Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > addcanpr | Structured version Visualization version GIF version |
Description: Addition cancellation law for positive reals. Proposition 9-3.5(vi) of [Gleason] p. 123. (Contributed by NM, 9-Apr-1996.) (New usage is discouraged.) |
Ref | Expression |
---|---|
addcanpr | ⊢ ((𝐴 ∈ P ∧ 𝐵 ∈ P) → ((𝐴 +P 𝐵) = (𝐴 +P 𝐶) → 𝐵 = 𝐶)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | addclpr 10785 | . . . 4 ⊢ ((𝐴 ∈ P ∧ 𝐵 ∈ P) → (𝐴 +P 𝐵) ∈ P) | |
2 | eleq1 2828 | . . . . 5 ⊢ ((𝐴 +P 𝐵) = (𝐴 +P 𝐶) → ((𝐴 +P 𝐵) ∈ P ↔ (𝐴 +P 𝐶) ∈ P)) | |
3 | dmplp 10779 | . . . . . 6 ⊢ dom +P = (P × P) | |
4 | 0npr 10759 | . . . . . 6 ⊢ ¬ ∅ ∈ P | |
5 | 3, 4 | ndmovrcl 7453 | . . . . 5 ⊢ ((𝐴 +P 𝐶) ∈ P → (𝐴 ∈ P ∧ 𝐶 ∈ P)) |
6 | 2, 5 | syl6bi 252 | . . . 4 ⊢ ((𝐴 +P 𝐵) = (𝐴 +P 𝐶) → ((𝐴 +P 𝐵) ∈ P → (𝐴 ∈ P ∧ 𝐶 ∈ P))) |
7 | 1, 6 | syl5com 31 | . . 3 ⊢ ((𝐴 ∈ P ∧ 𝐵 ∈ P) → ((𝐴 +P 𝐵) = (𝐴 +P 𝐶) → (𝐴 ∈ P ∧ 𝐶 ∈ P))) |
8 | ltapr 10812 | . . . . . . . 8 ⊢ (𝐴 ∈ P → (𝐵<P 𝐶 ↔ (𝐴 +P 𝐵)<P (𝐴 +P 𝐶))) | |
9 | ltapr 10812 | . . . . . . . 8 ⊢ (𝐴 ∈ P → (𝐶<P 𝐵 ↔ (𝐴 +P 𝐶)<P (𝐴 +P 𝐵))) | |
10 | 8, 9 | orbi12d 916 | . . . . . . 7 ⊢ (𝐴 ∈ P → ((𝐵<P 𝐶 ∨ 𝐶<P 𝐵) ↔ ((𝐴 +P 𝐵)<P (𝐴 +P 𝐶) ∨ (𝐴 +P 𝐶)<P (𝐴 +P 𝐵)))) |
11 | 10 | notbid 318 | . . . . . 6 ⊢ (𝐴 ∈ P → (¬ (𝐵<P 𝐶 ∨ 𝐶<P 𝐵) ↔ ¬ ((𝐴 +P 𝐵)<P (𝐴 +P 𝐶) ∨ (𝐴 +P 𝐶)<P (𝐴 +P 𝐵)))) |
12 | 11 | ad2antrr 723 | . . . . 5 ⊢ (((𝐴 ∈ P ∧ 𝐵 ∈ P) ∧ (𝐴 ∈ P ∧ 𝐶 ∈ P)) → (¬ (𝐵<P 𝐶 ∨ 𝐶<P 𝐵) ↔ ¬ ((𝐴 +P 𝐵)<P (𝐴 +P 𝐶) ∨ (𝐴 +P 𝐶)<P (𝐴 +P 𝐵)))) |
13 | ltsopr 10799 | . . . . . . 7 ⊢ <P Or P | |
14 | sotrieq 5533 | . . . . . . 7 ⊢ ((<P Or P ∧ (𝐵 ∈ P ∧ 𝐶 ∈ P)) → (𝐵 = 𝐶 ↔ ¬ (𝐵<P 𝐶 ∨ 𝐶<P 𝐵))) | |
15 | 13, 14 | mpan 687 | . . . . . 6 ⊢ ((𝐵 ∈ P ∧ 𝐶 ∈ P) → (𝐵 = 𝐶 ↔ ¬ (𝐵<P 𝐶 ∨ 𝐶<P 𝐵))) |
16 | 15 | ad2ant2l 743 | . . . . 5 ⊢ (((𝐴 ∈ P ∧ 𝐵 ∈ P) ∧ (𝐴 ∈ P ∧ 𝐶 ∈ P)) → (𝐵 = 𝐶 ↔ ¬ (𝐵<P 𝐶 ∨ 𝐶<P 𝐵))) |
17 | addclpr 10785 | . . . . . 6 ⊢ ((𝐴 ∈ P ∧ 𝐶 ∈ P) → (𝐴 +P 𝐶) ∈ P) | |
18 | sotrieq 5533 | . . . . . . 7 ⊢ ((<P Or P ∧ ((𝐴 +P 𝐵) ∈ P ∧ (𝐴 +P 𝐶) ∈ P)) → ((𝐴 +P 𝐵) = (𝐴 +P 𝐶) ↔ ¬ ((𝐴 +P 𝐵)<P (𝐴 +P 𝐶) ∨ (𝐴 +P 𝐶)<P (𝐴 +P 𝐵)))) | |
19 | 13, 18 | mpan 687 | . . . . . 6 ⊢ (((𝐴 +P 𝐵) ∈ P ∧ (𝐴 +P 𝐶) ∈ P) → ((𝐴 +P 𝐵) = (𝐴 +P 𝐶) ↔ ¬ ((𝐴 +P 𝐵)<P (𝐴 +P 𝐶) ∨ (𝐴 +P 𝐶)<P (𝐴 +P 𝐵)))) |
