MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  addcanpr Structured version   Visualization version   GIF version

Theorem addcanpr 10946
Description: Addition cancellation law for positive reals. Proposition 9-3.5(vi) of [Gleason] p. 123. (Contributed by NM, 9-Apr-1996.) (New usage is discouraged.)
Assertion
Ref Expression
addcanpr ((𝐴P𝐵P) → ((𝐴 +P 𝐵) = (𝐴 +P 𝐶) → 𝐵 = 𝐶))

Proof of Theorem addcanpr
StepHypRef Expression
1 addclpr 10918 . . . 4 ((𝐴P𝐵P) → (𝐴 +P 𝐵) ∈ P)
2 eleq1 2821 . . . . 5 ((𝐴 +P 𝐵) = (𝐴 +P 𝐶) → ((𝐴 +P 𝐵) ∈ P ↔ (𝐴 +P 𝐶) ∈ P))
3 dmplp 10912 . . . . . 6 dom +P = (P × P)
4 0npr 10892 . . . . . 6 ¬ ∅ ∈ P
53, 4ndmovrcl 7540 . . . . 5 ((𝐴 +P 𝐶) ∈ P → (𝐴P𝐶P))
62, 5biimtrdi 253 . . . 4 ((𝐴 +P 𝐵) = (𝐴 +P 𝐶) → ((𝐴 +P 𝐵) ∈ P → (𝐴P𝐶P)))
71, 6syl5com 31 . . 3 ((𝐴P𝐵P) → ((𝐴 +P 𝐵) = (𝐴 +P 𝐶) → (𝐴P𝐶P)))
8 ltapr 10945 . . . . . . . 8 (𝐴P → (𝐵<P 𝐶 ↔ (𝐴 +P 𝐵)<P (𝐴 +P 𝐶)))
9 ltapr 10945 . . . . . . . 8 (𝐴P → (𝐶<P 𝐵 ↔ (𝐴 +P 𝐶)<P (𝐴 +P 𝐵)))
108, 9orbi12d 918 . . . . . . 7 (𝐴P → ((𝐵<P 𝐶𝐶<P 𝐵) ↔ ((𝐴 +P 𝐵)<P (𝐴 +P 𝐶) ∨ (𝐴 +P 𝐶)<P (𝐴 +P 𝐵))))
1110notbid 318 . . . . . 6 (𝐴P → (¬ (𝐵<P 𝐶𝐶<P 𝐵) ↔ ¬ ((𝐴 +P 𝐵)<P (𝐴 +P 𝐶) ∨ (𝐴 +P 𝐶)<P (𝐴 +P 𝐵))))
1211ad2antrr 726 . . . . 5 (((𝐴P𝐵P) ∧ (𝐴P𝐶P)) → (¬ (𝐵<P 𝐶𝐶<P 𝐵) ↔ ¬ ((𝐴 +P 𝐵)<P (𝐴 +P 𝐶) ∨ (𝐴 +P 𝐶)<P (𝐴 +P 𝐵))))
13 ltsopr 10932 . . . . . . 7 <P Or P
14 sotrieq 5560 . . . . . . 7 ((<P Or P ∧ (𝐵P𝐶P)) → (𝐵 = 𝐶 ↔ ¬ (𝐵<P 𝐶𝐶<P 𝐵)))
1513, 14mpan 690 . . . . . 6 ((𝐵P𝐶P) → (𝐵 = 𝐶 ↔ ¬ (𝐵<P 𝐶𝐶<P 𝐵)))
1615ad2ant2l 746 . . . . 5 (((𝐴P𝐵P) ∧ (𝐴P𝐶P)) → (𝐵 = 𝐶 ↔ ¬ (𝐵<P 𝐶𝐶<P 𝐵)))
17 addclpr 10918 . . . . . 6 ((𝐴P𝐶P) → (𝐴 +P 𝐶) ∈ P)
18 sotrieq 5560 . . . . . . 7 ((<P Or P ∧ ((𝐴 +P 𝐵) ∈ P ∧ (𝐴 +P 𝐶) ∈ P)) → ((𝐴 +P 𝐵) = (𝐴 +P 𝐶) ↔ ¬ ((𝐴 +P 𝐵)<P (𝐴 +P 𝐶) ∨ (𝐴 +P 𝐶)<P (𝐴 +P 𝐵))))
1913, 18mpan 690 . . . . . 6 (((𝐴 +P 𝐵) ∈ P ∧ (𝐴 +P 𝐶) ∈ P) → ((𝐴 +P 𝐵) = (𝐴 +P 𝐶) ↔ ¬ ((𝐴 +P 𝐵)<P (𝐴 +P 𝐶) ∨ (𝐴 +P 𝐶)<P (𝐴 +P 𝐵))))
