Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > ltaddpr2 | Structured version Visualization version GIF version |
Description: The sum of two positive reals is greater than one of them. (Contributed by NM, 13-May-1996.) (New usage is discouraged.) |
Ref | Expression |
---|---|
ltaddpr2 | ⊢ (𝐶 ∈ P → ((𝐴 +P 𝐵) = 𝐶 → 𝐴<P 𝐶)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eleq1 2825 | . . 3 ⊢ ((𝐴 +P 𝐵) = 𝐶 → ((𝐴 +P 𝐵) ∈ P ↔ 𝐶 ∈ P)) | |
2 | dmplp 10626 | . . . 4 ⊢ dom +P = (P × P) | |
3 | 0npr 10606 | . . . 4 ⊢ ¬ ∅ ∈ P | |
4 | 2, 3 | ndmovrcl 7394 | . . 3 ⊢ ((𝐴 +P 𝐵) ∈ P → (𝐴 ∈ P ∧ 𝐵 ∈ P)) |
5 | 1, 4 | syl6bir 257 | . 2 ⊢ ((𝐴 +P 𝐵) = 𝐶 → (𝐶 ∈ P → (𝐴 ∈ P ∧ 𝐵 ∈ P))) |
6 | ltaddpr 10648 | . . 3 ⊢ ((𝐴 ∈ P ∧ 𝐵 ∈ P) → 𝐴<P (𝐴 +P 𝐵)) | |
7 | breq2 5057 | . . 3 ⊢ ((𝐴 +P 𝐵) = 𝐶 → (𝐴<P (𝐴 +P 𝐵) ↔ 𝐴<P 𝐶)) | |
8 | 6, 7 | syl5ib 247 | . 2 ⊢ ((𝐴 +P 𝐵) = 𝐶 → ((𝐴 ∈ P ∧ 𝐵 ∈ P) → 𝐴<P 𝐶)) |
9 | 5, 8 | syldc 48 | 1 ⊢ (𝐶 ∈ P → ((𝐴 +P 𝐵) = 𝐶 → 𝐴<P 𝐶)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 399 = wceq 1543 ∈ wcel 2110 class class class wbr 5053 (class class class)co 7213 Pcnp 10473 +P cpp 10475 <P cltp 10477 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1803 ax-4 1817 ax-5 1918 ax-6 1976 ax-7 2016 ax-8 2112 ax-9 2120 ax-10 2141 ax-11 2158 ax-12 2175 ax-ext 2708 ax-sep 5192 ax-nul 5199 ax-pow 5258 ax-pr 5322 ax-un 7523 ax-inf2 9256 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 848 df-3or 1090 df-3an 1091 df-tru 1546 df-fal 1556 df-ex 1788 df-nf 1792 df-sb 2071 df-mo 2539 df-eu 2568 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2886 df-ne 2941 df-ral 3066 df-rex 3067 df-reu 3068 df-rmo 3069 df-rab 3070 df-v 3410 df-sbc 3695 df-csb 3812 df-dif 3869 df-un 3871 df-in 3873 df-ss 3883 df-pss 3885 df-nul 4238 df-if 4440 df-pw 4515 df-sn 4542 df-pr 4544 df-tp 4546 df-op 4548 df-uni 4820 df-int 4860 df-iun 4906 df-br 5054 df-opab 5116 df-mpt 5136 df-tr 5162 df-id 5455 df-eprel 5460 df-po 5468 df-so 5469 df-fr 5509 df-we 5511 df-xp 5557 df-rel 5558 df-cnv 5559 df-co 5560 df-dm 5561 df-rn 5562 df-res 5563 df-ima 5564 df-pred 6160 df-ord 6216 df-on 6217 df-lim 6218 df-suc 6219 df-iota 6338 df-fun 6382 df-fn 6383 df-f 6384 df-f1 6385 df-fo 6386 df-f1o 6387 df-fv 6388 df-ov 7216 df-oprab 7217 df-mpo 7218 df-om 7645 df-1st 7761 df-2nd 7762 df-wrecs 8047 df-recs 8108 df-rdg 8146 df-1o 8202 df-oadd 8206 df-omul 8207 df-er 8391 df-ni 10486 df-pli 10487 df-mi 10488 df-lti 10489 df-plpq 10522 df-mpq 10523 df-ltpq 10524 df-enq 10525 df-nq 10526 df-erq 10527 df-plq 10528 df-mq 10529 df-1nq 10530 df-rq 10531 df-ltnq 10532 df-np 10595 df-plp 10597 df-ltp 10599 |
This theorem is referenced by: mulgt0sr 10719 |
Copyright terms: Public domain | W3C validator |