| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ltaddpr2 | Structured version Visualization version GIF version | ||
| Description: The sum of two positive reals is greater than one of them. (Contributed by NM, 13-May-1996.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| ltaddpr2 | ⊢ (𝐶 ∈ P → ((𝐴 +P 𝐵) = 𝐶 → 𝐴<P 𝐶)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eleq1 2816 | . . 3 ⊢ ((𝐴 +P 𝐵) = 𝐶 → ((𝐴 +P 𝐵) ∈ P ↔ 𝐶 ∈ P)) | |
| 2 | dmplp 10965 | . . . 4 ⊢ dom +P = (P × P) | |
| 3 | 0npr 10945 | . . . 4 ⊢ ¬ ∅ ∈ P | |
| 4 | 2, 3 | ndmovrcl 7575 | . . 3 ⊢ ((𝐴 +P 𝐵) ∈ P → (𝐴 ∈ P ∧ 𝐵 ∈ P)) |
| 5 | 1, 4 | biimtrrdi 254 | . 2 ⊢ ((𝐴 +P 𝐵) = 𝐶 → (𝐶 ∈ P → (𝐴 ∈ P ∧ 𝐵 ∈ P))) |
| 6 | ltaddpr 10987 | . . 3 ⊢ ((𝐴 ∈ P ∧ 𝐵 ∈ P) → 𝐴<P (𝐴 +P 𝐵)) | |
| 7 | breq2 5111 | . . 3 ⊢ ((𝐴 +P 𝐵) = 𝐶 → (𝐴<P (𝐴 +P 𝐵) ↔ 𝐴<P 𝐶)) | |
| 8 | 6, 7 | imbitrid 244 | . 2 ⊢ ((𝐴 +P 𝐵) = 𝐶 → ((𝐴 ∈ P ∧ 𝐵 ∈ P) → 𝐴<P 𝐶)) |
| 9 | 5, 8 | syldc 48 | 1 ⊢ (𝐶 ∈ P → ((𝐴 +P 𝐵) = 𝐶 → 𝐴<P 𝐶)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 class class class wbr 5107 (class class class)co 7387 Pcnp 10812 +P cpp 10814 <P cltp 10816 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 ax-inf2 9594 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rmo 3354 df-reu 3355 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-pss 3934 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-int 4911 df-iun 4957 df-br 5108 df-opab 5170 df-mpt 5189 df-tr 5215 df-id 5533 df-eprel 5538 df-po 5546 df-so 5547 df-fr 5591 df-we 5593 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-pred 6274 df-ord 6335 df-on 6336 df-lim 6337 df-suc 6338 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-ov 7390 df-oprab 7391 df-mpo 7392 df-om 7843 df-1st 7968 df-2nd 7969 df-frecs 8260 df-wrecs 8291 df-recs 8340 df-rdg 8378 df-1o 8434 df-oadd 8438 df-omul 8439 df-er 8671 df-ni 10825 df-pli 10826 df-mi 10827 df-lti 10828 df-plpq 10861 df-mpq 10862 df-ltpq 10863 df-enq 10864 df-nq 10865 df-erq 10866 df-plq 10867 df-mq 10868 df-1nq 10869 df-rq 10870 df-ltnq 10871 df-np 10934 df-plp 10936 df-ltp 10938 |
| This theorem is referenced by: mulgt0sr 11058 |
| Copyright terms: Public domain | W3C validator |