Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > 0ntop | Structured version Visualization version GIF version |
Description: The empty set is not a topology. (Contributed by FL, 1-Jun-2008.) |
Ref | Expression |
---|---|
0ntop | ⊢ ¬ ∅ ∈ Top |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | noel 4277 | . 2 ⊢ ¬ ∅ ∈ ∅ | |
2 | 0opn 22159 | . 2 ⊢ (∅ ∈ Top → ∅ ∈ ∅) | |
3 | 1, 2 | mto 196 | 1 ⊢ ¬ ∅ ∈ Top |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 ∈ wcel 2105 ∅c0 4269 Topctop 22148 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-11 2153 ax-ext 2707 ax-sep 5243 |
This theorem depends on definitions: df-bi 206 df-an 397 df-tru 1543 df-fal 1553 df-ex 1781 df-sb 2067 df-clab 2714 df-cleq 2728 df-clel 2814 df-ral 3062 df-rex 3071 df-rab 3404 df-v 3443 df-dif 3901 df-in 3905 df-ss 3915 df-nul 4270 df-pw 4549 df-sn 4574 df-uni 4853 df-top 22149 |
This theorem is referenced by: istps 22189 ordcmp 34732 onint1 34734 kelac1 41159 |
Copyright terms: Public domain | W3C validator |