn 4625 df-pr 4627 df-op 4631 df-uni 4904 df-int 4945 df-iun 4993 df-br 5143 df-opab 5205 df-mpt 5226 df-tr 5260 df-id 5570 df-eprel 5576 df-po 5584 df-so 5585 df-fr 5627 df-we 5629 df-xp 5678 df-rel 5679 df-cnv 5680 df-co 5681 df-dm 5682 df-rn 5683 df-res 5684 df-ima 5685 df-pred 6299 df-ord 6366 df-on 6367 df-lim 6368 df-suc 6369 df-iota 6494 df-fun 6544 df-fn 6545 df-f 6546 df-f1 6547 df-fo 6548 df-f1o 6549 df-fv 6550 df-ov 7417 df-oprab 7418 df-mpo 7419 df-om 7865 df-1st 7987 df-2nd 7988 df-frecs 8280 df-wrecs 8311 df-recs 8385 df-rdg 8424 df-1o 8480 df-oadd 8484 df-omul 8485 df-er 8718 df-ni 10887 df-pli 10888 df-mi 10889 df-lti 10890 df-plpq 10923 df-mpq 10924 df-ltpq 10925 df-enq 10926 df-nq 10927 df-erq 10928 df-plq 10929 df-mq 10930 df-1nq 10931 df-rq 10932 df-ltnq 10933 df-np 10996 df-plp 10998 df-ltp 11000 |
This theorem is referenced by: enrer 11078 mulcmpblnr 11086 mulgt0sr 11120 |
Copyright terms: Public domain | W3C validator |