|   | Metamath Proof Explorer | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > addcanpr | Structured version Visualization version GIF version | ||
| Description: Addition cancellation law for positive reals. Proposition 9-3.5(vi) of [Gleason] p. 123. (Contributed by NM, 9-Apr-1996.) (New usage is discouraged.) | 
| Ref | Expression | 
|---|---|
| addcanpr | ⊢ ((𝐴 ∈ P ∧ 𝐵 ∈ P) → ((𝐴 +P 𝐵) = (𝐴 +P 𝐶) → 𝐵 = 𝐶)) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | addclpr 11058 | . . . 4 ⊢ ((𝐴 ∈ P ∧ 𝐵 ∈ P) → (𝐴 +P 𝐵) ∈ P) | |
| 2 | eleq1 2829 | . . . . 5 ⊢ ((𝐴 +P 𝐵) = (𝐴 +P 𝐶) → ((𝐴 +P 𝐵) ∈ P ↔ (𝐴 +P 𝐶) ∈ P)) | |
| 3 | dmplp 11052 | . . . . . 6 ⊢ dom +P = (P × P) | |
| 4 | 0npr 11032 | . . . . . 6 ⊢ ¬ ∅ ∈ P | |
| 5 | 3, 4 | ndmovrcl 7619 | . . . . 5 ⊢ ((𝐴 +P 𝐶) ∈ P → (𝐴 ∈ P ∧ 𝐶 ∈ P)) | 
| 6 | 2, 5 | biimtrdi 253 | . . . 4 ⊢ ((𝐴 +P 𝐵) = (𝐴 +P 𝐶) → ((𝐴 +P 𝐵) ∈ P → (𝐴 ∈ P ∧ 𝐶 ∈ P))) | 
| 7 | 1, 6 | syl5com 31 | . . 3 ⊢ ((𝐴 ∈ P ∧ 𝐵 ∈ P) → ((𝐴 +P 𝐵) = (𝐴 +P 𝐶) → (𝐴 ∈ P ∧ 𝐶 ∈ P))) | 
| 8 | ltapr 11085 | . . . . . . . 8 ⊢ (𝐴 ∈ P → (𝐵<P 𝐶 ↔ (𝐴 +P 𝐵)<P (𝐴 +P 𝐶))) | |
| 9 | ltapr 11085 | . . . . . . . 8 ⊢ (𝐴 ∈ P → (𝐶<P 𝐵 ↔ (𝐴 +P 𝐶)<P (𝐴 +P 𝐵))) | |
| 10 | 8, 9 | orbi12d 919 | . . . . . . 7 ⊢ (𝐴 ∈ P → ((𝐵<P 𝐶 ∨ 𝐶<P 𝐵) ↔ ((𝐴 +P 𝐵)<P (𝐴 +P 𝐶) ∨ (𝐴 +P 𝐶)<P (𝐴 +P 𝐵)))) | 
| 11 | 10 | notbid 318 | . . . . . 6 ⊢ (𝐴 ∈ P → (¬ (𝐵<P 𝐶 ∨ 𝐶<P 𝐵) ↔ ¬ ((𝐴 +P 𝐵)<P (𝐴 +P 𝐶) ∨ (𝐴 +P 𝐶)<P (𝐴 +P 𝐵)))) | 
| 12 | 11 | ad2antrr 726 | . . . . 5 ⊢ (((𝐴 ∈ P ∧ 𝐵 ∈ P) ∧ (𝐴 ∈ P ∧ 𝐶 ∈ P)) → (¬ (𝐵<P 𝐶 ∨ 𝐶<P 𝐵) ↔ ¬ ((𝐴 +P 𝐵)<P (𝐴 +P 𝐶) ∨ (𝐴 +P 𝐶)<P (𝐴 +P 𝐵)))) | 
| 13 | ltsopr 11072 | . . . . . . 7 ⊢ <P Or P | |
| 14 | sotrieq 5623 | . . . . . . 7 ⊢ ((<P Or P ∧ (𝐵 ∈ P ∧ 𝐶 ∈ P)) → (𝐵 = 𝐶 ↔ ¬ (𝐵<P 𝐶 ∨ 𝐶<P 𝐵))) | |
| 15 | 13, 14 | mpan 690 | . . . . . 6 ⊢ ((𝐵 ∈ P ∧ 𝐶 ∈ P) → (𝐵 = 𝐶 ↔ ¬ (𝐵<P 𝐶 ∨ 𝐶<P 𝐵))) | 
| 16 | 15 | ad2ant2l 746 | . . . . 5 ⊢ (((𝐴 ∈ P ∧ 𝐵 ∈ P) ∧ (𝐴 ∈ P ∧ 𝐶 ∈ P)) → (𝐵 = 𝐶 ↔ ¬ (𝐵<P 𝐶 ∨ 𝐶<P 𝐵))) | 
| 17 | addclpr 11058 | . . . . . 6 ⊢ ((𝐴 ∈ P ∧ 𝐶 ∈ P) → (𝐴 +P 𝐶) ∈ P) | |
| 18 | sotrieq 5623 | . . . . . . 7 ⊢ ((<P Or P ∧ ((𝐴 +P 𝐵) ∈ P ∧ (𝐴 +P 𝐶) ∈ P)) → ((𝐴 +P 𝐵) = (𝐴 +P 𝐶) ↔ ¬ ((𝐴 +P 𝐵)<P (𝐴 +P 𝐶) ∨ (𝐴 +P 𝐶)<P (𝐴 +P 𝐵)))) | |
| 19 | 13, 18 | mpan 690 | . . . . . 6 ⊢ (((𝐴 +P 𝐵) ∈ P ∧ (𝐴 +P 𝐶) ∈ P) → ((𝐴 +P 𝐵) = (𝐴 +P 𝐶) ↔ ¬ ((𝐴 +P 𝐵)<P (𝐴 +P 𝐶) ∨ (𝐴 +P 𝐶)<P (𝐴 +P 𝐵)))) | 
