Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > 0ntop | Structured version Visualization version GIF version |
Description: The empty set is not a topology. (Contributed by FL, 1-Jun-2008.) |
Ref | Expression |
---|---|
0ntop | ⊢ ¬ ∅ ∈ Top |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | noel 4261 | . 2 ⊢ ¬ ∅ ∈ ∅ | |
2 | 0opn 21961 | . 2 ⊢ (∅ ∈ Top → ∅ ∈ ∅) | |
3 | 1, 2 | mto 196 | 1 ⊢ ¬ ∅ ∈ Top |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 ∈ wcel 2108 ∅c0 4253 Topctop 21950 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-11 2156 ax-ext 2709 ax-sep 5218 |
This theorem depends on definitions: df-bi 206 df-an 396 df-tru 1542 df-fal 1552 df-ex 1784 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-ral 3068 df-rex 3069 df-rab 3072 df-v 3424 df-dif 3886 df-in 3890 df-ss 3900 df-nul 4254 df-pw 4532 df-sn 4559 df-uni 4837 df-top 21951 |
This theorem is referenced by: istps 21991 ordcmp 34563 onint1 34565 kelac1 40804 |
Copyright terms: Public domain | W3C validator |