MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  0ntop Structured version   Visualization version   GIF version

Theorem 0ntop 22406
Description: The empty set is not a topology. (Contributed by FL, 1-Jun-2008.)
Assertion
Ref Expression
0ntop ¬ ∅ ∈ Top

Proof of Theorem 0ntop
StepHypRef Expression
1 noel 4330 . 2 ¬ ∅ ∈ ∅
2 0opn 22405 . 2 (∅ ∈ Top → ∅ ∈ ∅)
31, 2mto 196 1 ¬ ∅ ∈ Top
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wcel 2106  c0 4322  Topctop 22394
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-11 2154  ax-ext 2703  ax-sep 5299
This theorem depends on definitions:  df-bi 206  df-an 397  df-tru 1544  df-fal 1554  df-ex 1782  df-sb 2068  df-clab 2710  df-cleq 2724  df-clel 2810  df-ral 3062  df-rex 3071  df-rab 3433  df-v 3476  df-dif 3951  df-in 3955  df-ss 3965  df-nul 4323  df-pw 4604  df-sn 4629  df-uni 4909  df-top 22395
This theorem is referenced by:  istps  22435  ordcmp  35327  onint1  35329  kelac1  41795
  Copyright terms: Public domain W3C validator