| 20 | 1, 17, 19 | syl2an 596 | . . . . 5 ⊢ (((𝐴 ∈ P ∧ 𝐵 ∈ P) ∧ (𝐴 ∈ P ∧ 𝐶 ∈ P)) → ((𝐴 +P 𝐵) = (𝐴 +P 𝐶) ↔ ¬ ((𝐴 +P 𝐵)<P (𝐴 +P 𝐶) ∨ (𝐴 +P 𝐶)<P (𝐴 +P 𝐵)))) | 
| 21 | 12, 16, 20 | 3bitr4d 311 | . . . 4 ⊢ (((𝐴 ∈ P ∧ 𝐵 ∈ P) ∧ (𝐴 ∈ P ∧ 𝐶 ∈ P)) → (𝐵 = 𝐶 ↔ (𝐴 +P 𝐵) = (𝐴 +P 𝐶))) | 
| 22 | 21 | exbiri 811 | . . 3 ⊢ ((𝐴 ∈ P ∧ 𝐵 ∈ P) → ((𝐴 ∈ P ∧ 𝐶 ∈ P) → ((𝐴 +P 𝐵) = (𝐴 +P 𝐶) → 𝐵 = 𝐶))) | 
| 23 | 7, 22 | syld 47 | . 2 ⊢ ((𝐴 ∈ P ∧ 𝐵 ∈ P) → ((𝐴 +P 𝐵) = (𝐴 +P 𝐶) → ((𝐴 +P 𝐵) = (𝐴 +P 𝐶) → 𝐵 = 𝐶))) | 
| 24 | 23 | pm2.43d 53 | 1 ⊢ ((𝐴 ∈ P ∧ 𝐵 ∈ P) → ((𝐴 +P 𝐵) = (𝐴 +P 𝐶) → 𝐵 = 𝐶)) | 
| Colors of variables: wff setvar class | 
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∧ wa 395 ∨ wo 848 = wceq 1540 ∈ wcel 2108 class class class wbr 5143 Or wor 5591 (class class class)co 7431 Pcnp 10899 +P cpp 10901 <P cltp 10903 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2708 ax-sep 5296 ax-nul 5306 ax-pow 5365 ax-pr 5432 ax-un 7755 ax-inf2 9681 | 
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3or 1088 df-3an 1089 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2892 df-ne 2941 df-ral 3062 df-rex 3071 df-rmo 3380 df-reu 3381 df-rab 3437 df-v 3482 df-sbc 3789 df-csb 3900 df-dif 3954 df-un 3956 df-in 3958 df-ss 3968 df-pss 3971 df-nul 4334 df-if 4526 df-pw 4602 df-sn 4627 df-pr 4629 df-op 4633 df-uni 4908 df-int 4947 df-iun 4993 df-br 5144 df-opab 5206 df-mpt 5226 df-tr 5260 df-id 5578 df-eprel 5584 df-po 5592 df-so 5593 df-fr 5637 df-we 5639 df-xp 5691 df-rel 5692 df-cnv 5693 df-co 5694 df-dm 5695 df-rn 5696 df-res 5697 df-ima 5698 df-pred 6321 df-ord 6387 df-on 6388 df-lim 6389 df-suc 6390 df-iota 6514 df-fun 6563 df-fn 6564 df-f 6565 df-f1 6566 df-fo 6567 df-f1o 6568 df-fv 6569 df-ov 7434 df-oprab 7435 df-mpo 7436 df-om 7888 df-1st 8014 df-2nd 8015 df-frecs 8306 df-wrecs 8337 df-recs 8411 df-rdg 8450 df-1o 8506 df-oadd 8510 df-omul 8511 df-er 8745 df-ni 10912 df-pli 10913 df-mi 10914 df-lti 10915 df-plpq 10948 df-mpq 10949 df-ltpq 10950 df-enq 10951 df-nq 10952 df-erq 10953 df-plq 10954 df-mq 10955 df-1nq 10956 df-rq 10957 df-ltnq 10958 df-np 11021 df-plp 11023 df-ltp 11025 | 
| This theorem is referenced by: enrer 11103 mulcmpblnr 11111 mulgt0sr 11145 | 
| Copyright terms: Public domain | W3C validator |