| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 0ntop | Structured version Visualization version GIF version | ||
| Description: The empty set is not a topology. (Contributed by FL, 1-Jun-2008.) |
| Ref | Expression |
|---|---|
| 0ntop | ⊢ ¬ ∅ ∈ Top |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | noel 4304 | . 2 ⊢ ¬ ∅ ∈ ∅ | |
| 2 | 0opn 22798 | . 2 ⊢ (∅ ∈ Top → ∅ ∈ ∅) | |
| 3 | 1, 2 | mto 197 | 1 ⊢ ¬ ∅ ∈ Top |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 ∈ wcel 2109 ∅c0 4299 Topctop 22787 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-11 2158 ax-ext 2702 ax-sep 5254 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2709 df-cleq 2722 df-clel 2804 df-ral 3046 df-rex 3055 df-rab 3409 df-v 3452 df-dif 3920 df-in 3924 df-ss 3934 df-nul 4300 df-pw 4568 df-sn 4593 df-uni 4875 df-top 22788 |
| This theorem is referenced by: istps 22828 ordcmp 36442 onint1 36444 kelac1 43059 |
| Copyright terms: Public domain | W3C validator |