| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ltaddpr2 | Structured version Visualization version GIF version | ||
| Description: The sum of two positive reals is greater than one of them. (Contributed by NM, 13-May-1996.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| ltaddpr2 | ⊢ (𝐶 ∈ P → ((𝐴 +P 𝐵) = 𝐶 → 𝐴<P 𝐶)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eleq1 2816 | . . 3 ⊢ ((𝐴 +P 𝐵) = 𝐶 → ((𝐴 +P 𝐵) ∈ P ↔ 𝐶 ∈ P)) | |
| 2 | dmplp 10906 | . . . 4 ⊢ dom +P = (P × P) | |
| 3 | 0npr 10886 | . . . 4 ⊢ ¬ ∅ ∈ P | |
| 4 | 2, 3 | ndmovrcl 7535 | . . 3 ⊢ ((𝐴 +P 𝐵) ∈ P → (𝐴 ∈ P ∧ 𝐵 ∈ P)) |
| 5 | 1, 4 | biimtrrdi 254 | . 2 ⊢ ((𝐴 +P 𝐵) = 𝐶 → (𝐶 ∈ P → (𝐴 ∈ P ∧ 𝐵 ∈ P))) |
| 6 | ltaddpr 10928 | . . 3 ⊢ ((𝐴 ∈ P ∧ 𝐵 ∈ P) → 𝐴<P (𝐴 +P 𝐵)) | |
| 7 | breq2 5096 | . . 3 ⊢ ((𝐴 +P 𝐵) = 𝐶 → (𝐴<P (𝐴 +P 𝐵) ↔ 𝐴<P 𝐶)) | |
| 8 | 6, 7 | imbitrid 244 | . 2 ⊢ ((𝐴 +P 𝐵) = 𝐶 → ((𝐴 ∈ P ∧ 𝐵 ∈ P) → 𝐴<P 𝐶)) |
| 9 | 5, 8 | syldc 48 | 1 ⊢ (𝐶 ∈ P → ((𝐴 +P 𝐵) = 𝐶 → 𝐴<P 𝐶)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 class class class wbr 5092 (class class class)co 7349 Pcnp 10753 +P cpp 10755 <P cltp 10757 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5235 ax-nul 5245 ax-pow 5304 ax-pr 5371 ax-un 7671 ax-inf2 9537 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rmo 3343 df-reu 3344 df-rab 3395 df-v 3438 df-sbc 3743 df-csb 3852 df-dif 3906 df-un 3908 df-in 3910 df-ss 3920 df-pss 3923 df-nul 4285 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4859 df-int 4897 df-iun 4943 df-br 5093 df-opab 5155 df-mpt 5174 df-tr 5200 df-id 5514 df-eprel 5519 df-po 5527 df-so 5528 df-fr 5572 df-we 5574 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-pred 6249 df-ord 6310 df-on 6311 df-lim 6312 df-suc 6313 df-iota 6438 df-fun 6484 df-fn 6485 df-f 6486 df-f1 6487 df-fo 6488 df-f1o 6489 df-fv 6490 df-ov 7352 df-oprab 7353 df-mpo 7354 df-om 7800 df-1st 7924 df-2nd 7925 df-frecs 8214 df-wrecs 8245 df-recs 8294 df-rdg 8332 df-1o 8388 df-oadd 8392 df-omul 8393 df-er 8625 df-ni 10766 df-pli 10767 df-mi 10768 df-lti 10769 df-plpq 10802 df-mpq 10803 df-ltpq 10804 df-enq 10805 df-nq 10806 df-erq 10807 df-plq 10808 df-mq 10809 df-1nq 10810 df-rq 10811 df-ltnq 10812 df-np 10875 df-plp 10877 df-ltp 10879 |
| This theorem is referenced by: mulgt0sr 10999 |
| Copyright terms: Public domain | W3C validator |