MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  0ntop Structured version   Visualization version   GIF version

Theorem 0ntop 22768
Description: The empty set is not a topology. (Contributed by FL, 1-Jun-2008.)
Assertion
Ref Expression
0ntop ¬ ∅ ∈ Top

Proof of Theorem 0ntop
StepHypRef Expression
1 noel 4297 . 2 ¬ ∅ ∈ ∅
2 0opn 22767 . 2 (∅ ∈ Top → ∅ ∈ ∅)
31, 2mto 197 1 ¬ ∅ ∈ Top
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wcel 2109  c0 4292  Topctop 22756
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-11 2158  ax-ext 2701  ax-sep 5246
This theorem depends on definitions:  df-bi 207  df-an 396  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-ral 3045  df-rex 3054  df-rab 3403  df-v 3446  df-dif 3914  df-in 3918  df-ss 3928  df-nul 4293  df-pw 4561  df-sn 4586  df-uni 4868  df-top 22757
This theorem is referenced by:  istps  22797  ordcmp  36408  onint1  36410  kelac1  43025
  Copyright terms: Public domain W3C validator