20 | 1, 17, 19 | syl2an 596 | . . . . 5 ⊢ (((𝐴 ∈ P ∧ 𝐵 ∈ P) ∧ (𝐴 ∈ P ∧ 𝐶 ∈ P)) → ((𝐴 +P 𝐵) = (𝐴 +P 𝐶) ↔ ¬ ((𝐴 +P 𝐵)<P (𝐴 +P 𝐶) ∨ (𝐴 +P 𝐶)<P (𝐴 +P 𝐵)))) |
21 | 12, 16, 20 | 3bitr4d 311 | . . . 4 ⊢ (((𝐴 ∈ P ∧ 𝐵 ∈ P) ∧ (𝐴 ∈ P ∧ 𝐶 ∈ P)) → (𝐵 = 𝐶 ↔ (𝐴 +P 𝐵) = (𝐴 +P 𝐶))) |
22 | 21 | exbiri 808 | . . 3 ⊢ ((𝐴 ∈ P ∧ 𝐵 ∈ P) → ((𝐴 ∈ P ∧ 𝐶 ∈ P) → ((𝐴 +P 𝐵) = (𝐴 +P 𝐶) → 𝐵 = 𝐶))) |
23 | 7, 22 | syld 47 | . 2 ⊢ ((𝐴 ∈ P ∧ 𝐵 ∈ P) → ((𝐴 +P 𝐵) = (𝐴 +P 𝐶) → ((𝐴 +P 𝐵) = (𝐴 +P 𝐶) → 𝐵 = 𝐶))) |
24 | 23 | pm2.43d 53 | 1 ⊢ ((𝐴 ∈ P ∧ 𝐵 ∈ P) → ((𝐴 +P 𝐵) = (𝐴 +P 𝐶) → 𝐵 = 𝐶)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 205 ∧ wa 396 ∨ wo 844 = wceq 1542 ∈ wcel 2110 class class class wbr 5079 Or wor 5503 (class class class)co 7272 Pcnp 10626 +P cpp 10628 <P cltp 10630 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1802 ax-4 1816 ax-5 1917 ax-6 1975 ax-7 2015 ax-8 2112 ax-9 2120 ax-10 2141 ax-11 2158 ax-12 2175 ax-ext 2711 ax-sep 5227 ax-nul 5234 ax-pow 5292 ax-pr 5356 ax-un 7583 ax-inf2 9387 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1545 df-fal 1555 df-ex 1787 df-nf 1791 df-sb 2072 df-mo 2542 df-eu 2571 df-clab 2718 df-cleq 2732 df-clel 2818 df-nfc 2891 df-ne 2946 df-ral 3071 df-rex 3072 df-reu 3073 df-rmo 3074 df-rab 3075 df-v 3433 df-sbc 3721 df-csb 3838 df-dif 3895 df-un 3897 df-in 3899 df-ss 3909 df-pss 3911 df-nul 4263 df-if 4466 df-pw 4541 df-sn 4568 df-pr 4570 df-op 4574 df-uni 4846 df-int 4886 df-iun 4932 df-br 5080 df-opab 5142 df-mpt 5163 df-tr 5197 df-id 5490 df-eprel 5496 df-po 5504 df-so 5505 df-fr 5545 df-we 5547 df-xp 5596 df-rel 5597 df-cnv 5598 df-co 5599 df-dm 5600 df-rn 5601 df-res 5602 df-ima 5603 df-pred 6201 df-ord 6268 df-on 6269 df-lim 6270 df-suc 6271 df-iota 6390 df-fun 6434 df-fn 6435 df-f 6436 df-f1 6437 df-fo 6438 df-f1o 6439 df-fv 6440 df-ov 7275 df-oprab 7276 df-mpo 7277 df-om 7708 df-1st 7825 df-2nd 7826 df-frecs 8089 df-wrecs 8120 df-recs 8194 df-rdg 8233 df-1o 8289 df-oadd 8293 df-omul 8294 df-er 8490 df-ni 10639 df-pli 10640 df-mi 10641 df-lti 10642 df-plpq 10675 df-mpq 10676 df-ltpq 10677 df-enq 10678 df-nq 10679 df-erq 10680 df-plq 10681 df-mq 10682 df-1nq 10683 df-rq 10684 df-ltnq 10685 df-np 10748 df-plp 10750 df-ltp 10752 |
This theorem is referenced by: enrer 10830 mulcmpblnr 10838 mulgt0sr 10872 |
Copyright terms: Public domain | W3C validator |