MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  0ntop Structured version   Visualization version   GIF version

Theorem 0ntop 22932
Description: The empty set is not a topology. (Contributed by FL, 1-Jun-2008.)
Assertion
Ref Expression
0ntop ¬ ∅ ∈ Top

Proof of Theorem 0ntop
StepHypRef Expression
1 noel 4360 . 2 ¬ ∅ ∈ ∅
2 0opn 22931 . 2 (∅ ∈ Top → ∅ ∈ ∅)
31, 2mto 197 1 ¬ ∅ ∈ Top
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wcel 2108  c0 4352  Topctop 22920
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-11 2158  ax-ext 2711  ax-sep 5317
This theorem depends on definitions:  df-bi 207  df-an 396  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-sb 2065  df-clab 2718  df-cleq 2732  df-clel 2819  df-ral 3068  df-rex 3077  df-rab 3444  df-v 3490  df-dif 3979  df-in 3983  df-ss 3993  df-nul 4353  df-pw 4624  df-sn 4649  df-uni 4932  df-top 22921
This theorem is referenced by:  istps  22961  ordcmp  36413  onint1  36415  kelac1  43020
  Copyright terms: Public domain W3C validator