| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ltaddpr2 | Structured version Visualization version GIF version | ||
| Description: The sum of two positive reals is greater than one of them. (Contributed by NM, 13-May-1996.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| ltaddpr2 | ⊢ (𝐶 ∈ P → ((𝐴 +P 𝐵) = 𝐶 → 𝐴<P 𝐶)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eleq1 2816 | . . 3 ⊢ ((𝐴 +P 𝐵) = 𝐶 → ((𝐴 +P 𝐵) ∈ P ↔ 𝐶 ∈ P)) | |
| 2 | dmplp 10941 | . . . 4 ⊢ dom +P = (P × P) | |
| 3 | 0npr 10921 | . . . 4 ⊢ ¬ ∅ ∈ P | |
| 4 | 2, 3 | ndmovrcl 7555 | . . 3 ⊢ ((𝐴 +P 𝐵) ∈ P → (𝐴 ∈ P ∧ 𝐵 ∈ P)) |
| 5 | 1, 4 | biimtrrdi 254 | . 2 ⊢ ((𝐴 +P 𝐵) = 𝐶 → (𝐶 ∈ P → (𝐴 ∈ P ∧ 𝐵 ∈ P))) |
| 6 | ltaddpr 10963 | . . 3 ⊢ ((𝐴 ∈ P ∧ 𝐵 ∈ P) → 𝐴<P (𝐴 +P 𝐵)) | |
| 7 | breq2 5106 | . . 3 ⊢ ((𝐴 +P 𝐵) = 𝐶 → (𝐴<P (𝐴 +P 𝐵) ↔ 𝐴<P 𝐶)) | |
| 8 | 6, 7 | imbitrid 244 | . 2 ⊢ ((𝐴 +P 𝐵) = 𝐶 → ((𝐴 ∈ P ∧ 𝐵 ∈ P) → 𝐴<P 𝐶)) |
| 9 | 5, 8 | syldc 48 | 1 ⊢ (𝐶 ∈ P → ((𝐴 +P 𝐵) = 𝐶 → 𝐴<P 𝐶)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 class class class wbr 5102 (class class class)co 7369 Pcnp 10788 +P cpp 10790 <P cltp 10792 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5246 ax-nul 5256 ax-pow 5315 ax-pr 5382 ax-un 7691 ax-inf2 9570 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rmo 3351 df-reu 3352 df-rab 3403 df-v 3446 df-sbc 3751 df-csb 3860 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-pss 3931 df-nul 4293 df-if 4485 df-pw 4561 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4868 df-int 4907 df-iun 4953 df-br 5103 df-opab 5165 df-mpt 5184 df-tr 5210 df-id 5526 df-eprel 5531 df-po 5539 df-so 5540 df-fr 5584 df-we 5586 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-pred 6262 df-ord 6323 df-on 6324 df-lim 6325 df-suc 6326 df-iota 6452 df-fun 6501 df-fn 6502 df-f 6503 df-f1 6504 df-fo 6505 df-f1o 6506 df-fv 6507 df-ov 7372 df-oprab 7373 df-mpo 7374 df-om 7823 df-1st 7947 df-2nd 7948 df-frecs 8237 df-wrecs 8268 df-recs 8317 df-rdg 8355 df-1o 8411 df-oadd 8415 df-omul 8416 df-er 8648 df-ni 10801 df-pli 10802 df-mi 10803 df-lti 10804 df-plpq 10837 df-mpq 10838 df-ltpq 10839 df-enq 10840 df-nq 10841 df-erq 10842 df-plq 10843 df-mq 10844 df-1nq 10845 df-rq 10846 df-ltnq 10847 df-np 10910 df-plp 10912 df-ltp 10914 |
| This theorem is referenced by: mulgt0sr 11034 |
| Copyright terms: Public domain | W3C validator |