MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  0ntop Structured version   Visualization version   GIF version

Theorem 0ntop 22054
Description: The empty set is not a topology. (Contributed by FL, 1-Jun-2008.)
Assertion
Ref Expression
0ntop ¬ ∅ ∈ Top

Proof of Theorem 0ntop
StepHypRef Expression
1 noel 4264 . 2 ¬ ∅ ∈ ∅
2 0opn 22053 . 2 (∅ ∈ Top → ∅ ∈ ∅)
31, 2mto 196 1 ¬ ∅ ∈ Top
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wcel 2106  c0 4256  Topctop 22042
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-11 2154  ax-ext 2709  ax-sep 5223
This theorem depends on definitions:  df-bi 206  df-an 397  df-tru 1542  df-fal 1552  df-ex 1783  df-sb 2068  df-clab 2716  df-cleq 2730  df-clel 2816  df-ral 3069  df-rex 3070  df-rab 3073  df-v 3434  df-dif 3890  df-in 3894  df-ss 3904  df-nul 4257  df-pw 4535  df-sn 4562  df-uni 4840  df-top 22043
This theorem is referenced by:  istps  22083  ordcmp  34636  onint1  34638  kelac1  40888
  Copyright terms: Public domain W3C validator