![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > 0ntop | Structured version Visualization version GIF version |
Description: The empty set is not a topology. (Contributed by FL, 1-Jun-2008.) |
Ref | Expression |
---|---|
0ntop | ⊢ ¬ ∅ ∈ Top |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | noel 4344 | . 2 ⊢ ¬ ∅ ∈ ∅ | |
2 | 0opn 22926 | . 2 ⊢ (∅ ∈ Top → ∅ ∈ ∅) | |
3 | 1, 2 | mto 197 | 1 ⊢ ¬ ∅ ∈ Top |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 ∈ wcel 2106 ∅c0 4339 Topctop 22915 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-11 2155 ax-ext 2706 ax-sep 5302 |
This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-sb 2063 df-clab 2713 df-cleq 2727 df-clel 2814 df-ral 3060 df-rex 3069 df-rab 3434 df-v 3480 df-dif 3966 df-in 3970 df-ss 3980 df-nul 4340 df-pw 4607 df-sn 4632 df-uni 4913 df-top 22916 |
This theorem is referenced by: istps 22956 ordcmp 36430 onint1 36432 kelac1 43052 |
Copyright terms: Public domain | W3C validator |