MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  addcanpr Structured version   Visualization version   GIF version

Theorem addcanpr 10802
Description: Addition cancellation law for positive reals. Proposition 9-3.5(vi) of [Gleason] p. 123. (Contributed by NM, 9-Apr-1996.) (New usage is discouraged.)
Assertion
Ref Expression
addcanpr ((𝐴P𝐵P) → ((𝐴 +P 𝐵) = (𝐴 +P 𝐶) → 𝐵 = 𝐶))

Proof of Theorem addcanpr
StepHypRef Expression
1 addclpr 10774 . . . 4 ((𝐴P𝐵P) → (𝐴 +P 𝐵) ∈ P)
2 eleq1 2826 . . . . 5 ((𝐴 +P 𝐵) = (𝐴 +P 𝐶) → ((𝐴 +P 𝐵) ∈ P ↔ (𝐴 +P 𝐶) ∈ P))
3 dmplp 10768 . . . . . 6 dom +P = (P × P)
4 0npr 10748 . . . . . 6 ¬ ∅ ∈ P
53, 4ndmovrcl 7458 . . . . 5 ((𝐴 +P 𝐶) ∈ P → (𝐴P𝐶P))
62, 5syl6bi 252 . . . 4 ((𝐴 +P 𝐵) = (𝐴 +P 𝐶) → ((𝐴 +P 𝐵) ∈ P → (𝐴P𝐶P)))
71, 6syl5com 31 . . 3 ((𝐴P𝐵P) → ((𝐴 +P 𝐵) = (𝐴 +P 𝐶) → (𝐴P𝐶P)))
8 ltapr 10801 . . . . . . . 8 (𝐴P → (𝐵<P 𝐶 ↔ (𝐴 +P 𝐵)<P (𝐴 +P 𝐶)))
9 ltapr 10801 . . . . . . . 8 (𝐴P → (𝐶<P 𝐵 ↔ (𝐴 +P 𝐶)<P (𝐴 +P 𝐵)))
108, 9orbi12d 916 . . . . . . 7 (𝐴P → ((𝐵<P 𝐶𝐶<P 𝐵) ↔ ((𝐴 +P 𝐵)<P (𝐴 +P 𝐶) ∨ (𝐴 +P 𝐶)<P (𝐴 +P 𝐵))))
1110notbid 318 . . . . . 6 (𝐴P → (¬ (𝐵<P 𝐶𝐶<P 𝐵) ↔ ¬ ((𝐴 +P 𝐵)<P (𝐴 +P 𝐶) ∨ (𝐴 +P 𝐶)<P (𝐴 +P 𝐵))))
1211ad2antrr 723 . . . . 5 (((𝐴P𝐵P) ∧ (𝐴P𝐶P)) → (¬ (𝐵<P 𝐶𝐶<P 𝐵) ↔ ¬ ((𝐴 +P 𝐵)<P (𝐴 +P 𝐶) ∨ (𝐴 +P 𝐶)<P (𝐴 +P 𝐵))))
13 ltsopr 10788 . . . . . . 7 <P Or P
14 sotrieq 5532 . . . . . . 7 ((<P Or P ∧ (𝐵P𝐶P)) → (𝐵 = 𝐶 ↔ ¬ (𝐵<P 𝐶𝐶<P 𝐵)))
1513, 14mpan 687 . . . . . 6 ((𝐵P𝐶P) → (𝐵 = 𝐶 ↔ ¬ (𝐵<P 𝐶𝐶<P 𝐵)))
1615ad2ant2l 743 . . . . 5 (((𝐴P𝐵P) ∧ (𝐴P𝐶P)) → (𝐵 = 𝐶 ↔ ¬ (𝐵<P 𝐶𝐶<P 𝐵)))
17 addclpr 10774 . . . . . 6 ((𝐴P𝐶P) → (𝐴 +P 𝐶) ∈ P)
18 sotrieq 5532 . . . . . . 7 ((<P Or P ∧ ((𝐴 +P 𝐵) ∈ P ∧ (𝐴 +P 𝐶) ∈ P)) → ((𝐴 +P 𝐵) = (𝐴 +P 𝐶) ↔ ¬ ((𝐴 +P 𝐵)<P (𝐴 +P 𝐶) ∨ (𝐴 +P 𝐶)<P (𝐴 +P 𝐵))))
1913, 18mpan 687 . . . . . 6 (((𝐴 +P 𝐵) ∈ P ∧ (𝐴 +P 𝐶) ∈ P) → ((𝐴 +P 𝐵) = (𝐴 +P 𝐶) ↔ ¬ ((𝐴 +P 𝐵)<P (𝐴 +P 𝐶) ∨ (𝐴 +P 𝐶)<P (𝐴 +P 𝐵))))
201, 17, 19syl2an 596 . . . . 5 (((𝐴P𝐵P) ∧ (𝐴P𝐶P)) → ((𝐴 +P 𝐵) = (𝐴 +P 𝐶) ↔ ¬ ((𝐴 +P 𝐵)<P (𝐴 +P 𝐶) ∨ (𝐴 +P 𝐶)<P (𝐴 +P 𝐵))))
2112, 16, 203bitr4d 311 . . . 4 (((𝐴P𝐵P) ∧ (𝐴P𝐶P)) → (𝐵 = 𝐶 ↔ (𝐴 +P 𝐵) = (𝐴 +P 𝐶)))
2221exbiri 808 . . 3 ((𝐴P𝐵P) → ((𝐴P𝐶P) → ((𝐴 +P 𝐵) = (𝐴 +P 𝐶) → 𝐵 = 𝐶)))
237, 22syld 47 . 2 ((𝐴P𝐵P) → ((𝐴 +P 𝐵) = (𝐴 +P 𝐶) → ((𝐴 +P 𝐵) = (𝐴 +P 𝐶) → 𝐵 = 𝐶)))
2423pm2.43d 53 1 ((𝐴P𝐵P) → ((𝐴 +P 𝐵) = (𝐴 +P 𝐶) → 𝐵 = 𝐶))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 396  wo 844   = wceq 1539  wcel 2106   class class class wbr 5074   Or wor 5502  (class class class)co 7275  Pcnp 10615   +P cpp 10617  <P cltp 10619
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-inf2 9399
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-ral 3069  df-rex 3070  df-rmo 3071  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-int 4880  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-pred 6202  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-ov 7278  df-oprab 7279  df-mpo 7280  df-om 7713  df-1st 7831  df-2nd 7832  df-frecs 8097  df-wrecs 8128  df-recs 8202  df-rdg 8241  df-1o 8297  df-oadd 8301  df-omul 8302  df-er 8498  df-ni 10628  df-pli 10629  df-mi 10630  df-lti 10631  df-plpq 10664  df-mpq 10665  df-ltpq 10666  df-enq 10667  df-nq 10668  df-erq 10669  df-plq 10670  df-mq 10671  df-1nq 10672  df-rq 10673  df-ltnq 10674  df-np 10737  df-plp 10739  df-ltp 10741
This theorem is referenced by:  enrer  10819  mulcmpblnr  10827  mulgt0sr  10861
  Copyright terms: Public domain W3C validator