201, 17, 19syl2an 596 . . . . 5 (((𝐴P𝐵P) ∧ (𝐴P𝐶P)) → ((𝐴 +P 𝐵) = (𝐴 +P 𝐶) ↔ ¬ ((𝐴 +P 𝐵)<P (𝐴 +P 𝐶) ∨ (𝐴 +P 𝐶)<P (𝐴 +P 𝐵))))
2112, 16, 203bitr4d 311 . . . 4 (((𝐴P𝐵P) ∧ (𝐴P𝐶P)) → (𝐵 = 𝐶 ↔ (𝐴 +P 𝐵) = (𝐴 +P 𝐶)))
2221exbiri 810 . . 3 ((𝐴P𝐵P) → ((𝐴P𝐶P) → ((𝐴 +P 𝐵) = (𝐴 +P 𝐶) → 𝐵 = 𝐶)))
237, 22syld 47 . 2 ((𝐴P𝐵P) → ((𝐴 +P 𝐵) = (𝐴 +P 𝐶) → ((𝐴 +P 𝐵) = (𝐴 +P 𝐶) → 𝐵 = 𝐶)))
2423pm2.43d 53 1 ((𝐴P𝐵P) → ((𝐴 +P 𝐵) = (𝐴 +P 𝐶) → 𝐵 = 𝐶))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  wo 847   = wceq 1541  wcel 2113   class class class wbr 5095   Or wor 5528  (class class class)co 7354  Pcnp 10759   +P cpp 10761  <P cltp 10763
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7676  ax-inf2 9540
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-ral 3049  df-rex 3058  df-rmo 3347  df-reu 3348  df-rab 3397  df-v 3439  df-sbc 3738  df-csb 3847  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-pss 3918  df-nul 4283  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4861  df-int 4900  df-iun 4945  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5516  df-eprel 5521  df-po 5529  df-so 5530  df-fr 5574  df-we 5576  df-xp 5627  df-rel 5628  df-cnv 5629  df-co 5630  df-dm 5631  df-rn 5632  df-res 5633  df-ima 5634  df-pred 6255  df-ord 6316  df-on 6317  df-lim 6318  df-suc 6319  df-iota 6444  df-fun 6490  df-fn 6491  df-f 6492  df-f1 6493  df-fo 6494  df-f1o 6495  df-fv 6496  df-ov 7357  df-oprab 7358  df-mpo 7359  df-om 7805  df-1st 7929  df-2nd 7930  df-frecs 8219  df-wrecs 8250  df-recs 8299  df-rdg 8337  df-1o 8393  df-oadd 8397  df-omul 8398  df-er 8630  df-ni 10772  df-pli 10773  df-mi 10774  df-lti 10775  df-plpq 10808  df-mpq 10809  df-ltpq 10810  df-enq 10811  df-nq 10812  df-erq 10813  df-plq 10814  df-mq 10815  df-1nq 10816  df-rq 10817  df-ltnq 10818  df-np 10881  df-plp 10883  df-ltp 10885
This theorem is referenced by:  enrer  10963  mulcmpblnr  10971  mulgt0sr  11005
  Copyright terms: Public domain W3C validator