| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 0ntop | Structured version Visualization version GIF version | ||
| Description: The empty set is not a topology. (Contributed by FL, 1-Jun-2008.) |
| Ref | Expression |
|---|---|
| 0ntop | ⊢ ¬ ∅ ∈ Top |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | noel 4285 | . 2 ⊢ ¬ ∅ ∈ ∅ | |
| 2 | 0opn 22819 | . 2 ⊢ (∅ ∈ Top → ∅ ∈ ∅) | |
| 3 | 1, 2 | mto 197 | 1 ⊢ ¬ ∅ ∈ Top |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 ∈ wcel 2111 ∅c0 4280 Topctop 22808 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 ax-sep 5232 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-dif 3900 df-in 3904 df-ss 3914 df-nul 4281 df-pw 4549 df-uni 4857 df-top 22809 |
| This theorem is referenced by: istps 22849 ordcmp 36489 onint1 36491 kelac1 43104 |
| Copyright terms: Public domain | W3C validator |